Package ‘MODA’

January 31, 2017

Type Package
Title MODA: MOdule Differential Analysis for weighted gene
 co-expression network
Version 1.0.0
Date 2016-06-29
Author Dong Li, James B. Brown, Luisa Orsini, Zhisong Pan, Guyu Hu and
 Shan He
Maintainer Dong Li <dxl466@cs.bham.ac.uk>
Description MODA can be used to estimate and construct
condition-specific gene co-expression networks, and identify
differentially expressed subnetworks as conserved or condition
specific modules which are potentially associated with relevant
biological processes.
License GPL (>= 2)
Depends R (>= 3.1.0)
Imports WGCNA,dynamicTreeCut,igraph
RoxygenNote 5.0.1
biocViews GeneExpression, Microarray, DifferentialExpression, Network
Suggests BiocStyle, knitr
VignetteBuilder knitr
NeedsCompilation no

\textbf{R topics documented:}

\begin{verbatim}
 CompareAllNets ... 2
 comparemodulestwonets 3
 datExpr1 .. 4
 datExpr2 .. 4
 PartitionDensity .. 5
 PartitionModularity 5
 WeightedModulePartitionDensity 6
\end{verbatim}

Index

8
CompareAllNets

Illustration of network comparison

Description

Compare the background network and a set of condition-specific network. Conserved or condition-specific modules are indicated by the plain files, based on the statistics.

Usage

CompareAllNets(ResultFolder, intModules, speciesName, intconditionModules, conditionNames, specificTheta, conservedTheta)

Arguments

ResultFolder where to store results
intModules how many modules in the background network
speciesName identifier of current profile, served as a tag in name
intconditionModules a numeric vector, each of them is the number of modules in each condition-specific network. Or just single number
conditionNames a character vector, each of them is the name of condition. Or just single name
specificTheta the threshold to define min(s)+specificTheta, less than which is considered as condition specific module. s is the sums of rows in Jaccard index matrix. See supplementary file.
conservedTheta The threshold to define max(s)-conservedTheta, greater than which is considered as condition conserved module. s is the sums of rows in Jaccard index matrix. See supplementary file.

Value

None

Author(s)

Dong Li, <dx.l466@cs.bham.ac.uk>

See Also

WeightedModulePartitionDensity, comparemodulestwonets

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1#threshold to define conserved modules
intModules1 <- WeightedModulePartitionDensity(datExpr1, ResultFolder,
comparemodulestwonets

```r
indicator1,CuttingCriterion)
intModules2 <- WeightedModulePartitionDensity(datExpr2,ResultFolder,
indicator2,CuttingCriterion)
CompareAllNets(ResultFolder,intModules1,indicator1,intModules2,indicator2,
specificTheta,conservedTheta)
```

Illustration of two networks comparison

Description

Compare the background network and a condition-specific network. A Jaccard index is used to measure the similarity of two sets, which represents the similarity of each module pairs from two networks.

Usage

```r
comparemodulestwonets(sourcehead, nm1, nm2, ind1, ind2)
```

Arguments

- `sourcehead`: prefix of where to store results
- `nm1`: how many modules in the background network
- `nm2`: how many modules in the condition-specific network
- `ind1`: indicator of the background network
- `ind2`: indicator of the condition-specific network

Value

A matrix where each entry is the Jaccard index of corresponding modules from two networks

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

```r
data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder,
indicator1,CuttingCriterion)
intModules2 <- WeightedModulePartitionDensity(datExpr2,ResultFolder,
indicator2,CuttingCriterion)
JaccardMatrix <- comparemodulestwonets(ResultFolder,intModules1,intModules2,
paste('\DenseModuleGene_\',indicator1,sep=''),
paste('\DenseModuleGene_\',indicator2,sep=''))
```
Description

Synthetic gene expression profile with 20 samples and 500 genes.

Format

A matrix with 20 rows and 500 columns.

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

data(synthetic)
plot the heatmap of the correlation matrix ...
Not run: heatmap(cor(as.matrix(datExpr1)))

Description

Synthetic gene expression profile with 25 samples and 500 genes.

Format

A matrix with 25 rows and 500 columns.

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

data(synthetic)
plot the heatmap of the correlation matrix ...
Not run: heatmap(cor(as.matrix(datExpr2)))
PartitionDensity

Illustration of partition density

Description

Calculate the average density of all resulting modules from a partition. The density of each module is defined as the average adjacency of the module genes.

Usage

PartitionDensity(ADJ, PartitionSet)

Arguments

- **ADJ**: gene similarity matrix
- **PartitionSet**: vector indicates the partition label for genes

Value

partition density, defined as average density of all modules

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

Examples

```r
data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"){^10
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average"
)groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionDensity(ADJ1,groups)
```

PartitionModularity

Illustration of modularity density

Description

Calculate the average modularity of a partition. The modularity of each module is defined from a natural generalization of unweighted case.

Usage

PartitionModularity(ADJ, PartitionSet)
WeightedModulePartitionDensity

Arguments

ADJ gene similarity matrix
PartitionSet vector indicates the partition label for genes

Value

partition modularity, defined as average modularity of all modules

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

Examples

data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"){10}
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average")
groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionModularity(ADJ1,groups)

WeightedModulePartitionDensity

Illustration of Modules detection

Description

Module detection based on the optimal cutting height of dendrogram, which is selected to make the average density or modularity of resulting partition maximal. The clustering and visualization function are from WGCNA.

Usage

WeightedModulePartitionDensity(datExpr, foldername, indicatename,
cutmethod = c("Density", "Modularity"), power = 10)

Arguments

datExpr gene expression profile, rows are samples and columns genes
foldername where to store the clusters
indicatename normally a specific tag of condition
cutmethod cutting the dendrogram based on maximal average Density or Modularity
power the power parameter of WGCNA, W_{ij}=\text{cor}(x_{i,x,y})^\text{power}
WeightedModulePartitionDensity

Value
The number of clusters

Author(s)
Dong Li, <dxl466@cs.bham.ac.uk>

References

See Also
PartitionDensity
PartitionModularity

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1 #threshold to define conserved modules
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder, indicator1,CuttingCriterion)
Index

*Topic comparison
 comparemodulestwonets, 3
*Topic cutting
 WeightedModulePartitionDensity, 6
*Topic data
 datExpr1, 4
 datExpr2, 4
*Topic dendrogram
 WeightedModulePartitionDensity, 6
*Topic density
 PartitionDensity, 5
*Topic differential
 CompareAllNets, 2
*Topic modularity
 PartitionModularity, 5
*Topic module
 CompareAllNets, 2
 comparemodulestwonets, 3
CompareAllNets, 2
comparemodulestwonets, 2, 3
datExpr1, 4
datExpr2, 4
PartitionDensity, 5, 7
PartitionModularity, 5, 7
WeightedModulePartitionDensity, 2, 6