Package ‘MODA’

January 14, 2017

Type Package

Title MODA: MOdule Differential Analysis for weighted gene co-expression network

Version 1.0.0

Date 2016-06-29

Author Dong Li, James B. Brown, Luisa Orsini, Zhisong Pan, Guyu Hu and Shan He

Maintainer Dong Li <dxl466@cs.bham.ac.uk>

Description MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.

License GPL (>= 2)

Depends R (>= 3.1.0)

Imports WGCNA,dynamicTreeCut,igraph

RoxygenNote 5.0.1

biocViews GeneExpression, Microarray, DifferentialExpression, Network

Suggests BiocStyle, knitr

VignetteBuilder knitr

NeedsCompilation no

R topics documented:

CompareAllNets ... 2
comparemodulestwonets ... 3
datExpr1 ... 4

datExpr2 ... 4

PartitionDensity ... 5

PartitionModularity ... 5

WeightedModulePartitionDensity .. 6

Index 8
CompareAllNets

Description

Compare the background network and a set of condition-specific network. Conserved or condition-specific modules are indicated by the plain files, based on the statistics.

Usage

```r
CompareAllNets(ResultFolder, intModules, speciesName, intconditionModules, conditionNames, specificTheta, conservedTheta)
```

Arguments

- `ResultFolder`: where to store results
- `intModules`: how many modules in the background network
- `speciesName`: identifier of current profile, served as a tag in name
- `intconditionModules`: a numeric vector, each of them is the number of modules in each condition-specific network. Or just single number
- `conditionNames`: a character vector, each of them is the name of condition. Or just single name
- `specificTheta`: the threshold to define min(s)+specificTheta, less than which is considered as condition specific module. s is the sums of rows in Jaccard index matrix. See supplementary file.
- `conservedTheta`: The threshold to define max(s)-conservedTheta, greater than which is considered as condition conserved module. s is the sums of rows in Jaccard index matrix. See supplementary file.

Value

None

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

See Also

- `WeightedModulePartitionDensity`
- `comparemodulestwonets`

Examples

```r
data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
specificTheta = 0.1 # threshold to define condition specific modules
conservedTheta = 0.1 # threshold to define conserved modules
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder,
```
comparemodulestwonets

indicator1,CuttingCriterion)
intModules2 <- WeightedModulePartitionDensity(datExpr2,ResultFolder,
indicator2,CuttingCriterion)
CompareAllNets(ResultFolder,intModules1,indicator1,intModules2,indicator2,
specificTheta,conservedTheta)

Description

Compare the background network and a condition-specific network. A Jaccard index is used to measure the similarity of two sets, which represents the similarity of each module pairs from two networks.

Usage

comparemodulestwonets(sourcehead, nm1, nm2, ind1, ind2)

Arguments

sourcehead prefix of where to store results
nm1 how many modules in the background network
nm2 how many modules in the condition-specific network
ind1 indicator of the background network
ind2 indicator of the condition-specific network

Value

A matrix where each entry is the Jaccard index of corresponding modules from two networks

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder,
indicator1,CuttingCriterion)
intModules2 <- WeightedModulePartitionDensity(datExpr2,ResultFolder,
indicator2,CuttingCriterion)
JaccardMatrix <- comparemodulestwonets(ResultFolder,intModules1,intModules2,
paste('/DenseModuleGene_\',indicator1,sep=''),
paste('/DenseModuleGene_\',indicator2,sep=''))
datExpr1
datExpr1
datExpr2
datExpr2

Description

Synthetic gene expression profile with 20 samples and 500 genes.

Format

A matrix with 20 rows and 500 columns.

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

```r
data(synthetic)
## plot the heatmap of the correlation matrix ...
## Not run: heatmap(cor(as.matrix(datExpr1)))
```

datExpr2
datExpr2

Description

Synthetic gene expression profile with 25 samples and 500 genes.

Format

A matrix with 25 rows and 500 columns.

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

Examples

```r
data(synthetic)
## plot the heatmap of the correlation matrix ...
## Not run: heatmap(cor(as.matrix(datExpr2)))
```
Description
Calculate the average density of all resulting modules from a partition. The density of each module is defined as the average adjacency of the module genes.

Usage
PartitionDensity(ADJ, PartitionSet)

Arguments
ADJ gene similarity matrix
PartitionSet vector indicates the partition label for genes

Value
partition density, defined as average density of all modules

Author(s)
Dong Li, <dxl466@cs.bham.ac.uk>

References

Examples
data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"))\^10
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average")
groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionDensity(ADJ1,groups)

Description
Calculate the average modularity of a partition. The modularity of each module is defined from a natural generalization of unweighted case.

Usage
PartitionModularity(ADJ, PartitionSet)
Arguments

ADJ gene similarity matrix
PartitionSet vector indicates the partition label for genes

Value

partition modularity, defined as average modularity of all modules

Author(s)

Dong Li, <dxl466@cs.bham.ac.uk>

References

Examples

data(synthetic)
ADJ1=abs(cor(datExpr1,use="p"))^{10}
dissADJ=1-ADJ1
hierADJ=hclust(as.dist(dissADJ), method="average")
groups <- cutree(hierADJ, h = 0.8)
pDensity <- PartitionModularity(ADJ1,groups)

WeightedModulePartitionDensity

Illustration of Modules detection

Description

Module detection based on the optimal cutting height of dendrogram, which is selected to make the average density or modularity of resulting partition maximal. The clustering and visualization function are from WGCNA.

Usage

WeightedModulePartitionDensity(datExpr, foldername, indicatename, cutmethod = c("Density", "Modularity"), power = 10)

Arguments

datExpr gene expression profile, rows are samples and columns genes
foldername where to store the clusters
indicatename normally a specific tag of condition
cutmethod cutting the dendrogram based on maximal average Density or Modularity
power the power parameter of WGCNA, W_{ij}=|cor(x_{i},x_{j})|^{power}
WeightedModulePartitionDensity

Value
The number of clusters

Author(s)
Dong Li, <dxl466@cs.bham.ac.uk>

References

See Also
PartitionDensity
PartitionModularity

Examples

data(synthetic)
ResultFolder = 'ForSynthetic' # where middle files are stored
CuttingCriterion = 'Density' # could be Density or Modularity
indicator1 = 'X' # indicator for data profile 1
indicator2 = 'Y' # indicator for data profile 2
specificTheta = 0.1 #threshold to define condition specific modules
conservedTheta = 0.1 #threshold to define conserved modules
intModules1 <- WeightedModulePartitionDensity(datExpr1,ResultFolder, indicator1,CuttingCriterion)
Index

*Topic comparison
 comparemodulestwonets, 3

*Topic cutting
 WeightedModulePartitionDensity, 6

*Topic data
 datExpr1, 4
datExpr2, 4

*Topic dendrogram
 WeightedModulePartitionDensity, 6

*Topic density
 PartitionDensity, 5

*Topic differential
 CompareAllNets, 2

*Topic modularity
 PartitionModularity, 5

*Topic module
 CompareAllNets, 2
 comparemodulestwonets, 3

 CompareAllNets, 2
 comparemodulestwonets, 2, 3

datExpr1, 4
datExpr2, 4

PartitionDensity, 5, 7
PartitionModularity, 5, 7

WeightedModulePartitionDensity, 2, 6