Package ‘HDTD’

January 31, 2017

Type Package

Title Statistical Inference about the Mean Matrix and the Covariance Matrices in High-Dimensional Transposable Data (HDTD)

Version 1.8.0

Date 2016-09-15

Author Anestis Touloumis, John C. Marioni and Simon Tavare

Maintainer Anestis Touloumis <A.Touloumis@brighton.ac.uk>

Imports stats

Description Characterization of intra-individual variability using physiologically relevant measurements provides important insights into fundamental biological questions ranging from cell type identity to tumor development. For each individual, the data measurements can be written as a matrix with the different subsamples of the individual recorded in the columns and the different phenotypic units recorded in the rows. Datasets of this type are called high-dimensional transposable data. The HDTD package provides functions for conducting statistical inference for the mean relationship between the row and column variables and for the covariance structure within and between the row and column variables.

License GPL-3

biocViews DifferentialExpression, Genetics, GeneExpression, Microarray, Sequencing, StatisticalMethod, Software

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDTD-package</td>
<td>2</td>
</tr>
<tr>
<td>centerdata</td>
<td>3</td>
</tr>
<tr>
<td>covmat.hat</td>
<td>4</td>
</tr>
<tr>
<td>covmat.ts</td>
<td>5</td>
</tr>
<tr>
<td>meanmat.hat</td>
<td>6</td>
</tr>
<tr>
<td>meanmat.ts</td>
<td>7</td>
</tr>
<tr>
<td>orderdata</td>
<td>8</td>
</tr>
<tr>
<td>transposedata</td>
<td>9</td>
</tr>
<tr>
<td>VEGFmouse</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 11
Description

The package HDTD offers functions to estimate and test the matrix parameters of transposable data in high-dimensional settings.

Details

The term transposable data refers to datasets that are structured in a matrix form such that both the rows and columns correspond to variables of interest. For example, consider microarray studies in genetics where multiple RNA samples across different tissues are available per subject. In this case, a data matrix can be created with row variables the genes, column variables the tissues and measurements the corresponding expression levels.

The function `meanmat.hat` estimates the mean matrix of the transposable data.

The mean relationship of the row and column variables can be tested using the function `meanmat.ts`. The implemented test is nonparametric and not seriously restricted by the dependence structure among and/or between the row and column variables.

The function `covmat.hat` provides Stein-type shrinkage estimators for the row covariance matrix and/or for the column covariance matrix under a matrix-variate normal model.

The sphericity and identity hypothesis for the row or column covariance matrix can be tested using the function `covmat.ts`. Both tests are nonparametric, i.e., they do not rely on a normality assumption.

There are three utility functions that allow the user to change to interchange the role of row and column variables (`transposedata`), to center the transposable data (`centerdata`) or to rearrange the order of the row and/or column variables (`orderdata`).

Author(s)

Anestis Touloumis, John Marioni, Simon Tavare.

Maintainer: Anestis.Touloumis <A.Touloumis@brighton.ac.uk>

References

Examples

data(VEGFmouse)
The sample mean matrix.
sample.mean <- meanmat.hat(VEGFmouse,40)
sample.mean
Testing if there is no tissue effect on the mean expression level for each gene.
tistest <- meanmat.ts(VEGFmouse,40,group.sizes=9,voi="columns")
Centering Transposable Data

Description

This function centers the transposable data around their sample mean matrix.

Usage

```r
centerdata(datamat, N)
```

Arguments

- `datamat` : numeric matrix containing the transposable data.
- `N` : positive integer number indicating the sample size, i.e., the number of subjects.

Details

It is assumed that there are `nrow(datamat)` row variables and `ncol(datamat)/N` column variables in `datamat`. Further, `datamat` should be written in such a way that every `ncol(datamat)/N` consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

Value

Returns a matrix of the same size as `datamat`.

Author(s)

Anestis Touloumis

See Also

- `covmat.hat`
- `covmat.ts`

Examples

```r
data(VEGFmouse)
## Centering the VEGF dataset around the sample mean matrix.
VEGFcen <- centerdata(VEGFmouse,40)
```
covmat.hat

Estimation of the Row and of the Column Covariance Matrices.

Description

This function provides the row and/or column covariance matrix estimators.

Usage

covmat.hat(datamat, N, shrink = "both", centered = FALSE, voi = "both")

Arguments

datamat numeric matrix containing the transposable data.
N positive integer number indicating the sample size, i.e., the number of subjects.
shrink character indicating if shrinkage estimation should be performed. Options include "rows", "columns", "both" and "none".
centered logical indicating if the transposable data are centered. Options include TRUE or FALSE.
voi character indicating if the row, column or both covariance matrices should be printed. Options include "rows", "columns" and "both".

Details

It is assumed that there are \text{nrow}(datamat) row variables and \text{ncol}(datamat)/N column variables in datamat. Further, datamat should be written in such a way that every \text{ncol}(datamat)/N consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

For identifiability reasons, the trace of the row covariance matrix is set equal to its dimension. If you want to place the equivalent restriction on the column covariance matrix, interchange the role of row and column variables by utilizing the function \text{transposedata}.

Value

Returns a list with components:

- rows.covmat the estimated row covariance matrix.
- rows.intensity the estimated row intensity.
- cols.covmat the estimated column covariance matrix.
- cols.intensity the estimated column intensity.
- N the sample size.
- n.rows the number of row variables.
- n.cols the number of column variables.
- shrink character indicating if shrinkage estimation was performed.
- centered logical indicating if the transposable data were centered.

Author(s)

Anestis Touloumis
Examples

data(VEGFmouse)
Estimating the covariance matrices of the genes (rows) and of the tissues (columns).
estcovmat <- covmat.hat(VEGFmouse,40,shrink="both",centered=FALSE)
estcovmat

covmat.ts Nonparametric Tests for the Row or Column Covariance Matrix

Description

Testing the sphericity and identity hypotheses for the row or column covariance matrix.

Usage

covmat.ts(datamat, N, voi = "rows", centered = FALSE)

Arguments

datamat numeric matrix containing the transposable data.
N positive integer number indicating the sample size, i.e., the number of subjects.
voi character indicating if the test should be applied on the row or column covariance matrix. Options include "rows" or "columns".
centered logical indicating if the transposable data are centered. Options include TRUE or FALSE.

Details

It is assumed that there are $nrow(datamat)$ row variables and $ncol(datamat)/N$ column variables in datamat. Further, datamat should be written in such a way that every $ncol(datamat)/N$ consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

The tests are nonparametric and thus robust to departures from the matrix-variate normal model.

Value

It returns a list with components:
sphericity.ts a list containing the test statistic and p-value of the sphericity test.
identity.ts a list containing the test statistic and p-value of the identity test.
N the sample size.
n.rows the number of row variables.
n.cols the number of column variables.
variables character indicating if the tests were applied to the row or column covariance matrix.
centered logical indicating if the transposable data were centered.

Author(s)

Anestis Touloumis
meanmat.hat

References

Examples

data(VEGFmouse)
Hypothesis tests for the covariance matrix of the genes (rows).
genestest <- covmat.ts(VEGFmouse,40,"rows",FALSE)
genestest
Hypothesis tests for the covariance matrix of the tissues (columns).
tissuestest <- covmat.ts(VEGFmouse,40,"columns",FALSE)
tissuestest

meanmat.hat

Estimation the Mean Matrix

Description

This function estimates the mean matrix.

Usage

meanmat.hat(datamat, N, group.sizes = NULL, group.vars = NULL)

Arguments

datamat numeric matrix containing the transposable data.
N positive integer number indicating the sample size, i.e., the number of subjects.
group.sizes numeric vector indicating the size of the row or column groups that share the same mean vector. It should be used only when group.vars="rows" or "columns".
group.vars character indicating that the mean matrix can be simplified over the row or column variables. Options include "rows" or "columns".

Details

It is assumed that there are nrow(datamat) row variables and ncol(datamat)/N column variables in datamat. Further, datamat should be written in such a way that every ncol(datamat)/N consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

Value

Returns a list with components:
estmeanmat the estimated mean matrix.
N the sample size.
n.rows the number of row variables.
n.cols the number of column variables.
Author(s)

Anestis Touloumis

Examples

```r
data(VEGFmouse)
## The sample mean matrix of the VEGF mouse data.
sample.mean <- meanmat.hat(VEGFmouse, 40)
sample.mean
sample.mean$estmeanmat
```

meanmat.ts

Nonparametric Tests for the Mean Matrix

Description

This function performs hypothesis testing for the mean matrix.

Usage

```r
meanmat.ts(datamat, N, group.sizes, voi = "columns")
```

Arguments

- `datamat`: numeric matrix containing the transposable data.
- `N`: positive integer number indicating the sample size, i.e., the number of subjects.
- `group.sizes`: numeric vector indicating the group sizes under the null hypothesis.
- `voi`: character indicating if the test will be applied to the row or column variables. Options include "rows" or "columns".

Details

It is assumed that there are `nrow(datamat)` row variables and `ncol(datamat)/N` column variables in `datamat`. Further, `datamat` should be written in such a way that every `ncol(datamat)/N` consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

Value

Returns a list with components:

- `statistic`: the value of the test statistic.
- `p.value`: the corresponding p-value.
- `voi`: the set of variables that the test was applied to.
- `n.groups`: the number of groups under the null hypothesis.
- `group.sizes`: the size of each group under the null hypothesis.
- `N`: the sample size.
- `n.rows`: the number of row variables.
- `n.cols`: the number of column variables.
Author(s)
Anestis Touloumis

References

Examples
data(VEGFmouse)
Testing if there is no tissue effect on the mean expression level for each gene.
tistest <- meanmat.ts(VEGFmouse,40,group.sizes=9,voi="columns")
tistest
Testing if the adrenal and the cerebrum tissues have the same mean vector.
tistest2 <- meanmat.ts(VEGFmouse,40,group.sizes=c(2,rep(1,7)),voi="columns")
tistest2

ordadata Reordering Row and Column Variables

Description
This utility function rearranges the row and/or the column variables in a desired order.

Usage
ordadata(datamat, N, order.rows = NULL, order.cols = NULL)

Arguments
datamat numeric matrix containing the transposable data.
N positive integer number indicating the sample size, i.e., the number of subjects.
order.rows numeric vector displaying the desired order of the row variables.
order.cols numeric vector displaying the desired order of the column variables.

Details
It is assumed that there are nrow(datamat) row variables and ncol(datamat)/N column variables in datamat. Further, datamat should be written in such a way that every ncol(datamat)/N consecutive columns belong to the same subject and the order of the column variables in each block is preserved across subjects.

Value
Returns a matrix of the same size as datamat.

Author(s)
Anestis Touloumis
transposedata

See Also

meanmat.ts and meanmat.hat.

Examples

data(VEGFmouse)
set.seed(1)
tissuesold <- colnames(VEGFmouse[,1:9])
Suppose that you want to order the tissues in the following order.
tissuesnew <- colnames(VEGFmouse[,1:9])[sample(9)]
tissuesnew
To do this, create a numeric vector with the desired order.
ordtissues <- pmatch(tissuesnew,tissuesold)
VEGFmousenew <- orderdata(VEGFmouse,40,order.cols=ordtissues)
colnames(VEGFmousenew)[1:9]
Examples

```r
data(VEGFmouse)
## Transposing the VEGF dataset.
VEGFtr <- transposedata(VEGFmouse, 40)
```

Description

Log2 normalized mouse gene expression data in the vascular endothelial growth factor signalling pathway across multiple tissues.

Usage

```r
data(VEGFmouse)
```

Format

A data frame with 46 rows and 360 columns. The rows corresponds to 46 genes in the VEGF signalling pathway. The column names indicate the mouse and the tissue on which gene expression levels were measured. Since there are 40 mice and 9 tissues, we have a total of 360 columns. Every 9 consecutive columns belong to the same mouse and the tissues are ordered in the same way in each mouse.

Source

Examples

```r
data(VEGFmouse)
## Check the order of the tissues from the first mouse.
colnames(VEGFmouse[, 1:9])
```
Index

*Topic datasets
 VEGFmouse, 10
*Topic package
 HDTD-package, 2

centerdata, 2, 3, 9
covmat.hat, 2, 3, 4
covmat.ts, 2, 3, 5

HDTD (HDTD-package), 2
HDTD-package, 2

meanmat.hat, 2, 6, 9
meanmat.ts, 2, 7, 9

orderidata, 2, 8, 9

print.covmat.hat (covmat.hat), 4
print.covmat.ts (covmat.ts), 5
print.meanmat.hat (meanmat.hat), 6
print.meanmat.ts (meanmat.ts), 7

transposedata, 2, 4, 9

VEGFmouse, 10