Package ‘IsoGeneGUI’

November 21, 2016

Type Package

Title A graphical user interface to conduct a dose-response analysis of microarray data

Version 2.10.0

Date 2015-04-09

Author Setia Pramana, Dan Lin, Philippe Haldermans, Tobias Verbeke, Martin Otava

Maintainer Setia Pramana <setia.pramana@ki.se>

Description
The IsoGene Graphical User Interface (IsoGene-GUI) is a user friendly interface of the IsoGene package which is aimed to identify for genes with a monotonic trend in the expression levels with respect to the increasing doses. Additionally, GUI extension of original package contains various tools to perform clustering of dose-response profiles. Testing is addressed through several test statistics: global likelihood ratio test (E2), Bartholomew 1961, Barlow et al. 1972 and Robertson et al. 1988), Williams (1971, 1972), Marcus (1976), the M (Hu et al. 2005) and the modified M (Lin et al. 2007). The p-values of the global likelihood ratio test (E2) are obtained using the exact distribution and permutations. The other four test statistics are obtained using permutations. Several p-values adjustment are provided: Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for controlling the family-wise Type I error rate (FWER), and BH (Benjamini and Hochberg 1995) and BY (Benjamini and Yekutieli 2001) procedures are used for controlling the FDR. The inference is based on resampling methods, which control the False Discovery Rate (FDR), for both permutations (Ge et al., 2003) and the Significance Analysis of Microarrays (SAM, Tusher et al., 2001). Clustering methods are outsourced from CRAN packages ORCME, ORIClust. The package ORCME is based on delta-clustering method (Cheng and Church, 2000) and ORIClust on Order Restricted Information Criterion (Liu et al., 2009), both perform same task but from different perspective and their outputs are clusters of genes. Additionally, profile selection for given gene based on Generalized ORIC (Kuiper et al., 2014) from package goric and permutation test for E2 based on package orQA are included in IsoGene-GUI. None of these four packages has GUI.

Depends tcltk, xlsx

Imports Rcpp, tkrplot, multtest, relimp, geneplotter, RColorBrewer, Iso, IsoGene, ORCME, ORIClust, orQA, goric, ff, Biobase, jpeg

Suggests RUnit

biocViews Microarray, DifferentialExpression, GUI

License GPL-2

LazyLoad yes
IsoGeneGUI-package

Isoplot.R IsoPlot.mod.R IsoPlotSldr.R IsoPvaluePlot.R
IsovaluePlot.R IsoqstatMOD.R IsoRawpMod.R IsoGeneGUI.R
Plot2.R PlotFdrDlt.R PlotFPDlt.R plotORCME.R PlotSigDlt.R
printExact.R printOrQA.R printsummary.R PvalAdj.R samplot2.R
save.result.R save.result.multi.R save.result.ORCME.R
save.result.ORICC.R saveDir.R SaveGraph.R saveXls.R savingRwd.R

URL http://ibiostat.be/online-resources/online-resources/isogenegui/isogenegui-package

NeedsCompilation no

R topics documented:

IsoGeneGUI-package ... 2
IsoGeneGUI .. 4
IsoGeneGUIHelp ... 4

Index

IsoGeneGUI-package IsoGeneGUI Graphical User Interface for the IsoGene package

Description

The IsoGene Graphical User Interface (IsoGene-GUI) is a user friendly interface of the IsoGene package which is aimed to identify for genes with a monotonic trend in the expression levels with respect to the increasing doses. Additionally, GUI extension of original package contains various tools to perform clustering of dose-response profiles. Testing is addressed through several test statistics: global likelihood ratio test (E2), Bartholomew 1961, Barlow et al. 1972 and Robertson et al. 1988), Williams (1971, 1972), Marcus (1976), the M (Hu et al. 2005) and the modified M (Lin et al. 2007).

The p-values of the global likelihood ratio test (E2) are obtained using the exact distribution and permutations. The other four test statistics are obtained using permutations. Several p-values adjustment are provided: Bonferroni, Holm (1979), Hochberg (1988), and Sidak procedures for controlling the family-wise Type I error rate (FWER), and BH (Benjamini and Hochberg 1995) and BY (Benjamini and Yekutieli 2001) procedures are used for controlling the FDR. The inference is based on resampling methods, which control the False Discovery Rate (FDR), for both permutations (Ge et al., 2003) and the Significance Analysis of Microarrays (SAM, Tusher et al., 2001).

Clustering methods are outsourced from CRAN packages ORCME, ORIClust. The package ORCME is based on delta-clustering method (Cheng and Church, 2000) and ORIClust on Order Restricted Information Criterion (Liu et al., 2009), both perform same task but from different perspective and their outputs are clusters of genes. Additionally, profile selection for given gene based on Generalized ORIC (Kuiper et al., 2014) from package goric and permutation test for E2 based on package orQA are included in IsoGene-GUI. None of these four packages has GUI.
Details

The IsoGene Graphical User Interface (IsoGene-GUI) is a user friendly interface of the IsoGene package enriched by methods from packages ORIClust, ORCME, orQA and goric.

Author(s)

Author: Setia Pramana, Dan Lin, Philippe Haldermans, Tobias Verbeke, Martin Otava
Maintainer: Setia Pramana <setia.pramana@ki.se>

References

Williams, D. (1971) A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics, 27, 103-117.

Examples

```r
## Not run:
library(IsoGeneGUI)
IsoGeneGUI()

## End(Not run)
```

IsoGeneGUI

Description

This function will load the IsoGeneGUI package.

Usage

```r
IsoGeneGUI()
```

Details

To run the package, we use the function: `IsoGeneGUI()`.

Author(s)

Author: Setia Pramana, Dan Lin, Philippe Haldermans, Tobias Verbeke, Martin Otava
Maintainer: Setia Pramana <setia.pramana@ki.be>

Examples

```r
## Not run:
library(IsoGeneGUI)
IsoGeneGUI()

## End(Not run)
```

IsoGeneGUIHelp

Description

Function to for opening the IsoGeneGUI help.

Usage

```r
IsoGeneGUIHelp()
```
Details

To run the package, we use the function: IsoGeneGUI().

Author(s)

Author: Setia Pramana, Dan Lin, Philippe Haldermans, Tobias Verbeke, Martin Otava Maintainer: Setia Pramana <setia.pramana@ki.be>

Examples

```r
## Not run:
library(IsoGeneGUI)
IsoGeneGUIHelp()

## End(Not run)
```
Index

*Topic documentation
 IsoGeneGUI, 4
 IsoGeneGUIHelp, 4
*Topic package
 IsoGeneGUI-package, 2

IsoGeneGUI, 4
IsoGeneGUI-package, 2
IsoGeneGUIHelp, 4