Package ‘MLSeq’

December 21, 2016

Type Package
Title Machine learning interface for RNA-Seq data
Version 1.14.1
Date 2016-11-30
Author Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Maintainer Gokmen Zararsiz <gokmenzararsiz@hotmail.com>
Depends R (>= 3.0.0), caret, DESeq2, Biobase, limma, randomForest, edgeR
VignetteBuilder knitr
Suggests knitr, e1071, kernlab, earth, ellipse, fastICA, gam, ipred, klaR, MASS, mda, mgcv, mlbench, nnet, party, pls, pROC, proxy, RANN, spls, affy
Imports methods
biocViews Sequencing, RNASeq, Classification, Clustering
Description This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART, to RNA-Seq data.
License GPL(>=2)
NeedsCompilation no

R topics documented:

MLSeq-package .. 2
cervical ... 2
classify ... 3
confusionMat-methods ... 5
deseqTransform-methods 6
method-methods ... 7
MLSeq-class .. 8
normalization-methods 9
predictClassify ... 10
ref-methods ... 12
trained-methods .. 13

Index 15
MLSeq-package

Machine Learning Interface for RNA-Seq data

Description

This package applies several machine learning methods, including SVM, bagSVM, Random Forest and CART, to RNA-Seq data.

Details

- **Package:** MLSeq
- **Type:** Package
- **License:** GPL (>= 2)

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Maintainer: Gokmen Zararsiz <gokmenzararsiz@erciyes.edu.tr>

cervical

Cervical Cancer Data

Description

Cervical cancer data measures the expressions of 714 miRNAs of human samples. There are 29 tumor and 29 non-tumor cervical samples and these two groups are treated as two separate classes.

Usage

```r
data(cervical)
```

Format

A data frame with 58 observations on the following 715 variables.

Source

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880020/#supplementary-material-sec

References

classify

Examples

data(cervical)

classify Fitting Classification Models to Sequencing Data

Description

This function fits classification algorithms to sequencing data and measures model performances using various statistics.

Usage

classify(data, method = c("svm", "bagsvm", "randomforest", "cart"), normalize = c("deseq", "none", "tmm"),
deseqTransform = c("vst", "voomCPM"), cv = 5, rpt = 10, B = 100, ref=NULL, ...)

Arguments

data DESeqDataSet instance
method There are four methods available to perform classification: svm: support vector machines using radial-based kernel function, bagsvm: support vector machines with bagging ensemble, randomForest: random forest algorithm, cart: classification and regression trees algorithm.
normalize Normalization of count data for classification. none: Normalization is not applied. Count data is used for classification. deseq: deseq normalization. tmm: Trimmed mean of M values.
cv Number of cross-validation folds.
rpt Number of complete sets of folds for computation.
B Number of bootstrap samples for bagsvm method.
ref User defined reference class. Default is NULL.
... Optional arguments for train() function from caret package.

Details

In RNA-Seq studies, normalization is used to adjust between-sample differences for further analysis. In this package, "deseq" and "tmm" normalization methods are available. "deseq" estimates the size factors by dividing each sample by the geometric means of the transcript counts. "tmm" trims the lower and upper side of the data by log fold changes to minimize the log-fold changes between the samples and by absolute intensity. After normalization, it is useful to transform the data for classification. MLSeq package has "voomCPM" and "vst" transformation methods. "voomCPM" transformation applies a logarithmic transformation (log-cpm) to normalized count data. Second transformation method is the "vst" transformation and this approach uses an error modeling and the concept of variance stabilizing transformations to estimate the mean-dispersion relationship of data.

For model validation, k-fold cross-validation ("cv" option in MLSeq package) is a widely used technique. Using this technique, training data is randomly split into k non-overlapping and equally sized subsets. A classification model is trained on (k-1) subsets and tested in the remaining subsets.
MLSeq package also has the repeat option as "rpt" to obtain more generalizable models. Giving a number of m repeats, cross validation concept is applied m times.

For more details, see the vignette.

Value

- **model**: fitted classification model
- **method**: used classification method
- **normalization**: used normalization method
- **deseqTransform**: deseq transformation if deseq normalization is used
- **confusionMat**: cross-tabulation of observed and predicted classes and corresponding statistics
- **ref**: reference class

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

References

See Also

- predictClassify

Examples

```r
data(cervical)

# a subset of cervical data with first 150 features.
data = cervical[c(1:150),]
class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.
n = ncol(data) # number of samples
p = nrow(data) # number of features
nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
```
```r
ind = sample(n,nTest,FALSE)

# train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classen = data.frame(condition=class[-ind,])

# train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

# Classification and Regression Tree (CART) Classification
cart = classify(data = data.trainS4, method = "cart", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
cart

# Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
rf
```

confusionMat-methods
Accessors for the ’confusionMat’ slot of an MLSeq object

Description

Confusion matrix for the trained model using `classify` function.

Usage

```r
## S4 method for signature 'MLSeq'
confusionMat(object)
```

Arguments

- **object**: an MLSeq object

Details

`confusionMat` slot stores information about cross-tabulation of observed and predicted classes and corresponding statistics such as accuracy rate, sensitivity, specificity, etc.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples

```r
data(cervical)

data = cervical[c(1:150),]  # a subset of cervical data with first 150 features.
class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.
```
n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

confusionMat(rf)

deseqTransform-methods

Accessors for the 'deseqTransform' slot of an MLSeq object

Description

Used transformation method for the trained model using classify function.

Usage

```r
## S4 method for signature 'MLSeq'
deseqTransform(object)
```

Arguments

- `object`: an MLSeq object

Details

`deseqTransform` slot stores the name of the transformation method either "vst" or "voomCPM"

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

deseqTransform(rf)

method-methods

Accessors for the 'method' slot of an MLSeq object

Description

Used classification method for the trained model using classify function.

Usage

S4 method for signature 'MLSeq'

method(object)

Arguments

object an MLSeq object

Details

method slot stores the name of the classification method as "svm", support vector machines using radial-based kernel function; "bagsvm", support vector machines with bagging ensemble; "randomForest", random forest algorithm and "cart", classification and regression trees algorithm.
Author(s)
Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
method(rf)

MLSeq-class

MLSeq object

Description

For classification, this is the main class for the MLSeq package.

Objects from the Class

Objects can be created by calls of the form `new("ClassifySeq", ...)`. This type of objects is created as a result of classify function of MLSeq package. It is then used in predictClassify function for predicting the class labels of new samples.

Slots

- `method`: stores the name of used classification method in the classification model
- `deseqTransform`: stores the name of used transformation method in the classification model
- `normalization`: stores the name of used normalization method in the classification model
confusionMat: stores the information of classification performance results

trained: stores the information about training process and model parameters that used in the corresponding model

ref stores user defined reference class

Note

An MLSeq class stores the results of classify function and offers further slots that are populated during the analysis. The slot confusionMat stores the information of classification performance results. These results contain the classification table and several statistical measures including accuracy rate, sensitivity, specificity, positive and negative predictive rates, etc. method, normalization and deseqTransform slots store the name of used classification method, normalization method and transformation method in the classification model respectively. Lastly, the slot trained stores the information about training process and model parameters that used in the corresponding model.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

Examples

See the vignette

normalization-methods

Accessors for the 'normalization' slot of an MLSeq object

Description

Used normalization method for the trained model using classify function.

Usage

```r
## S4 method for signature 'MLSeq'
normalization(object)
```

Arguments

- `object` an MLSeq object

Details

normalization slot stores the name of the normalization method "deseq", "none" or "tmm"

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29)))) # defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classstr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

normalization(rf)

predictClassify

Extract Predictions From classify() objects

Description

This function predicts the class labels of test data for a given model.

Usage

predictClassify(model, test.data)

Arguments

model
a model of MLSeq class

test.data
a DESeqDataSet instance of new observations.

Details

predictClassify function gives a vector of predicted classes of data set. This vector is in factor class.

Value

predicted
a vector of predicted classes of test data. See details.
Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk

References

See Also
classify

Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[,-ind]
data.train = as.matrix(data.train + 1)
classstr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 <- DESeqDataSetFromMatrix(countData = data.train, colData = classstr, formula(~ condition))
data.trainS4 <- DESeq(data.trainS4, fitType="local")

test set
data.test = data[,ind]
data.test = as.matrix(data.test + 1)
classsts = data.frame(condition=class[ind,])
test set in S4

data.testS4 = DESeqDataSetFromMatrix(countData = data.test,
colData = classts, formula(~ condition))
data.testS4 = DESeq(data.testS4, fitType="local")

Number of repeats (rpt) might change model accuracies

Classification and Regression Tree (CART) Classification
cart = classify(data = data.trainS4, method = "cart", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
cart

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")
rf

predicted classes of test samples for SVM method
pred.cart = predictClassify(cart, data.testS4)
pred.cart

predicted classes of test samples for RF method
pred.rf = predictClassify(rf, data.testS4)
pred.rf

ref-methods

Accessors for the 'ref' slot of an MLSeq object

Description

The reference class category for the trained model using classify function.

Usage

```
## S4 method for signature 'MLSeq'
ref(object)
```

Arguments

- **object** an MLSeq object

Details

Reference class category is important while calculating the statistical measures for the confusion matrix obtained from classification models.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classtr = data.frame(condition=class[-ind,])

train set in S4 class
data.trainS4 = DESeqDataSetFromMatrix(countData = data.train, colData = classtr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv = 5, rpt = 3, ref="T")

ref(rf)

trained-methods

Accessors for the 'trained' slot of an MLSeq object

Description
Details about the training model information which is obtained classify function.

Usage
S4 method for signature 'MLSeq'
trained(object)

Arguments

object an MLSeq object

Details
trained slot stores information about the training process such as optimum model parameters and resampling properties on the fitted classification model.

Author(s)

Gokmen Zararsiz, Dincer Goksuluk, Selcuk Korkmaz, Vahap Eldem, Izzet Parug Duru, Turgay Unver, Ahmet Ozturk
Examples

data(cervical)

data = cervical[c(1:150),] # a subset of cervical data with first 150 features.

class = data.frame(condition=factor(rep(c("N","T"),c(29,29))))# defining sample classes.

n = ncol(data) # number of samples
p = nrow(data) # number of features

nTest = ceiling(n*0.2) # number of samples for test set (20% test, 80% train).
ind = sample(n,nTest,FALSE)

train set
data.train = data[-ind]
data.train = as.matrix(data.train + 1)
classStr = data.frame(condition=class[-ind,])

data.trainS4 = DESeqDataSetFromMatrix(countData = data.train,
colData = classStr, formula(~ condition))
data.trainS4 = DESeq(data.trainS4, fitType="local")

Random Forest (RF) Classification
rf = classify(data = data.trainS4, method = "randomforest", normalize = "deseq", deseqTransform = "vst", cv =

trained(rf)
Index

«Topic RNA-seq classification
 classify, 3

cervical, 2
classify, 3
 confusionMat (confusionMat-methods), 5
 confusionMat,MLSeq-method (confusionMat-methods), 5
 confusionMat-methods, 5

deseqTransform (deseqTransform-methods), 6
 deseqTransform,MLSeq-method (deseqTransform-methods), 6
 deseqTransform-methods, 6

 method (method-methods), 7
 method,MLSeq-method (method-methods), 7
 method-methods, 7
 MLSeq-class, 8
 MLSeq-package, 2

 normalization (normalization-methods), 9
 normalization,MLSeq-method (normalization-methods), 9
 normalization-methods, 9

 predictClassify, 4, 10

 ref (ref-methods), 12
 ref,MLSeq-method (ref-methods), 12
 ref-methods, 12

 trained (trained-methods), 13
 trained,MLSeq-method (trained-methods), 13
 trained-methods, 13