Package ‘GeneMeta’

April 14, 2017

Title MetaAnalysis for High Throughput Experiments

Version 1.46.0

Author Lara Lusa <lusa@ifom-firc.it>, R. Gentleman, M. Ruschhaupt

Description A collection of meta-analysis tools for analysing high throughput experimental data

Maintainer Bioconductor Package Maintainer

License Artistic-2.0

Depends R (>= 2.10), methods, Biobase (>= 2.5.5), genefilter

Imports methods, Biobase (>= 2.5.5)

Suggests RColorBrewer

LazyLoad yes

biocViews Sequencing, GeneExpression, Microarray

NeedsCompilation no

R topics documented:

CountPlot 1
dstar 2
f.Q 4
Nevins 5
tau2.DL 5
zScores 6

Index 9

CountPlot

Plots for Meta-analysis of gene expression data.

Description

Plots for meta-analysis
Usage

IDRplot(m,CombineExp=1:length(grep("zSco_Ex",colnames(m))),colPos="black",colNeg="red",pchPos="*",pchNeg="*",type="b",ylab="IDR",xlab="z threshold",...)

CountPlot(kkk,cols,Score=c("FDR","zSco"),kindof=c("two.sided","pos","neg"),type="b",pch="*",ylab="Number of genes",xlab="FDR threshold",CombineExp=1:(ncol(m)-6)/2-1,...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>result matrix of the function zScores</td>
</tr>
<tr>
<td>type</td>
<td>plot parameter</td>
</tr>
<tr>
<td>ylab</td>
<td>plot parameter</td>
</tr>
<tr>
<td>xlab</td>
<td>plot parameter</td>
</tr>
<tr>
<td>pch</td>
<td>plot parameter</td>
</tr>
<tr>
<td>colPos</td>
<td>color for positive z scores</td>
</tr>
<tr>
<td>colNeg</td>
<td>color for negative z scores</td>
</tr>
<tr>
<td>pchPos</td>
<td>symbol for positive z scores</td>
</tr>
<tr>
<td>pchNeg</td>
<td>symbol for negative z scores</td>
</tr>
<tr>
<td>CombineExp</td>
<td>vector of integer- which experiments should be combined-default:all experiments</td>
</tr>
<tr>
<td>kkk</td>
<td>result object of function zScoreFDR</td>
</tr>
<tr>
<td>cols</td>
<td>vector of cols, one for each experiment, and one for the combination</td>
</tr>
<tr>
<td>Score</td>
<td>should the FDR or the zScore be plotted</td>
</tr>
<tr>
<td>kindof</td>
<td>"pos", "neg" or "two.sided"</td>
</tr>
<tr>
<td>...</td>
<td>additional plot parameter</td>
</tr>
</tbody>
</table>

Details

IDRplot produces a plot described in Choi et al.

Author(s)

M.Ruschhaupt

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.
Usage

dstar(d, n)
getdF(data, categ)
sigmad(d, ng1, ng2)

Arguments

d
A vector of t-statistics, i.e. the output of getdF.

n
The number of t-statistics.

data
The data used to compute t-statistics, either a matrix or an ExpressionSet.

categ
A vector of 0’s and 1’s indicating group membership.

ng1
The number of samples in group 1.

ng2
The number of samples in group 2.

Details

The functions getdF compute t-test statistics for the input data and group membership (note that group membership must be indicated by a vector of 0’s and 1’s).

The function dstar computes an unbiased estimate of the t-test. The function sigmad computes the variance estimate of dstar.

Value

The different functions have different return values, but generally they are vectors of the requested quantities.

Author(s)

L. Lusa, R. Gray and R. Gentleman

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

Examples

x = matrix(rnorm(1000), ncol=10)
ds = getdF(x, rep(c(0,1), c(5,5)))
dst = dstar(ds, ncol(x))
sgd = sigmad(ds, 5, 5)
Description

Compute Cochran’s Q statistic for testing whether the a fixed effects or a random effects model will be appropriate.

Usage

f.Q(dadj, varadj)

Arguments

dadj
A matrix, each row is a gene, each column a study, of the estimated t-statistics.

varadj
A matrix, each row is a gene, each column a study, of the estimated, adjusted variances of the t-statistics.

Details

A straightforward computation of Cochran’s Q statistic. If the null hypothesis that the data are well modeled by a fixed effects design is true then the estimate Q values will have approximately a chi-squared distribution with degrees of freedom equal to the number of studies minus one.

Value

A vector of length equal to the number of rows of dadj with the Q statistics.

Author(s)

L. Lusa and R. Gentleman

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

See Also

dstar,sigmad

Examples

##none now, this requires a pretty elaborate example
Nevins

Intensity data for 46 Affymetrix slides with tissue samples of breast tumors

Description

Intensity data for 46 Affymetrix hu6800 slides with tissue samples of breast tumors. See vignette Nevins.pdf in the /scripts directory for details of the processing.

Usage

data(Nevins)

Format

Nevins is an ExpressionSet containing the data from 46 Affymetrix chips.

Source

http://data.cgt.duke.edu/west.php

References

Examples

data(Nevins)
Nevins

tau2.DL

estimating my and tau in a REM

Description

tau2.DL is an estimation of tau in a random effects model (REM) using Cochran’s Q statistic.

Usage

tau2.DL(Q, num.studies, my.weights)
mu.tau2(my.d, my.vars.new)
var.tau2(my.vars.new)
Although the document seems to be a page from a book or a manual, the extract provided is not in a well-structured format. The text appears to be a mix of natural language and code snippets, possibly from a programming environment. The text includes a section on functions and arguments, which suggests it might be from a software documentation. Here is a structured representation of the document:

Arguments
- **Q**: A vector of Cochran’s Q statistics.
- **num.studies**: The number of studies used for the meta-analysis.
- **my.weights**: A matrix with one column for each experiment containing the variances of the effects that should be combined.
- **my.d**: A matrix, with one column for each experiment, containing the effects that should be combined.
- **my.vars.new**: A matrix, with one column for each experiment, containing the variances of the effects that should be combined.

Author(s)
L. Lusa and R. Gentleman

References
Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.

See Also
dstar, sigmad

Examples
please have a look at the vignette

zScores

Tools for Meta-analysis of gene expression data.

Description
A small number of meta-analysis functions for computing zScores for FEM and REM and computing FDR.

Usage
- `zScores(esets, classes, useREM=TRUE, CombineExp=1:length(esets))`
- `zScorePermuted(esets, classes, useREM=TRUE, CombineExp=1:length(esets))`
- `zScoreFDR(esets, classes, useREM=TRUE, nperm=1000, CombineExp=1:length(esets))`
- `multExpFDR(theScores, thePermScores, type="pos")`

Arguments
- **esets**: A list of ExpressionSets, one expression set per experiment. All experiments must have the same variables (genes).
- **classes**: A list of class memberships, one per experiment. Each list can only contain 2 levels.
- **useREM**: A logical value indicating whether or not to use a REM, TRUE, or a FEM, FALSE, for combining the z scores.
zScores

theScores A vector of scores (e.g. t-statistics or z scores)
thePermScores A vector of permuted scores (e.g. t-statistics or z scores)
type "pos", "neg" or "two.sided"
nperm number of permutations to calculate the FDR
CombineExp vector of integer- which experiments should be combined-default:all experiments

Details

The function zScores implements the approach of Choi et al. for for a set of ExpressionSets. The function zScorePermuted applies zScore to a single permutation of the class labels. The function zScoreFDR computes a FDR for each gene, both for each single experiment and for the combined experiment. The FDR is calculated as described in Choi et al. Up to now ties in the zscores are not taken into account in the calculation. The function might produce incorrect results in that case. The function also computes zScores, both for the combines experiment and for each single experiment.

Value

A matrix with one row for each probe(set) and the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zSco_Ex_</td>
<td>For each single experiment the standardized mean difference, Effect_Ex_, divided by the estimated standard deviation, the square root of the EffectVar_Ex_ column.</td>
</tr>
<tr>
<td>MUvals</td>
<td>The combined standardized mean difference (using a FEM or REM)</td>
</tr>
<tr>
<td>MUstds</td>
<td>The standard deviation of the MUvals.</td>
</tr>
<tr>
<td>zSco</td>
<td>The z statistic - the MUvals divided by their standard deviations, MUstds.</td>
</tr>
<tr>
<td>Qvals</td>
<td>Cochran’s Q statistic for each gene.</td>
</tr>
<tr>
<td>df</td>
<td>The degree of freedom for the Chi-square distribution. This is equal to the number of combined experiments minus one.</td>
</tr>
<tr>
<td>Qpvalues</td>
<td>The probability that a Chi-square random variable, with df degrees of freedom) has a higher value than the value from the Q statistic.</td>
</tr>
<tr>
<td>Chisq</td>
<td>The probability that a Chi-square random variate (with 1 degree of freedom) has a higher value than the value of $zSco^2$.</td>
</tr>
<tr>
<td>Effect_Ex_</td>
<td>The standardized mean difference for each single experiment.</td>
</tr>
<tr>
<td>EffectVar_Ex_</td>
<td>The variance of the standardized mean difference for each single experiment.</td>
</tr>
</tbody>
</table>

Note that the three column names that end in an underscore are replicated, once for each experiment that is being analyzed.

Author(s)

M. Ruschhaupt

References

Choi et al, Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, 2003, i84-i90.
Examples

data(Nevins)

##Splitting
thestatus <- Nevins$ER.status
group1 <- which(thestatus=="pos")
group2 <- which(thestatus=="neg")
rrr <- c(sample(group1, floor(length(group1)/2)),
 sample(group2, ceiling(length(group2)/2)))
Split1 <- Nevins[,rrr]
Split2 <- Nevins[,-rrr]

#obtain classes
Split1.ER <- as.numeric(Split1$ER.status) - 1
Split2.ER <- as.numeric(Split2$ER.status) - 1

esets <- list(Split1,Split2)
classes <- list(Split1.ER,Split2.ER)
theScores <- zScores(esets,classes,useREM=FALSE)
theScores[1:2,]
Index

*Topic **datasets**
 Nevins, 5

*Topic **htest**
 dstar, 2
 f.Q, 4
 tau2.DL, 5

*Topic **manip**
 zScores, 6

CountPlot, 1
dstar, 2, 4, 6
f.Q, 4
getdF(dstar), 2
getdF,ExpressionSet,numeric-method (dstar), 2
getdF,matrix,numeric-method(dstar), 2
IDRplot (CountPlot), 1
mu.tau2(tau2.DL), 5
multExpFDR(zScores), 6
Nevins, 5
sigmad, 4, 6
sigmad(dstar), 2
tau2.DL, 5
var.tau2(tau2.DL), 5
zScoreFDR(zScores), 6
zScorePermuted(zScores), 6
zScores, 6