Package ‘MLSeq’

March 23, 2017

Type Package

Title Machine learning interface for RNA-Seq data

Version 1.14.1

Date 2016-11-30

Author Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Maintainer Gokmen Zararsiz <gokmenzararsiz@hotmail.com>

Depends R (>= 3.0.0), caret, DESeq2, Biobase, limma, randomForest, edgeR

VignetteBuilder knitr

Suggests knitr, e1071, kernlab, earth, ellipse, fastICA, gam, ipred, klaR, MASS, mda, mgev, mlbench, nnet, party, pls, pROC, proxy, RANN, spls, affy

Imports methods

biocView Sequencing, RNASeq, Classification, Clustering

Description This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART, to RNA-Seq data.

License GPL(>=2)

NeedsCompilation no

R topics documented:

MLSeq-package ... 2
cervical ... 2
classify ... 3
confusionMat-methods ... 5
deseqTransform-methods ... 6
method-methods .. 7
MLSeq-class .. 8
normalization-methods .. 9
predictClassify ... 10
ref-methods .. 12
trained-methods ... 13

Index 15
MLSeq-package

Machine Learning Interface for RNA-Seq data

Description

This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART, to RNA-Seq data.

Details

- **Package:** MLSeq
- **Type:** Package
- **License:** GPL (>= 2)

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Maintainer: Gokmen Zararsiz <gokmenzararsiz@erciyes.edu.tr>

cervical

Cervical Cancer Data

Description

Cervical cancer data measures the expressions of 714 miRNAs of human samples. There are 29 tumor and 29 non-tumor cervical samples and these two groups are treated as two separate classes.

Usage

data(cervical)

Format

A data frame with 58 observations on the following 715 variables.

Source

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880020/#supplementary-material-sec

References

Examples

data(cervical)

classify

Fitting Classification Models to Sequencing Data

Description

This function fits classification algorithms to sequencing data and measures model performances using various statistics.

Usage

```r
classify(data, method = c("svm", "bagsvm", "randomforest", "cart"), normalize = c("deseq", "none", "tmm"),
          deseqTransform = c("vst", "voomCPM"), cv = 5, rpt = 10, B = 100, ref=NULL, ...)
```

Arguments

- `data`: DESeqDataSet instance
- `method`: There are four methods available to perform classification: `svm`: support vector machines using radial-based kernel function, `bagsvm`: support vector machines with bagging ensemble, `randomForest`: random forest algorithm, `cart`: classification and regression trees algorithm.
- `normalize`: Normalization of count data for classification. `none`: Normalization is not applied. `deseq`: deseq normalization. `tmm`: Trimmed mean of M values.
- `cv`: Number of cross-validation folds.
- `rpt`: Number of complete sets of folds for computation.
- `B`: Number of bootstrap samples for bagsvm method.
- `ref`: User defined reference class. Default is `NULL`.
- `...`: Optional arguments for `train()` function from caret package.

Details

In RNA-Seq studies, normalization is used to adjust between-sample differences for further analysis. In this package, "deseq" and "tmm" normalization methods are available. "deseq" estimates the size factors by dividing each sample by the geometric means of the transcript counts. "tmm" trims the lower and upper side of the data by log fold changes to minimize the log-fold changes between the samples and by absolute intensity. After normalization, it is useful to transform the data for classification. MLSeq package has "voomCPM" and "vst" transformation methods. "voomCPM" transformation applies a logarithmic transformation (log-cpm) to normalized count data. Second transformation method is the "vst" transformation and this approach uses an error modeling and the concept of variance stabilizing transformations to estimate the mean-dispersion relationship of data. For model validation, k-fold cross-validation ("cv" option in MLSeq package) is a widely used technique. Using this technique, training data is randomly splitted into k non-overlapping and equally sized subsets. A classification model is trained on (k-1) subsets and tested in the remaining subsets.
The `MLSeq` package also has the repeat option as "rpt" to obtain more generalizable models. Giving a number of m repeats, cross validation concept is applied m times. For more details, see the vignette.

Value

- **model**: fitted classification model
- **method**: used classification method
- **normalization**: used normalization method
- **deseqTransform**: `deseq` transformation if `deseq` normalization is used
- **confusionMat**: cross-tabulation of observed and predicted classes and corresponding statistics
- **ref**: reference class

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

References

See Also

`predictClassify`

Examples

```r
data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.
class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.
n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
```
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classstr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Classification and Regression Tree (CART) Classification
cart = classify(data = data.trainS4, method = "cart", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
cart

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
rf

classificationMat-methods

Accessors for the 'classificationMat' slot of an MLSeq object

Description
Confusion matrix for the trained model using classify function.

Usage
S4 method for signature 'MLSeq'

confusionMat(object)

Arguments
object an MLSeq object

Details
classificationMat slot stores information about cross-tabulation of observed and predicted classes and corresponding statistics such as accuracy rate, sensitivity, specificy, etc.

Author(s)
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples
data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.
class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.
n = ncol(data) # number of samples
p = nrow(data) # number of features
nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)
 # train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])
 # train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
 data.trainS4 = DESeq(data.trainS4, fitType="local")
 # Random Forest (RF) Classification
 rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv =
 confusionMat(rf)

deseqTransform-methods

Description

Used transformation method for the trained model using classify function.

Usage

```r
## S4 method for signature 'MLSeq'
deseqTransform(object)
```

Arguments

- `object` an `MLSeq` object

Details

deseqTransform slot stores the name of the transformation method either "vst" or "voomCPM"

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv =

deseqTransform(rf)

method-methods

Accessors for the 'method' slot of an MLSeq object

Description

Used classification method for the trained model using classify function.

Usage

S4 method for signature 'MLSeq'
method(object)

Arguments

object an MLSeq object

Details

method slot stores the name of the classification method as "svm", support vector machines using radial-based kernel function; "bagsvm", support vector machines with bagging ensemble; "randomForest", random forest algorithm and "cart", classification and regression trees algorithm.
Author(s)
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classstr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3)

method(rf)

MLSeq-class
MLSeq object

Description
For classification, this is the main class for the MLSeq package.

Objects from the Class
Objects can be created by calls of the form new("ClassifySeq", ...).
This type of objects is created as a result of classify function of MLSeq package. It is then used in predictClassify function for predicting the class labels of new samples.

Slots
method: stores the name of used classification method in the classification model
deseqTransform: stores the name of used transformation method in the classification model
normalization: stores the name of used normalization method in the classification model
confusionMat: stores the information of classification performance results
trained: stores the information about training process and model parameters that used in the corresponding model
ref stores user defined reference class

Note
An MLSeq class stores the results of classify function and offers further slots that are populated during the analysis. The slot confusionMat stores the information of classification performance results. These results contain the classification table and several statistical measures including accuracy rate, sensitivity, specificity, positive and negative predictive rates, etc. method, normalization and deseqTransform slots store the name of used classification method, normalization method and transformation method in the classification model respectively. Lastly, the slot trained stores the information about training process and model parameters that used in the corresponding model.

Author(s)
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples

See the vignette

normalization-methods
Accessors for the 'normalization' slot of an MLSeq object

Description
Used normalization method for the trained model using classify function.

Usage

```r
## S4 method for signature 'MLSeq'
normalization(object)
```

Arguments

- object an MLSeq object

Details

normalization slot stores the name of the normalization method "deseq", "none" or "tmm"

Author(s)
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classstr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

normalization(rf)

ggplot(data.trainS4, aes(x=condition, y=log2(foldChange), color=log2(pValue))) + geom_point() + geom_abline(intercept=0, slope=1)

predictClassify Extract Predictions From classify() objects

Description

This function predicts the class labels of test data for a given model.

Usage

predictClassify(model, test.data)

Arguments

model a model of MLSeq class

test.data a DESeqDataSet instance of new observations.

Details

predictClassify function gives a vector of predicted classes of data set. This vector is in factor
class.

Value

predicted a vector of predicted classes of test data. See details.
Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

References

See Also

`classify`

Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 <- DESeq(data.trainS4, fitType="local")

test set
data.test = data[ind]
data.test = as.matrix(data.test + 1)
classts = data.frame(condition=class[ind,])
test set in S4

data.testS4 = DESeqDataSetFromMatrix(countData = data.test, colData = classts, formula(~ condition))
data.testS4 = DESeq(data.testS4, fitType="local")

Number of repeats (rpt) might change model accuracies

Classification and Regression Tree (CART) Classification
cart = classify(data = data.trainS4, method = "cart", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
cart

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
rf

predicted classes of test samples for SVM method
pred.cart = predictClassify(cart, data.testS4)
pred.cart

predicted classes of test samples for RF method
pred.rf = predictClassify(rf, data.testS4)
pred.rf

ref-methods

Accessors for the ’ref’ slot of an MLSeq object

Description

The reference class category for the trained model using classify function.

Usage

```r
## S4 method for signature ’MLSeq’
ref(object)
```

Arguments

- **object** an MLSeq object

Details

Reference class category is important while calculating the statistical measures for the confusion matrix obtained from classification models.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[1:150,] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classstr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

ref(rf)

trained-methods

Accessors for the 'trained' slot of an MLSeq object

Description

Details about the training model information which is obtained classify function.

Usage

S4 method for signature 'MLSeq'
trained(object)

Arguments

object an MLSeq object

Details

trained slot stores information about the training process such as optimum model parameters and resampling properties on the fitted classification model.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv =

trained(rf)
Index

*Topic RNA-seq classification
 classify, 3

cervical, 2
classify, 3, 11
confusionMat (confusionMat-methods), 5
confusionMat, MLSeq-method
 (confusionMat-methods), 5
confusionMat-methods, 5

deseqTransform
 (deseqTransform-methods), 6
deseqTransform, MLSeq-method
 (deseqTransform-methods), 6
deseqTransform-methods, 6

method (method-methods), 7
method, MLSeq-method (method-methods), 7
method-methods, 7
MLSeq-class, 8
MLSeq-package, 2

normalization (normalization-methods), 9
normalization, MLSeq-method
 (normalization-methods), 9
normalization-methods, 9

predictClassify, 4, 10

ref (ref-methods), 12
ref, MLSeq-method (ref-methods), 12
ref-methods, 12

trained (trained-methods), 13
trained, MLSeq-method (trained-methods),
 13
trained-methods, 13