Package ‘MEAL’

January 21, 2017

Title Perform methylation analysis

Version 1.4.2

Description Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.

Depends R (>= 3.2.0), Biobase, MultiDataSet

License Artistic-2.0

biocViews DNAMethylation, Microarray, Software, WholeGenome

LazyData true

Imports GenomicRanges, SNPassoc, limma, DMRcate, snpStats, vegan, BiocGenerics, minfi, IRanges, S4Vectors, methods, doParallel, parallel, ggplot2 (>= 2.0.0), sva, permute

Suggests testthat, IlluminaHumanMethylation450kanno.ilmn12.hg19, knitr, minfiData, MEALData, BiocStyle

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation no

Author Carlos Ruiz [aut, cre], Carles Hernandez-Ferrer [aut], Juan R. Gonzalez [aut]

Maintainer Carlos Ruiz <carlos.ruiz@isglobal.org>

R topics documented:

AnalysisRegionResults .. 2
AnalysisResults .. 5
calculateRelevantSNPs .. 8
computeRDAR2 ... 9
correlationMethExprs ... 9
createRanges .. 11
DAPipeline ... 11
DAProbe ... 13
DARRegion ... 14
DARRegionAnalysis .. 15
AnalysisRegionResults

AnalysisRegionResults

Description

AnalysisResults heir with the analyses performed in a range of the whole genome.

Usage

analysisRegionResults(analysisResults, set, range, snpspvals = data.frame(),
regionlm = list(), relevantsnps = character(), snpsVar = as.numeric(NA),
equation = NULL, nperm = 1e+05)

S4 method for signature 'AnalysisRegionResults'
getRange(object)

S4 method for signature 'AnalysisRegionResults'
getRDA(object)

S4 method for signature 'AnalysisRegionResults'
globalPval(object)

S4 method for signature 'AnalysisRegionResults'
globalR2(object)

S4 method for signature 'AnalysisRegionResults'
regionLM(object)

S4 method for signature 'AnalysisRegionResults'
RDAPval(object)
S4 method for signature 'AnalysisRegionResults'
regionR2(object)

S4 method for signature 'AnalysisRegionResults'
snps(object)

S4 method for signature 'AnalysisRegionResults'
snspvals(object)

S4 method for signature 'AnalysisRegionResults'
snspVar(object)

S4 method for signature 'AnalysisRegionResults'
plotRDA(object, n_feat = 5,
 main = "RDA plot")

S4 method for signature 'AnalysisRegionResults'
plotRegionR2(object, feat, ...)

S4 method for signature 'AnalysisRegionResults'
topRDAhits(object, pval = 0.05)

Arguments

- **analysisResults**: AnalysisResults
- **set**: MethylationSet or ExpressionSet
- **range**: GenomicRanges
- **snspvals**: Data.frame obtained from calculateRelevantSNPs
- **regionlm**: Data.frame obtained from explainedVariance
- **relevantsnps**: Character vector with the relevant snps names
- **snspVar**: Numeric with the variability of the SNP matrix explained by the components used to adjust the linear model.
- **equation**: Character containing the formula to be used to create the model.
- **nperm**: Numeric with the number of permutations used to compute RDAs p-values.
- **object**: MethylationResults
- **n_feat**: Numeric with the number of features to be highlighted.
- **main**: Character with the plot title.
- **feat**: Numeric with the index of the cpg or character with its name.
- **...**: Further arguments passed to plotLM
- **pval**: numeric with the p-value threshold. Only features with a p-values below this threshold will be shown.

Value

An AnalysisRegionResults
Methods (by generic)

- `getRange`: Get range where the analyses was performed
- `getRDA`: Get rda object.
- `globalPval`: Get global p-value.
- `globalR2`: Get global R2.
- `regionLM`: Get R2 values of cpgs vs variables.
- `RDAPval`: Get p-value of RDA.
- `regionR2`: Get R2 of the region vs variables lineal model
- `snps`: Get SNPs data
- `snpsPvals`: Get p-values of correlations of snps-cpgs pairs
- `snpsVar`: Get variance of SNP matrix present in the component used to adjusting.
- `plotRDA`: Plot RDA results
- `plotRegionR2`: Plot R2 region values
- `topRDAhits`: Get the top features associated with the RDA

Slots

- `range`: GenomicRanges used to perform the analysis.
- `snps`: Character vector with the snps that are correlated to at least one cpg.
- `snpsPvals`: Data.frame with the results of the correlation test SNP-cpg.
- `snpsVar`: Numeric with the variability of the SNP matrix explained by the components used to adjust the linear model.
- `rda`: rda object from vegan package with the results of RDA analysis in the range.
- `regionLM`: List with the R2 of the linear model of beta values against our variable of interest and against significant SNPs for each cpg.
- `regionR2`: Numeric with the R2 of the region calculated using a redundancy analysis.
- `RDAPval`: Numeric with the p-value of the RDA.
- `globalR2`: Numeric with the global R2.
- `globalPval`: Numeric with the probability of finding a region with the same number of probes with a bigger R2.

Examples

`showClass("AnalysisRegionResults")`
AnalysisResults

AnalysisResults instances

Description

Container with the results of per probe and per region analyses.

Usage

```r
analysisResults(set, model, regionResults, probeResults, num_feat = 50, 
num_vars = ncol(pData(set)))
```

```r
## S4 method for signature 'AnalysisResults'
blocks(object)
```

```r
## S4 method for signature 'AnalysisResults'
bumps(object)
```

```r
## S4 method for signature 'AnalysisResults'
covariableNames(object)
```

```r
## S4 method for signature 'AnalysisResults'
dmrCate(object)
```

```r
## S4 method for signature 'AnalysisResults'
feats(object)
```

```r
## S4 method for signature 'AnalysisResults'
featvals(object)
```

```r
## S4 method for signature 'AnalysisResults'
getGeneVals(object, gene)
```

```r
## S4 method for signature 'AnalysisResults'
getMs(object, threshold = 1e-04)
```

```r
## S4 method for signature 'AnalysisResults'
model(object)
```

```r
## S4 method for signature 'AnalysisResults'
modelVariables(object)
```

```r
## S4 replacement method for signature 'AnalysisResults,ANY'
phenoData(object) <- value
```

```r
## S4 method for signature 'AnalysisResults'
pData(object)
```
S4 replacement method for signature 'AnalysisResults,ANY'

```
pData(object) <- value
```

S4 method for signature 'AnalysisResults'

```
probeResults(object, drop = TRUE)
```

S4 method for signature 'AnalysisResults'

```
regionResults(object)
```

S4 method for signature 'AnalysisResults'

```
sampleNames(object)
```

S4 method for signature 'AnalysisResults'

```
variableNames(object)
```

S4 method for signature 'AnalysisResults'

```
exportResults(object, dir = "./", prefix = NULL, vars = modelVariables(object))
```

S4 method for signature 'AnalysisResults'

```
plotEWAS(object, variable = modelVariables(object)[1], range = NULL, main = paste("Manhattan plot of ", variable))
```

S4 method for signature 'AnalysisResults'

```
plotQQ(object, variable = modelVariables(object)[1], main = paste("QQplot of", variable, "analysis"))
```

S4 method for signature 'AnalysisResults'

```
plotRegion(object, variable = modelVariables(object)[[1]], range = NULL, main = paste("Region plot of ", variable))
```

S4 method for signature 'AnalysisResults'

```
plotVolcano(object, variable = modelVariables(object)[1], mindiff = NULL, main = paste("Volcano plot of", variable, "results"))
```

Arguments

- `set` MethylationSet or ExpressionSet used to perform the analysis
- `model` Model matrix used to produce the calculations
- `regionResults` List with the region results
- `probeResults` List with the probe results
- `num_feat` Numeric with the minimum number of feature values to be included.
- `num_vars` Numeric with the number of columns of the pData table that should be considered as variables.
- `object` AnalysisResults
- `gene` Character with the name of the gene
threshold Numeric with the threshold to avoid 0s and 1s.
value AnnotatedDataFrame or data.frame with the phenotype
drop Logical. If TRUE, a data.frame is returned when the list of results contains one element,
dir Character with the path to export.
prefix Character with a prefix to be added to all file names.
vars Character vector with the names of the variables to be exported. Note: names should be that of the model.
variable Character with the variable name used to obtain the probe results. Note: model name should be used. Original variable name might not be valid.
range GenomicRange whose probes will be highlighted
main Character with the plot title.
mindiff Numeric with the threshold to consider a difference in methylation or expression significant.

Value

AnalysisResults

Methods (by generic)

• blocks: Get BlockFinder analysis results
• bumps: Get Bumphunter analysis results
• covariableNames: Get covariable names
• dmrCate: Get dmrCate analysis results
• feats: Get features names
• featvals: Get features values matrix
• getGeneVals: Get probe results of a gene
• getMs: Get Ms values
• model: Get model used to perform the analysis
• modelVariables: Get names of the variables in the model matrix
• phenoData: Get phenotypes data (AnnotatedDataFrame)
• phenoData<-: Set phenotypes data (AnnotatedDataFrame)
• pData: Get phenotypes data (data.frame)
• pData<-. Set phenotypes data (data.frame)
• probeResults: Get per probe analysis results
• regionResults: Get all per region analysis results
• sampleNames: Get sample names
• variableNames: Get variable names
• exportResults: Exports results data.frames to csv files.
• plotEWAS: Plot a Manhattan plot with the probe results
• plotQQ: QQ plot of probe analysis
• plotRegion: Plot of the region
• plotVolcano: Make a Volcano plot with the probe results
calculateRelevantSNPs

Slots

originalclass Character with the class of the object used to perform the analysis
features Matrix with the values of the most significant features.
phenotypes AnnotatedDataFrame with the phenotypes.
model Matrix with the model used in the analysis
sampleNames Character vector with the names of the samples
variableNames Character vector with the names of the variables used in the analysis. Names are
equal to those find in phenotypes.
covariableNames Character vector with the names of the covariables used in the analysis. Names
are equal to those find in phenotypes.
results List of data.frames with the results of per probe analysis. Names are those of the model.
DMRcate List of data.frames with the results of DMRcate. Names are those of the model.
Bumphunter List of data.frames with the results of Bumphunter. Names are those of the model.
BlockFinder List of data.frames with the results of BlockFinder. Names are those of the model.

Examples

showClass("AnalysisResults")

calculateRelevantSNPs Calculate the SNPs correlated to cpgs

Description

This function estimates the correlation between the snps and the cpgs. For each pair cpg-SNP the
p-value is returned.

Usage

calculateRelevantSNPs(set, snps, num_cores = 1)

Arguments

set MethylationSet
snps SnpSet
num_cores Numeric with the number of cores to be used.

Value

Data.frame with the pvalues for pairs SNPs-cpgs. SNPs are in the rows and cpgs in the columns.

Examples

Not run:
betamatrix: matrix of beta values
phenodf: data.frame with the phenotypes
snpsobject: SnpSet
set <- prepareMethylationSet(matrix = betamatrix, phenotypes = phenodf)
relevantSNPs <- calculateRelevantSNPs(set, snpsobject)
End(Not run)
computeRDAR2

Compute signification of RDA test

Description

Compare R2 obtained in our region of interest with the global R^2 and the R^2 of regions with the same number of probes.

Usage

```r
computeRDAR2(set, res, R2, nperm = 1e+06 - 1)
```

Arguments

- `set`: MethylationSet or ExpressionSet
- `res`: AnalysisResults
- `R2`: Numeric with the R2 obtained in the RDA
- `nperm`: Numeric with the number of permutations.

Value

Numeric vector with the probability of finding a region with the same number of probes with a bigger R2 and the global R2.

correlationMethExprs

Computes the correlation between methylation and expression

Description

Estimates the correlation between methylation and expression. When there are known variables that affect methylation and/or expression, their effect can be subtracted using a linear model and then the residuals are used.

Usage

```r
correlationMethExprs(multiset, vars_meth = NULL, vars_exprs = NULL,
                     vars_meth_types = rep(NA, length(vars_meth)), vars_exprs_types = rep(NA,
                     length(vars_exprs)), meth_set_name = "methylation",
                     exprs_set_name = "expression", sel_cpgs, flank = 250000, num_cores = 1,
                     verbose = TRUE)
```
correlationMethExprs

Arguments

- **multiset**: MultiDataSet containing a methylation and an expression slots.
- **vars_meth**: Character vector with the names of the variables that will be used to obtain the methylation residuals. By default, none is used and residuals are not computed.
- **vars_exprs**: Character vector with the names of the variables that will be used to obtain the expression residuals. By default, none is used and residuals are not computed.
- **vars_meth_types**: Character vector with the types of the methylation variables. By default, variables type won’t be changed.
- **vars_exprs_types**: Character vector with the types of the expression variables. By default, variables type won’t be changed.
- **meth_set_name**: Character vector with the name of the MultiDataSet’s slot containing methylation data.
- **exprs_set_name**: Character vector with the name of the MultiDataSet’s slot containing expression data.
- **sel_cpgs**: Character vector with the name of the CpGs used in the analysis. If empty, all the CpGs of the methylation set will be used.
- **flank**: Numeric with the number of pair bases used to define the cpg-expression probe pairs.
- **num_cores**: Numeric with the number of cores to be used.
- **verbose**: Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.

Details

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and downstream). Only those expression probes that are entirely in this range will be selected. For these reason, it is required that the ExpressionSet contains a featureData with the chromosome and the starting and ending positions of the probes.

Value

Data.frame with the results of the linear regression:

- **cpg**: Name of the cpg
- **exprs**: Name of the expression probe
- **beta**: coefficient of the methylation change
- **se**: standard error of the beta
- **P.Value**: p-value of the beta coefficient
- **adj.P.Val**: q-value computed using B&H
createRanges

createRanges Create GenomicRanges from data.frame

Description

Convert a data.frame with chromosomes in the first column, starting positions in the second one and ending position in the third one to GenomicRanges. Names of the data.frame are preserved in the output GenomicRanges.

Usage

createRanges(ranges)

Arguments

ranges Data.frame or matrix

Value

GenomicRanges

Examples

dfranges <- data.frame(chr = c("chr1", "chr2", "chr1"), start = c(1290, 1250, 4758),
end = c(64389, 632409, 16430), stringsAsFactors = FALSE)
names(dfranges) <- c("range1", "range2", "range3")
ranges <- createRanges(dfranges)
ranges

DAPipeline

Perform differential methylation analysis

Description

Wrapper for analysing differential methylation and expression at region and probe level.

Usage

DAPipeline(set, variable_names, variable_types = rep(NA, length(variable_names)),
covariable_names = NULL,
covariable_types = rep(NA, length(covariable_names)),
equation = NULL,
num_var = NULL, labels = NULL, sva = FALSE,
region_methods = c("bumphunter", "DMRcate"), shrinkVar = FALSE,
probe_method = "ls", max_iterations = 100, num_feat = 50,
num_cores = 1, verbose = FALSE, ...
Arguments

set
MethylationSet or ExpressionSet

variable_names
Character vector with the names of the variables that will be returned as result.

variable_types
Character vector with the types of the variables. As default, variables type won’t be changed.

covariable_names
Character vector with the names of the variables that will be used to adjust the model.

covariable_types
Character vector with the types of the covariables. As default, variables type won’t be changed.

equation
Character containing the formula to be used to create the model.

num_var
Numeric with the number of variables in the matrix for which the analysis will be performed. Compulsory if equation is not null.

labels
Character vector with the labels of the variables.

sva
Logical indicating if Surrogate Variable Analysis should be applied.

region_methods
Character vector with the methods used in DARegion. If "none", region analysis is not performed.

shrinkVar
Logical indicating if shrinkage of variance should be applied in probe analysis.

probe_method
Character with the type of linear regression applied in probe analysis ("ls" or "robust")

max_iterations
Numeric with the maximum of iterations in the robust regression.

num_feat
Numeric with the minimum number of cpg beta values to be included in the results.

num_cores
Numeric with the number of cores to be used.

verbose
Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.

... Further arguments passed to DARegion function.

Details

This function is the main wrapper of the package. First, it simplifies the set to only contain the common samples between phenotype and features. In addition, it allows to change the class of the variables and to apply genomic models (more information on preparePhenotype). Afterwards, analysis per probe and per region are done merging the results in an AnalysisResults object.

Default linear model will contain a sum of the variables and covariables. If interactions are desired, a custom formula can be specified. In that case, variables and covariables must also be specified in order to assure the proper work of the resulting AnalysisResult. In addition, the number of variables of the model for which the calculation will be done must be specified.

Value

MethylationResult object

See Also

preparePhenotype
Examples

```r
if (require(minfiData)){
  set <- prepareMethylationSet(matrix = getBeta(MsetEx)[1:10, ], pheno = pData(MsetEx))
  res <- DAPipeline(set, variable_names = "Sample_Group", probe_method = "ls")
  res
}
```

Description

Compute statistics (t estimate and p-value) for methylation or expression data using linear or robust linear regression.

Usage

```r
DAProbe(set, model, coefficient = 2, shrinkVar = FALSE, method = "robust", max_iterations = 100)
```

Arguments

- `set` MethylationSet, matrix of beta values or ExpressionSet.
- `model` Matrix with the model
- `coefficient` Numeric with the index of the model matrix used to perform the analysis. If a vector is supplied, a list will be returned.
- `shrinkVar` Logical indicating if shrinkage of variance should be performed.
- `method` String indicating the method used in the regression ("ls" or "robust")
- `max_iterations` Numeric indicating the maximum number of iterations done in the robust method.

Value

Data.frame or list of data.frames containing intercept and slope values. If the set is a MethylationSet, probe's position, chromosome and the nearest gene are also returned.

Examples

```r
if (require(minfiData)){
  mvalues <- getM(MsetEx)[1:100, ]
  model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
  res <- DAProbe(mvalues, model, method = "ls")
  head(res)
}
```
Detect regions differentially methylated

Description

This function is a wrapper of two known region differentially methylated detection methods: Bumphunter and DMRcate. blockFinder implementation present in minfi package is also available.

Usage

DARegion(set, model, methods = c("blockFinder", "bumphunter", "DMRcate"),
 coefficient = 2, num_permutations = 0, bumphunter_cutoff = 0.05,
 bumps_max = 30000, num_cores = 1, verbose = FALSE, ...)

Arguments

set: MethylationSet.
model: Model matrix representing a linear model.
methods: Character vector with the names of the methods used to estimate the regions. Valid names are: "blockFinder", "bumphunter" and "DMRcate".
coefficient: Numeric with the index of the model matrix used to perform the analysis.
num_permutations: Numeric with the number of permutations used to calculate p-values in bumphunter and blockFinder.
bumphunter_cutoff: Numeric with the threshold to consider a probe significant. If one number is supplied, the lower limit is minus the upper one. If two values are given, they will be upper and lower limits.
bumps_max: Numeric with the maximum number of bumps allowed.
num_cores: Numeric with the number of cores used to perform the permutation.
verbose: Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.
...
: Further arguments passed to bumphunter function.

Details

DARegion performs a methylation region analysis using bumphunter and DMRcate. Bumphunter allows the modification of several parameters that should be properly used.

Cutoff will determine the number of bumps that will be detected. The smaller the cutoff, the higher the number of positions above the limits, so there will be more regions and they will be greater. Bumphunter can pick a cutoff using the null distribution, i.e. permutating the samples. There is no standard cutoff and it will depend on the features of the experiment. Permutations are used to estimate p-values and, if needed, can be used to pick a cutoff. The advised number of permutation is 1000. The number of permutations will define the maximum number of bumps that will be considered for analysing. The more bumps, the longer permutation time. As before, there is not an accepted limit but minfi tutorial recommends not to exceed 30000 bumps. Finally, if supported, it is very advisable to use parallelization to perform the permutations.
Due to minfi design, BlockFinder can only be run using own minfi annotation. This annotation is based on hg19 and Illumina 450k chipset. Cpg sites not named like in this annotation package will not be included. As a result, the use of BlockFinder is not recommended. DMRcate uses a first step where linear regression is performed in order to estimate coefficients of the variable of interest. This first step is equal to the calculation performed in DAProbe, but using in this situation linear regression and not robust linear regression.

DARegion supports multiple variable analyses. If coefficient is a vector, a list of lists will be returned. Each member will be named after the name of the column of the model matrix.

Value

List with the main results of the three methods. If a method is not chosen, NA is returned in this position.

See Also

bumphunter, blockFinder, dmr cate

Examples

```r
if (require(minfiData)){
  set <- prepareMethylationSet(minfi::getBeta(MsetEx)[1:10, ], pheno = pData(MsetEx))
  model <- model.matrix(~Sample_Group, data = pData(MsetEx))
  res <- DARegion(set, model)
  res
}
```

```
DARegionAnalysis

Analyse methylation or expression in a specific range

Description

Methylation analysis in a genomic range, taking into account snps.

Usage

DARegionAnalysis(set, range, omicset = "methylation", variable_names, variable_types = rep(NA, length(variable_names)), covariable_names = NULL, covariable_types = rep(NA, length(covariable_names)), equation = NULL, num_var = NULL, labels = NULL, sva = FALSE, use_snps = TRUE, snps_cutoff = 0.01, region_methods = c("blockFinder", "bumphunter", "DMR cate"), shrinkVar = FALSE, probe_method = "robust", max_iterations = 100, num_cores = 1, verbose = FALSE, nperm = 1000, ...)

Arguments

set MethylationSet, ExpressionSet or MultiDataSet.
range GenomicRanges with the desired range.
omicset In a MultiDataSet allows to choose between methylation and expression (valid values are: "methylation" or "expression").
```
variable_names Character vector with the names of the variables that will be returned as result.

variable_types Character vector with the types of the variables. By default, variables type won’t be changed.

covariable_names Character vector with the names of the variables that will be used to adjust the model.

covariable_types Character vector with the types of the covariables. By default, variables type won’t be changed.

equation String containing the formula to be used to create the model.

num_var Numeric with the number of variables in the matrix for which the analysis will be performed. Compulsory if equation is not null.

labels Character vector with the labels of the variables.

sva Logical indicating if Surrogate Variable Analysis should be applied.

use_snps Logical indicating if SNPs should be used in the analysis.

snps_cutoff Numerical with the threshold to consider a SNP-cpg correlation p-value significant.

region_methods Character vector with the methods used in DARegion. If "none", region analysis is not performed.

shrinkVar Logical indicating if shrinkage of variance should be applied in probe analysis.

probe_method Character with the type of linear regression applied in probe analysis ("ls" or "robust")

max_iterations Numeric with the maximum of iterations in the robust regression.

num_cores Numeric with the number of cores to be used.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.

nperm Numeric with the number of permutations used to compute RDA p-values.

... Further arguments passsed to DAPipeline function.

Details

Set is filtered to the range specified. If SNPs are present in the set, those are also filtered and then, correlation between SNPs and cpgs is tested. SNPs that are correlated to at least one cpg are added to covariables. After that, DAPipeline is run. RDA test of the region is performed, returning the R2 between the variables and the beta matrix and a p-value of this R2.

Value

AnalysisRegionResult object

See Also

preparePhenotype, DAPipeline
explainedVariance

Examples

```r
if (require(minfiData)){
  set <- prepareMethylationSet(getBeta(MsetEx)[1:1000, ], pheno = pData(MsetEx))
  range <- GenomicRanges::GRanges(seqnames=Rle("chrX"),
                                ranges = IRanges(30000, end = 123000000))
  res <- DARegionAnalysis(set, range = range, variable_names = "Sample_Group",
                          probe_method = "ls")
  res
}
```

explainedVariance Calculate R2 for different variables

Description

Using a data.frame as input, calculates the R2 between a dependent variable and some independent variables. Base adjusting by covariates can also be used.

Usage

```r
explainedVariance(data, num_mainvar = 1, num_covariates = 0,
                   variable_label = NULL)
```

Arguments

- `data` : Data.frame containing the dependent variable in the first column.
- `num_mainvar` : Numerical with the number of variables that should be grouped. They should be at the beginning.
- `num_covariates` : Numerical with the number of variables that should be considered as covariates. Covariates variables must be at the end.
- `variable_label` : Character with the name of the main variable in the results.

Details

`explainedVariance` computes R2 via linear models. The first column is considered to be the dependent variable. Therefore, a lineal model will be constructed for each of the remaining variables. In case that covariates were included, they will be included in all the models and, in addition, a model containing only the covariates will be returned.

Some variables can be grouped in the models to assess their effect together.

Value

Numeric vector with the R2 explained by each of the variables.

Examples

```r
data(mtcars)
R2 <- explainedVariance(mtcars)
R2
```
filterSet

Exports results data.frames to csv files.

Description
Exports results to csv files. If more than one variable is present, subfolders with the name of the variable are created. For each variable, four files will be generated: probeResults.csv, dmrCateResults.csv, bumhunterResults.csv and blockFinderResults.csv.

Usage
exportResults(object, dir = ".\", prefix = NULL, vars = modelVariables(object))

Arguments
- **object**: MethylationResults or MethylationRegionResults.
- **dir**: Character with the path to export.
- **prefix**: Character with a prefix to be added to all file names.
- **vars**: Character vector with the names of the variables to be exported. Note: names should be that of the model.

Value
Files are saved into the given folder.

Examples
```r
if (require(minfiData)){
  set <- prepareMethylationSet(getBeta(MsetEx)[1:10,], pheno = pData(MsetEx))
  methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
  exportResults(methyOneVar)
}
```

filterSet

Filter a MethylationSet, an ExpressionSet or a SnpSet

Description
Filter a MethylationSet, an ExpressionSet or a SnpSet

Usage
filterSet(set, range)

Arguments
- **set**: MethylationSet, ExpressionSet or a SnpSet.
- **range**: GenomicRanges with the desired range.
getGeneVals

Value

MethylationSet, ExpressionSet or a SnpSet with only the features of the range.

Examples

```r
if (require(minfiData) & require(GenomicRanges)){
  range <- GRanges(seqnames=Rle("chrY"),
                  ranges = IRanges(3000000, end=12300000))
  set <- prepareMethylationSet(MsetEx[1:100, ], pData(MsetEx))
  set
  filteredset <- filterSet(set, range)
  filteredset
}
```

getGeneVals
Get all probes related to gene

Description

Given a MethylationResults and a gene name returns the results of the analysis of all the probes of the gene.

Usage

```r
getGeneVals(object, gene)
```

Arguments

- **object**
 MethylationResults

- **gene**
 Character with the name of the gene

Value

List of data.frames with the results of the analysis of the probes belonging to the gene

Examples

```r
if (require(minfiData)){
  set <- prepareMethylationSet(getBeta(MsetEx)[1:10,], pheno = pData(MsetEx))
  methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
  getGeneVals(methyOneVar, "TSPY4")
}
```
MEAL

MEAL (Methylation and Expression AnaLizer): Package for analysing methylation and expression data

Description

MEAL has three different categories of important functions: processing, analysing and plotting.

processing

Functions used to create MEAL objects and to modify them. Main functions are `prepareMethylationSet` and `preparePhenotype`.

analysing

Functions used to perform the analysis of methylation data. `DAProbe` performs per probe analysis and `DARegion` performs per region analysis. There are two wrappers: `DAPipeline` and `DAREgionAnalysis` that performs per probe and per region analysis. The first one analyses the whole methylation sites and the second one only a given region. Finally, `correlationMethExprs` compute the correlation between methylation and expression probes.

plotting

Functions used to plot the results of the analysis. Some are interesting for whole methylome analysis (e.g. `plotEWAS`) and others for analysis of one genomic region (e.g. `plotRDA`).

MEAL-defunct

Defunct functions

Description

These functions are defunct and no longer available.

Details

Defunct functions are: `multiCorrMethExprs`
normalSNP

Normalize SNPs values

Description

SNPs values, introduced as numerical, are normalized to be used in lineal models.

Usage

normalSNP(snps)

Arguments

- **snps**

 Numerical vector or matrix representing the SNPs in the form: 0 homozygote recessive, 1 heterozygote, 2 homozygote dominant.

Value

Numerical vector or matrix with the snps normalized.

Examples

```r
snps <- c(1, 0, 0, 1, 0, 2, 1, 2)
normSNPs <- normalSNP(snps)
normSNPs
```

plotBestFeatures

Plot best n cpgs

Description

Wrapper of `plotCPG` that plots the top n features.

Usage

plotBestFeatures(set, n = 10, variables = variableNames(set)[1])

Arguments

- **set**

 AnalysisResults, AnalysisRegionResults, ExpressionSet or MethylationSet

- **n**

 Numeric with the number of features to be plotted.

- **variables**

 Character vector with the names of the variables to be used in the splitting.

Value

Plots are created on the current graphics device.

See Also

plotFeature
Examples

```r
if (require(minfiData)){
  set <- prepareMethylationSet(getBeta(MsetEx)[1:10,],
                              pheno = pData(MsetEx))
  plotBestFeatures(set, 2, variables = "Sample_Group")
}
```

plotEWA

Plot a Manhattan plot with the probe results

Description

Plot log p-value for each chromosome positions. Highlighting cpgs inside a range is allowed.

Usage

```r
plotEWA(object, variable = modelVariables(object)[[1]], range = NULL,
        main = paste("Manhattan plot of ", variable))
```

Arguments

- `object` AnalysisResults or AnalysisRegionResults
- `variable` Character with the variable name used to obtain the probe results. Note: model name should be used. Original variable name might not be valid.
- `range` GenomicRange whose cpgs will be highlighted
- `main` Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

```r
if (require(minfiData)){
  betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)), ]
  set <- prepareMethylationSet(betas, pheno = pData(MsetEx))
  methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
  plotEWA(methyOneVar)
}
### plotFeature

**Plot values of a feature**

**Description**

Plot values of a feature splitted by one or two variables.

**Usage**

```r
plotFeature(set, feat, variables = variableNames(set)[1])
```

**Arguments**

- **set**: AnalysisResults, AnalysisRegionResults, ExpressionSet or MethylationSet
- **feat**: Numeric with the index of the feature or character with its name.
- **variables**: Character vector with the names of the variables to be used in the splitting. Two variables is the maximum allowed. Note: default values are only valid for MethylationResults objects.

**Value**

A plot is generated on the current graphics device.

**Examples**

```r
if (require(minfiData)){
 set <- prepareMethylationSet(getBeta(MsetEx)[1:1000,],
 pheno = pData(MsetEx))
 plotFeature(set, 1, variables = "Sample_Group")
}
```

### plotLM

**Plot a vector of R2**

**Description**

Plot a vector of R2 where the first value is the main variable and the last one, if named `covariates` is treated as covariates.

**Usage**

```r
plotLM(Rsquares, title = paste("Variance Explained in", feat_name),
 feat_name = NULL, variable_name = names(Rsquares)[1], max_columns = 6)
```

**Arguments**

- **R­squares**: Numerical vector of R2
- **title**: Character with the plot title
- **feat_name**: Name of the feature used in default title.
- **variable_name**: Character for the first column name
- **max_columns**: Numerical with the maximum number of columns to be plotted.
Value

A plot in the graphical device

Examples

data(mtcars)
R2 <- explainedVariance(mtcars, variable_label = "cyl") ## variable equals to cyl column
plotLM(R2)

plotQQ

QQ plot of probe analysis

Description

Generate a QQ plot using probe results.

Usage

plotQQ(object, variable = modelVariables(object)[[1]],
main = paste("QQplot of", variable, "analysis"))

Arguments

object AnalysisResults or AnalysisRegionResults
variable Character with the variable name used to obtain the probe results. Note: model
name should be used. Original variable name might not be valid.
main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData)){
betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)), ]
set <- prepareMethylationSet(betas, pheno = pData(MsetEx))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
plotQQ(methyOneVar)
}

plotQQ
plotRDA | *Plot RDA results*

**Description**

Plot RDA results

**Usage**

```r
plotRDA(object, n_feat = 5, main = "RDA plot")
```

**Arguments**

- **object**: AnalysisRegionResults
- **n_feat**: Numeric with the number of cpgs to be highlighted.
- **main**: Character with the plot title.

**Value**

A plot is generated on the current graphics device.

**Examples**

```r
if (require(minfiData) & require(GenomicRanges)){
 set <- prepareMethylationSet(getBeta(MsetEx), pheno = pData(MsetEx))
 range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
 ranges = IRanges(3000000, end=12300000))
 rangeNoSNPs <- DARegionAnalysis(set, variable_names = "sex", range = range)
 plotRDA(rangeNoSNPs)
}
```

---

plotRegion | *Plot of the region*

**Description**

Plot of the beta values against their position. Data is taken from probe analysis. Cpgs with a p-value smaller than 0.05 (without adjusting) are blue and points with a p-value greater than 0.05 are red.

**Usage**

```r
plotRegion(object, variable = modelVariables(object)[[1]], range = NULL,
 main = paste("Region plot of ", variable))
```

**Arguments**

- **object**: AnalysisResults or AnalysisRegionResults
- **variable**: Character with the variable name used to obtain the probe results. Note: model name should be used. Original variable name might not be valid.
- **range**: GenomicRange whose cpgs will be shown (only for AnalysisResults objects)
- **main**: Character with the plot title.
Value
A plot is generated on the current graphics device.

Examples
if (require(minfiData) & require(GenomicRanges)){
  set <- prepareMethylationSet(getBeta(MsetEx), pheno = pData(MsetEx))
  range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
  ranges = IRanges(3000000, end=12300000))
  rangeNoSNPs <- DARRegionAnalysis(set, variable_names = "sex", range = range)
  plotRegion(rangeNoSNPs)
}

plotRegionR2  
Plot R2 region values

Description
Plot R2 region values

Usage
plotRegionR2(object, feat, ...)

Arguments
  
  object  MethylationRegionResults
  feat     Numeric with the index of the feature or character with its name.
  ...     Further arguments passed to plotLM

Value
A plot is generated on the current graphics device.

plotVolcano  
Make a Volcano plot with the probe results

Description
Plot log p-value versus the change in expression/methylation.

Usage
plotVolcano(object, variable = modelVariables(object)[1], mindiff = NULL,
  main = paste("Volcano plot of", variable, "results"))
preparePhenotype

Arguments

object MethylationResults or MethylationRegionResults
variable Character with the variable name used to obtain the probe results. Note: model name should be used. Original variable name might not be valid.
mindiff Numeric with the minimum change in methylation or expression needed to be significant
main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

```r
if (require(minfiData)){
betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)),]
set <- prepareMethylationSet(betas, pheno = pData(MsetEx))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
plotVolcano(methyOneVar)
}
```

Description

Given a data.frame containing phenotypic variables, select the desired columns and transform them to the desired types.

Usage

```r
preparePhenotype(phenotypes, variable_names, variable_types = rep(NA, length(variable_names)))
```

Arguments

phenotypes Data.frame with the phenotypic features
variable_names Vector with the names or the positions of the desired variables.
variable_types Vector with the types of the variables.

Details

preparePhenotype supports five types of variables. Categorical and continuous correspond to factor and numerical types in R. The other three are genomic models as defined in SNPassoc: dominant, recessive and additive. In order to use these types, only two alleles can be present and genotypes should be specified in the form a/b.

If transformation of variables is not needed, the variable_types can be passed as a vector of NA.

Value

Data.frame with the columns selected and with the types desired.
Examples

```r
pheno <- data.frame(a = sample(letters[1:2], 5, replace = TRUE), b = runif(5),
 c = sample(c("a/a","a/b","b/b"), 5, replace = TRUE))
pheno <- preparePhenotype(pheno, variable_names = c("a", "c"),
 variable_types = c("categorical", "dominant"))
pheno
```

---

**RDASET**

*Calculate RDA for a set*

Description

Perform RDA calculation for a `AnalysisRegionResults`. Feature values will be considered the matrix `X` and phenotypes the matrix `Y`. Adjusting for covariates is done using `covariable_names` stored in the object.

Usage

```r
RDASET(set, equation = NULL)
```

Arguments

- `set` *AnalysisResults*
- `equation` *Character with the equation used in the analysis*

Value

Object of class `rda`

See Also

- `rda`

Examples

```r
if (require(minfiData)){
 set <- prepareMethylationSet(getBeta(MsetEx)[1:50,], pheno = pData(MsetEx))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
rda <- RDASET(methyOneVar)
rda
}
```
**topRDAhits**

Get the top features associated with the RDA

**Description**
Get a list of the features significantly associated to the first two RDA components

**Usage**
topRDAhits(object, pval = 0.05)

**Arguments**
- object: AnalysisRegionResults
- pval: numeric with the p-value threshold. Only features with a p-values below this threshold will be shown.

**Value**
data.frame with the features, the component, the correlation and the p-value

**Examples**
if (require(minfiData) & require(GenomicRanges)){
  set <- prepareMethylationSet(getBeta(MsetEx), pheno = pData(MsetEx))
  range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
                                  ranges = IRanges(3000000, end=12300000))
  rangeNoSNPs <- DARRegionAnalysis(set, variable_names = "sex", range = range)
  topRDAhits(rangeNoSNPs)
}

## Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnalysisRegionResults</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>analysisRegionResults</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AnalysisRegionResults-class</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AnalysisRegionResults-method</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>AnalysisResults</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>analysisResults</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>AnalysisResults-class</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>AnalysisResults-methods</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>blockFinder</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>blocks</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>bumps</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>bumps,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>calculateRelevantSNPs</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>computeRDAR2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>correlationMethExprs</td>
<td></td>
<td>9, 20</td>
</tr>
<tr>
<td>covariableNames</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>covariableNames,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>createRanges</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>DAProbe</td>
<td></td>
<td>13, 20</td>
</tr>
<tr>
<td>DARegion</td>
<td></td>
<td>14, 20</td>
</tr>
<tr>
<td>DARegionAnalysis</td>
<td></td>
<td>15, 20</td>
</tr>
<tr>
<td>Defunct</td>
<td>correlationMethExprs</td>
<td>9</td>
</tr>
<tr>
<td>dmrCate</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>dmrCate,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>explainedVariance</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>exportResults</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>exportResults,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>feats</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>feats,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>featvals</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>featvals,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>filterSet</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>getGeneVals</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>getGeneVals,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>getMs</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>getMs,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>getRange</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>getRange,AnalysisRegionResults-method</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>getRDA</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>getRDA,AnalysisRegionResults-method</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>globalPval</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>globalPval,AnalysisRegionResults-method</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>globalR2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>globalR2,AnalysisRegionResults-method</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MEAL</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>MEAL-defunct</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>MEAL-package</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>model,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>modelVariables</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>modelVariables,AnalysisResults-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>normalSNP</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>pData</td>
<td>AnalysisResults-method</td>
<td>5</td>
</tr>
<tr>
<td>pData&lt;-,AnalysisResults,ANY-method</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>phenoData</td>
<td>AnalysisResults-method</td>
<td>5</td>
</tr>
</tbody>
</table>
INDEX

phenoData<-,AnalysisResults,ANY-method
(AnalysisResults), 5
plotBestFeatures, 21
plotEWAS, 20, 22
plotEWAS, AnalysisResults-method
(AnalysisResults), 5
plotFeature, 21, 23
plotLM, 23
plotQQ, 24
plotQQ, AnalysisResults-method
(AnalysisResults), 5
plotRDA, 20, 25
plotRDA, AnalysisRegionResults-method
(AnalysisRegionResults), 2
plotRegion, 25
plotRegion, AnalysisResults-method
(AnalysisResults), 5
plotRegionR2, 26
plotRegionR2, AnalysisRegionResults-method
(AnalysisRegionResults), 2
plotVolcano, 26
plotVolcano, AnalysisResults-method
(AnalysisResults), 5
prepareMethylationSet, 20
preparePhenotype, 12, 16, 20, 27
probeResults, AnalysisResults-method
(AnalysisResults), 5
rda, 28
RDAPval, AnalysisRegionResults-method
(AnalysisRegionResults), 2
RDAset, 28
regionLM, AnalysisRegionResults-method
(AnalysisRegionResults), 2
regionLM, AnalysisRegionResults-method
(AnalysisRegionResults), 2
regionR2, AnalysisRegionResults-method
(AnalysisRegionResults), 2
regionR2, AnalysisRegionResults-method
(AnalysisRegionResults), 2
regionResults, AnalysisResults-method
(AnalysisResults), 5
sampleNames, AnalysisResults-method
(AnalysisResults), 5
snps, AnalysisRegionResults-method
(AnalysisRegionResults), 2
snps, AnalysisRegionResults-method
(AnalysisRegionResults), 2
snpsPvals, AnalysisRegionResults-method
(AnalysisRegionResults), 2
snpsPvals, AnalysisRegionResults-method
(AnalysisRegionResults), 2
snpsVar, AnalysisRegionResults-method
(AnalysisRegionResults), 2
snpsVar, AnalysisRegionResults-method
(AnalysisRegionResults), 2

variableNames, AnalysisResults-method
(AnalysisResults), 5
variableNames, AnalysisResults-method
(AnalysisResults), 5