Package ‘IVAS’

January 14, 2017

Type Package

Title Identification of genetic Variants affecting Alternative Splicing

Version 1.6.0

Author Seonggyun Han, Sangsoo Kim

Maintainer Seonggyun Han <hangost@ssu.ac.kr>

Description Identification of genetic variants affecting alternative splicing.

License GPL-2

Depends R (> 3.0.0), GenomicFeatures

Imports doParallel, lme4, Matrix, BiocGenerics, GenomicRanges, IRanges, foreach, AnnotationDbi, S4Vectors, GenomeInfoDb

Suggests BiocStyle

biocViews AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneExpression, GeneRegulation, Regression, RNASeq, Sequencing, SNP, Software, Transcription

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVAS-package</td>
<td>2</td>
</tr>
<tr>
<td>calSignificant</td>
<td>2</td>
</tr>
<tr>
<td>chrseparate</td>
<td>3</td>
</tr>
<tr>
<td>findAlternative</td>
<td>4</td>
</tr>
<tr>
<td>findOversnp</td>
<td>5</td>
</tr>
<tr>
<td>MsqtlFinder</td>
<td>6</td>
</tr>
<tr>
<td>sampleexp</td>
<td>7</td>
</tr>
<tr>
<td>samplesnp</td>
<td>8</td>
</tr>
<tr>
<td>samplesnpr locus</td>
<td>8</td>
</tr>
<tr>
<td>saveBplot</td>
<td>9</td>
</tr>
<tr>
<td>sqllfinder</td>
<td>10</td>
</tr>
</tbody>
</table>

Index 12
IVAS-package

IVAS: Identification of genomic variants affecting Alternative Splicing

Description

The tool is to detect genomic variants affecting the alternative splicing using genotypic and gene expression data (RNA-seq).

calSignificant

Calculates P-values by using two statistical models.

Description

calculates P-values for association between expressions and genotypes by using the linear regression model and/or generalized linear mixed model.

Usage

```r
calSignificant(tx.gene=NULL, total.locus=NULL, exon.locus=NULL, intron.locus=NULL, info.strand=NULL, overlapvalue=NULL, chrnum=NULL, expdata=NULL, snpdata=NULL, method=NULL)
```

Arguments

- **tx.gene**: The matrix of transcripts including transcript IDs, Ensembl gene names, Ensembl transcript names, transcript start sites, and transcript end sites.
- **total.locus**: Ranges including alternative exons and flanking introns in a gene.
- **exon.locus**: All exon locus of a single gene.
- **intron.locus**: All intron locus of a single gene.
- **info.strand**: The strand information of a single gene (forward strand = "+", reverse strand = ".").
- **overlapvalue**: Snps located in the alternative exons and the flanking introns.
- **chrnum**: The chromosome number of a single gene.
- **expdata**: Dataframe of expression data.
- **snpdata**: Dataframe of genotype data.
- **method**: The option for statistical models and boxplot ("lm" : analysis using linear regression model, "glm" : analysis using generalized linear mixed model, "both" : "lm" and "glm", and "boxplot" : for writing boxplot).

Value

The lm or glm method returns matrix including: SNP marker IDs, Chromosome numbers, alternative exons ranges, Intron ranges, alternative types, P values, information of differential median values of expression ratio among genotypes ("sig" if differential median > 0.1 and "not sig" otherwise), gene names, and methods ("lm" or "glm"). The boxplot method returns matrix with relative ratio values and genotypes of samples.
chrseparate

Author(s)
Seonggyun Han, Sangsoo Kim

References

See Also
findOverlaps, lm, glmer

chrseparate

Separate a TranscriptDb object based on a chromosome.

Description
With the isActiveSeq method in GenomicFeatures package, this function filters the transcriptDb object in the GenomicFeatures package based on a single chromosome.

Usage
chrseparate(transdb = NULL, chrname = NULL)

Arguments
transdb The transcriptDb object in the GenomicFeatures package.
chrname The chromosome number you would like to selecet from TrnascriptDb

Value
This function returns the TrnascriptDb limited to the chromosome number that you want.

Author(s)
Seonggyun Han, Sangsoo Kim

References

See Also
isActiveSeq, seqinfo

Examples
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
filtered.txdb <- chrseparate(sample.Txdb,19)
findAlternative

Find alternative exons of a gene.

Description
Search alternative exons among transcript isoforms from a single gene.

Usage

```r
findAlternative(geneid = NULL, txTable = NULL, totalExrange = NULL, totalInrange = NULL, one.chr = NULL)
```

Arguments
- **geneid** Ensembl gene name.
- **txTable** The matrix of transcripts including transcript IDs, Ensembl gene names, Ensembl transcript names, transcript start sites, and transcript end sites.
- **totalExrange** A list of GRanges objects including total exon ranges in each transcript resulted from the exonsBy function in GenomicFeatures.
- **totalInrange** A list of GRanges objects including total intron ranges in each transcript resulted from the intronsByTranscript function in GenomicFeatures.
- **one.chr** The chromosome number that you want.

Value
- **alterIntron** A GRanges object with flanking introns of alternative exons
- **tableBygene** An information table of transcripts including transcript IDs, Ensembl gene names, Ensembl transcript names, transcript start sites, and transcript end sites.
- **exonRange** All exons locus of a gene
- **intronRange** All intron locus of a gene

Author(s)
Seonggyun Han, Sangsoo Kim

References

See Also

GRanges, IRanges
findOversnp

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
filtered.txdb <- chrseparate(sample.Txdb, 19)
trans.exon.range <- exonsBy(filtered.txdb, by="tx")
trans.intron.range <- intronsByTranscript(filtered.txdb)
txTable <- select(filtered.txdb, keys=names(trans.exon.range),
columns=c("TXID","TXNAME","GENEID","TXSTART","TXEND"), keytype="TXID")
Altvalue <- findAlternative("ENSG00000170889", txTable, trans.exon.range, trans.intron.range, 19)
```

findOversnp

Find SNPs which belong to alternative exons and flanking introns of them.

Description

Find SNPs which belong to alternative exons and flanking introns of them.

Usage

```r
findOversnp(altInvalue = NULL, snprange = NULL)
```

Arguments

- `altInvalue` A list data set from the findAlternative function.
- `snprange` A matrix of SNP ranges.

Value

This function returns a matrix with SNPs in alternative exons and flanking introns and ranges of those SNPs.

Author(s)

Seonggyun Han, Sangsoo Kim

See Also

findOverlaps

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(samplesnsp locus)
data(samplesnsp)
filtered.txdb <- chrseparate(sample.Txdb, 19)
trans.exon.range <- exonsBy(filtered.txdb, by="tx")
trans.intron.range <- intronsByTranscript(filtered.txdb)
txTable <- select(filtered.txdb, keys=names(trans.exon.range),
columns=c("TXID","TXNAME","GENEID","TXSTART","TXEND"), keytype="TXID")
ch.snp.locus <- as.matrix(samplesnsp.locus[ samplesnsp.locus[,2] == 19,])
ch.snps <- matrix(ch.snp.locus[ is.element(ch.snp.locus[,1], rownames(samplesnsp)),], ncol=3, byrow=FALSE)
```
MsqtlFinder

Find SQTLs in multiple genes.

Description

This function enables one to analyze multiple genes using multi-thread version of the foreach function and joins output results from sqtlfinder function. Moreover, it calculates the FDR using P-values of the matrix result data.

Usage

MsqtlFinder(expdata = NULL, snpdata = NULL, snplocus = NULL, GTFdata = NULL, met = NULL, Ncor = 1, bplotout = NULL, cutFDR = 0.01)

Arguments

expdata Dataframe of expression data.
snpdata Dataframe of genotype data.
snplocus Locus of SNP markers in the snpdata.
GTFdata The transcriptDb object in the GnomicFeatures package.
met The option for statistical models. ("lm" : analysis using linear regression model, "glm" : analysis using generalized linear mixed model,and "both" : "lm" and "glm").
Ncor The number of cores for multi-threads.
bplotout A directory saving boxplots
cutFDR The false discovery rate value you would like to set threshold.

Value

This function returns the result matrix including SNP markers ID, chromosome number, alternative exons range, intron ranges, alternative type, P value, information of differential median values of expression ratio among genotypes ("sig" if differential median > 0.1 and "not sig" otherwise), gene names, methods ("lm" or "glm").

Author(s)

Seonggyun Han, Sangsoo Kim

References

sampleexp

See Also

foreach, GRanges, p.adjust

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(sampleexp)
data(samplesnp)
data(samplesnplocus)
#final.result <- MsqtlFinder(sampleexp,samplesnp,samplesnplocus,sample.Txdb,"lm",1)
```

<table>
<thead>
<tr>
<th>sampleexp</th>
<th>CEU expression data</th>
</tr>
</thead>
</table>

Description

CEU expression data including 78 individuals

Usage

```r
data("sampleexp")
```

Format

A data frame with 64 transcript expressions on the 78 individuals

Value

A data frame with 64 transcript expressions on the 78 individuals

Source

The data was generated by GEUVADIS (Genetic European Variation in Health and Disease, A European Medical Sequencing Consortium) RNA sequencing project for 1000 Genomes samples (http://www.geuvadis.org/web/geuvadis/RNAseq-project).

References

Examples

```r
data(sampleexp)
```
<table>
<thead>
<tr>
<th>samplesnp</th>
<th>CEU genotype data</th>
</tr>
</thead>
</table>

Description

CEU genotype data including 78 individuals

Usage

data("samplesnp")

Format

A data frame with 11 SNPs on the 78 individuals

Value

A data frame with 11 SNPs on the 78 individuals

Source

The data has 1000 genomes Phages 1 dataset and was imputed by GEUVADIS (Genetic European Variation in Health and Disease, A European Medical Sequencing Consortium) RNA sequencing project for 1000 Genomes samples (http://www.geuvadis.org/web/geuvadis/RNAseq-project).

References

Examples

data(samplesnp)

<table>
<thead>
<tr>
<th>samplesnплоcus</th>
<th>snplocus</th>
</tr>
</thead>
</table>

Description

snplocus

Usage

data("samplesnплоcus")

Format

A data frame with 11 SNPs and locus of them
saveBplot

Value

A data frame with 11 SNPs and locus of them

Examples

```r
data(samplesnplocus)
```

Description

Save boxplots

Usage

```r
saveBplot(sig.sqtl = NULL, expdata = NULL, snpdata = NULL, snplocus = NULL, GTFdata = NULL, outdir = NULL)
```

Arguments

- `sig.sqtl`: A matrix of significant SQTLs from the sqtlfinder function
- `expdata`: Dataframe of expression data.
- `snpdata`: Dataframe of genotype data.
- `snplocus`: Locus of SNP markers in the snpdata.
- `GTFdata`: The transcriptDb object in the GnomicFeatures package.
- `outdir`: A directory saving boxplots

Value

This function draws the boxplot

Author(s)

Seonggyun Han, Sangsoo Kim

See Also

`boxplot`
sqtlfinder

Find SQTLs.

Description

Find significant SNPs using the calSignificant function.

Usage

```r
sqtlfinder(altInvalue = NULL, overlapvalue = NULL, expdata = NULL, snpdata = NULL, method = NULL)
```

Arguments

- `altInvalue`: A list data set from the findAlternative function.
- `overlapvalue`: A matrix data with SNPs in the flanking introns of alternative exons and ranges of those SNPs from findOversnp function.
- `expdata`: Expression data of samples.
- `snpdata`: Genotype data of samples.

Value

The lm or glm method returns matrix data including SNP markers ID, chromosome number, alternative exons range, intron ranges, alternative type, P value, information of differential median values of expression ratio among genotypes ("sig" if differential median > 0.1 and "not sig" otherwise), a gene name, methods ("lm" or "glm"), and strand information of the gene. The boxplot method returns matrix data with relative ratio values and genotypes of samples.
sqtlfinder

Author(s)

Seonggyun Han, Sangsoo Kim

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(samplesnplocus)
data(sampleexp)
data(samplesnp)
filtered.txdb <- chrseparate(sample.Txdb,19)
trans.exon.range <- exonsBy(filtered.txdb,by="tx")
trans.intron.range <- intronsByTranscript(filtered.txdb)
txTable <- select(filtered.txdb, keys=names(trans.exon.range),
columns=c("TXID","TXNAME","GENEID","TXSTART","TXEND"), keytype="TXID")
ch.snp.locus <- as.matrix(samplesnplocus[samplesnplocus[,2] == 19,])
ch.snps <- matrix(ch.snp.locus[is.element(ch.snp.locus[,1],rownames(samplesnp)),],ncol=3,byrow=FALSE)
ch.snps.range <- GRanges(seqnames=Rle(19),ranges=IRanges(start=as.integer(ch.snps[,3]),
end=as.integer(ch.snps[,3])),metadata=ch.snps[,1])
Altvalue <- findAlternative("ENSG00000170889",txTable,trans.exon.range,trans.intron.range,19)
overlapsnp <- findOversnp(Altvalue,ch.snps.range)
sqtl.result <- sqtlfinder(Altvalue,overlapsnp,sampleexp,samplesnp,"lm")
```
Index

*Topic datasets
 sampleexp, 7
 samplesnp, 8
 samplesnplocus, 8
*Topic package
 IVAS-package, 2

 boxplot, 9

 calSignificant, 2
 chrseparate, 3

 findAlternative, 4
 findOverlaps, 3, 5
 findOversnp, 5
 foreach, 7

 glmer, 3
 GRanges, 4, 7

 IRanges, 4
 isActiveSeq, 3
 IVAS (IVAS-package), 2
 IVAS-package, 2

 lm, 3

 MsqtlFinder, 6

 p.adjust, 7

 sampleexp, 7
 samplesnp, 8
 samplesnplocus, 8
 saveBplot, 9
 seqinfo, 3
 sqtlfinder, 10