Package ‘MantelCorr’

December 21, 2016

Title Compute Mantel Cluster Correlations
Version 1.44.0
Date 2005-17-10
Author Brian Steinmeyer and William Shannon
Description Computes Mantel cluster correlations from a (p x n)
numeric data matrix (e.g. microarray gene-expression data).
Maintainer Brian Steinmeyer <steinmeb@ilya.wustl.edu>
Depends R (>= 2.10)
Imports stats
License GPL (>= 2)
biocViews Clustering
NeedsCompilation no

R topics documented:

ClusterGeneList .. 1
ClusterList ... 3
DistMatrices ... 4
GetClusters ... 5
GolubTrain ... 6
MantelCorrs ... 7
PermutatonTest .. 8

Index 10

ClusterGeneList Generate Genes from a Cluster List

Description

‘ClusterGeneList’ produces a list of both significant and nonsignificant genes from each respective cluster type

Usage

ClusterGeneList(clus, clustlist.sig, x.data)
ClusterGeneList

Arguments

clus `clusters` object returned by `GetClusters`
clustlist.sig `SignificantClusters` object returned by `ClusterList`
x.data original (p x n) numeric data matrix (e.g., gene-expression data)

Value

A list with components:

SignificantClusterGenes significant cluster genes returned from `ClusterList`
NonSignificantClusterGenes nonsignificant cluster genes returned from `ClusterList`

Note

argument `x.data` should have an ID gene variable, `probes`, attached as a `dimnames` attribute

Author(s)

Brian Steinmeyer

See Also

`GetClusters` `ClusterList`

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corr <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)
generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corr)
significant and non-significant cluster genes (expression values)
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)
Description

'ClusterList' generates a list of both significant and nonsignificant clusters, with cluster number, Mantel cluster correlation and size.

Usage

ClusterList(p.val, clus.size, mantel.cors)

Arguments

p.val
permutation p-value returned from 'PermutationTest'

clus.size
vector of k cluster sizes returned from 'GetCluster'

mantel.cors
original, unpermuted k Mantel correlations returned from 'MantelCorrs'

Value

A list with components:

SignificantClusters
clusters with significant Mantel correlation, equal to or larger than the permutation p-value returned by 'PermutationTest'

NonSignificantClusters
clusters with nonsignificant Mantel correlation, smaller than the permutation p-value returned by 'PermutationTest'

Author(s)

Brian Steinmeyer

See Also

'PermutationTest'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.cors <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)

DistMatrices <- function(x.data, cluster.assignment) {
 Dsubsets <-
 Dfull <- dissimilarity matrices for each cluster k
 dissimilarity matrix for the original 'data'
 returns a list with two components:

 Note
 'GetClusters' should be executed prior to 'DistMatrices'

 Author(s)
 Brian Steinmeyer

 See Also
 'GetClusters'

 Examples
 # simulate a p x n microarray expression dataset, where p = genes and n = samples
 data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
 noise <- matrix(runif(40000), ncol=1000)
 data <- t(cbind(data.sep, noise))
 data <- data[1:200,]
 # data has p = 1,850 genes and n = 40 samples
 clusters.result <- GetClusters(data, 100, 100)
 dissimilarity.matrices <- DistMatrices(data, clusters.result$clusters)
GetClusters

Description

'GetClusters' uses an overly large k with the 'kmeans' function to over-partition p variables (rows = genes) from n objects (cols = samples) from a given data matrix 'x.data'

Usage

GetClusters(x.data, num.k, num.iters)

Arguments

- x.data: p x n data matrix of numeric values
- num.k: number of k partitions desired
- num.iters: number of iterations - recommend >= 100

Value

'GetClusters' returns a list with the following components:

- clusters: cluster assignment from 'kmeans'
- cluster.sizes: size of each cluster k from 'kmeans'

Note

The input data matrix, x.data, must be numeric (e.g., gene-expression values). We recommend using 'num.k' = one-half the number of genes and 'num.iters' greater than 50

Author(s)

Brian Steinmeyer

See Also

'kmeans'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=100)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
GolubTrain

Golub Training Set

Description

Samples were taken with Affymetrix Hgu6800 chips and expression levels measured on 7,129 genes (probes). The samples consist of 27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML) patients. The data values are raw (e.g. no standardization or gene filtering applied).

Usage

```r
data(GolubTrain)
```

Format

A data frame of 7129 observations (genes) with the following 38 variables (samples):

- X1 ALL
- X2 ALL
- X3 ALL
- X4 ALL
- X5 ALL
- X6 ALL
- X7 ALL
- X8 ALL
- X9 ALL
- X10 ALL
- X11 ALL
- X12 ALL
- X13 ALL
- X14 ALL
- X15 ALL
- X16 ALL
- X17 ALL
- X18 ALL
- X19 ALL
- X20 ALL
- X21 ALL
- X22 ALL
- X23 ALL
- X24 ALL
- X25 ALL
- X26 ALL
MantelCorrs

X27 ALL
X28 AML
X29 AML
X30 AML
X31 AML
X32 AML
X33 AML
X34 AML
X35 AML
X36 AML
X37 AML
X38 AML

Source
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

References

Examples
data(GolubTrain)

<table>
<thead>
<tr>
<th>MantelCorrs</th>
<th>Compute Mantel Correlation(s)</th>
</tr>
</thead>
</table>

Description
'MantelCorrs' computes the Mantel correlation between two dissimilarity matrices

Usage
MantelCorrs(Dfull, Dsubsets)

Arguments
- **Dfull**: distance matrix returned by 'DistMatrices' using original 'data'
- **Dsubsets**: list of distance matrices from each k cluster or partition returned by 'DistMatrices'

Value
A list with k components

where component i

Mantel correlation for cluster i, i = 1,...,k
Warning

The function is meant to be executed AFTER 'GetClustes' and 'DistMatrices' (see example)

Note

the value 'k' corresponds to the parameter 'num.k' in 'GetClusters'

Author(s)

Brian Steimneyer

References

See Also

'GetClusters' 'DistMatrices' 'kmeans'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)

Description

'PermutationTest' computes and returns an empirical p-value from a null distribution generated by permuting 'Dfull' a total of 'num.per' times.

Usage

PermutationTest(Dfull, Dsubsets, num.per, num.chips, alpha)

Arguments

Dfull
dissimilarity matrix from the original (p x n) microarray expression data
Dsubsets
dissimilarity matrices from each k disjoint clusters returned by 'GetClusters'
num.per
number of permutations
num.chips
number of samples, 'n' from the original (p x n) data matrix
alpha
desired level of significance
Details

For each permutation, k Mantel correlations are computed by correlating the permuted ‘Dfull’ with each dissimilarity matrix ‘Dsubsets’ from the ‘k’ clusters returned by ‘GetClusters’. The absolute value of the maximum Mantel cluster correlation is retained at each permutation. These ‘num.per’ maximum correlations are then used to generate a null distribution for distance metric independence, with the p-value taken from the (1 - ‘alpha’) percentile of this permutation distribution.

Value

returns the permuted p-value for the ‘alpha’ selected level of significance

Warning

(p x n) data matrix should be numeric (e.g. gene-expression levels)

Note

The function is meant to be executed AFTER ‘GetClusters’, ‘DistMatrices’ and ‘MantelCorr’ (see example)

Author(s)

Brian Steinmeyer

See Also

‘GetClusters’ ‘DistMatrices’ ‘MantelCorrs’

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corr <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)
Index

*Topic cluster
 ClusterGeneList, 1
 ClusterList, 3
 DistMatrices, 4
 GetClusters, 5
 MantelCorrs, 7
 PermutationTest, 8

*Topic datasets
 GolubTrain, 6

ClusterGeneList, 1
ClusterList, 3
DistMatrices, 4
GetClusters, 5
GolubTrain, 6
MantelCorrs, 7
PermutationTest (PermutationTest), 8
PermutationTest, 8