Package ‘MantelCorr’

November 20, 2016

Title Compute Mantel Cluster Correlations
Version 1.44.0
Date 2005-17-10
Author Brian Steinmeyer and William Shannon
Description Computes Mantel cluster correlations from a \((p \times n)\)
numeric data matrix (e.g. microarray gene-expression data).
Maintainer Brian Steinmeyer <steinmeb@ilya.wustl.edu>
Depends R (>= 2.10)
Imports stats
License GPL (>= 2)
biocViews Clustering
NeedsCompilation no

\textbf{R topics documented:}

\begin{enumerate}
\item ClusterGeneList
\item ClusterList
\item DistMatrices
\item GetClusters
\item GolubTrain
\item MantelCorrs
\item PermutatonTest
\end{enumerate}

Index 10

\begin{tabular}{ll}
ClusterGeneList & Generate Genes from a Cluster List
\end{tabular}

\section*{Description}

‘ClusterGeneList’ produces a list of both significant and nonsignificant genes from each respective
cluster type

\section*{Usage}

\texttt{ClusterGeneList(clus, clustlist.sig, x.data)}

1
Arguments

clus
'clusters' object returned by 'GetClusters'

clustlist.sig
'SignificantClusters' object returned by 'ClusterList'

x.data
original (p x n) numeric data matrix (e.g., gene-expression data)

Value

A list with components:

SignificantClusterGenes
significant cluster genes returned from 'ClusterList'

NonSignificantClusterGenes
nonsignificant cluster genes returned from 'ClusterList'

Note

argument 'x.data' should have an ID gene variable, 'probes', attached as a 'dimnames' attribute

Author(s)

Brian Steinmeyer

See Also

'GetClusters' 'ClusterList'

Examples

simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
manel.corr <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corr)

significant and non-significant cluster genes (expression values)
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)
Description

'ClusterList' generates a list of both significant and nonsignificant clusters, with cluster number, Mantel cluster correlation and size.

Usage

\[
\text{ClusterList}(p.\text{val}, \text{clus.size}, \text{mantel.cors})
\]

Arguments

- **p.val**: permutation p-value returned from 'PermutationTest'
- **clus.size**: vector of k cluster sizes returned from 'GetCluster'
- **mantel.cors**: original, unpermuted k Mantel correlations returned from 'MantelCorrs'

Value

A list with components:

- **SignificantClusters**: clusters with significant Mantel correlation, equal to or larger than the permutation p-value returned by 'PermutationTest'
- **NonSignificantClusters**: clusters with nonsignificant Mantel correlation, smaller than the permutation p-value returned by 'PermutationTest'

Author(s)

Brian Steinmeyer

See Also

'PermutationTest'

Examples

```r
# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.cors <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

# generate both significant and non-significant gene clusters
```
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)

DistMatrices

Compute Dissimilarity Matrices

Description
'DistMatrices' uses 'dist' to compute dissimilarity matrices for 'data' and each cluster k from 'GetClusters'

Usage
DistMatrices(x.data, cluster.assignment)

Arguments
x.data original 'data' matrix
cluster.assignment cluster assignment vector, "clusters", returned by 'GetClusters'

Value
returns a list with two components:
Dsubsets dissimilarity matrices for each cluster k
DFull dissimilarity matrix for the original 'data'

Note
'GetClusters' should be executed prior to 'DistMatrices'

Author(s)
Brian Steinmeyer

See Also
'GetClusters'

Examples
simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200,]
data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
dissimilarity.matrices <- DistMatrices(data, clusters.result$clusters)
GetClusters

Over-Partition a \((p \times n)\) Data Matrix using 'kmeans'

Description

'GetClusters' uses an overly large \(k\) with the 'kmeans' function to over-partition \(p\) variables (rows = genes) from \(n\) objects (cols = samples) from a given data matrix 'x.data'.

Usage

```r
GetClusters(x.data, num.k, num.iters)
```

Arguments

- `x.data` \(p \times n\) data matrix of numeric values
- `num.k` number of \(k\) partitions desired
- `num.iters` number of iterations - recommend \(\geq 100\)

Value

'GetClusters' returns a list with the following components:

- `clusters` cluster assignment from 'kmeans'
- `cluster.sizes` size of each cluster \(k\) from 'kmeans'

Note

The input data matrix, \(x.data\), must be numeric (e.g., gene-expression values). We recommend using 'num.k' = one-half the number of genes and 'num.iters' greater than 50

Author(s)

Brian Steinmeyer

See Also

'kmeans'

Examples

```r
# simulate a \(p \times n\) microarray expression dataset, where \(p\) = genes and \(n\) = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has \(p = 1,050\) genes and \(n = 40\) samples
clusters.result <- GetClusters(data, 100, 100)
```
GolubTrain

Golub Training Set

Description

Samples were taken with Affymetrix Hgu6800 chips and expression levels measured on 7,129 genes (probes). The samples consist of 27 acute lymphoblastic leukemia (ALL) and 11 acute myeloid leukemia (AML) patients. The data values are raw (e.g. no standardization or gene filtering applied).

Usage

data(GolubTrain)

Format

A data frame of 7129 observations (genes) with the following 38 variables (samples):

- X1 ALL
- X2 ALL
- X3 ALL
- X4 ALL
- X5 ALL
- X6 ALL
- X7 ALL
- X8 ALL
- X9 ALL
- X10 ALL
- X11 ALL
- X12 ALL
- X13 ALL
- X14 ALL
- X15 ALL
- X16 ALL
- X17 ALL
- X18 ALL
- X19 ALL
- X20 ALL
- X21 ALL
- X22 ALL
- X23 ALL
- X24 ALL
- X25 ALL
- X26 ALL
MantelCorrs

X27 ALL
X28 AML
X29 AML
X30 AML
X31 AML
X32 AML
X33 AML
X34 AML
X35 AML
X36 AML
X37 AML
X38 AML

Source
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi

References

Examples
data(GolubTrain)

MantelCorrs Compute Mantel Correlation(s)

Description
'MantelCorrs' computes the Mantel correlation between two dissimilarity matrices

Usage
MantelCorrs(Dfull, Dsubsets)

Arguments
Dfull distance matrix returned by 'DistMatrices' using original 'data'
Dsubsets list of distance matrices from each k cluster or partition returned by 'DistMatrices'

Value
A list with k components
where component i
 Mantel correlation for cluster i, i = 1,...,k
PermutationTest

Description

`PermutationTest` computes and returns an empirical p-value from a null distribution generated by permuting `Dfull` a total of `num.per` times.

Usage

`PermutationTest(Dfull, Dsubsets, num.per, num.chips, alpha)`

Arguments

- `Dfull`: dissimilarity matrix from the original (p x n) microarray expression data
- `Dsubsets`: dissimilarity matrices from each k disjoint clusters returned by 'GetClusters'
- `num.per`: number of permutations
- `num.chips`: number of samples, 'n' from the original (p x n) data matrix
- `alpha`: desired level of significance

Warning

The function is meant to be executed AFTER `GetClusters` and `DistMatrices` (see example)

Note

the value 'k' corresponds to the parameter 'num.k' in `GetClusters`

Author(s)

Brian Steinmeyer

References

See Also

`'GetClusters'` `DistMatrices'` `kmeans`

Examples

```r
# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
```
Details

For each permutation, k Mantel correlations are computed by correlating the permuted 'Dfull' with each dissimilarity matrix 'Dsubsets' from the 'k' clusters returned by 'GetClusters'. The absolute value of the maximum Mantel cluster correlation is retained at each permutation. These 'num.per' maximum correlations are then used to generate a null distribution for distance metric independence, with the p-value taken from the (1 - 'alpha') percentile of this permutation distribution.

Value

returns the permuted p-value for the 'alpha' selected level of significance

Warning

(p x n) data matrix should be numeric (e.g. gene-expression levels)

Note

The function is meant to be executed AFTER 'GetClusters', 'DistMatrices' and 'MantelCorr' (see example)

Author(s)

Brian Steinmeyer

See Also

'GetClusters' 'DistMatrices' 'MantelCorr'

Examples

```r
# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples
clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)
```
Index

*Topic cluster
 ClusterGeneList, 1
 ClusterList, 3
 DistMatrices, 4
 GetClusters, 5
 MantelCorrs, 7
 PermutatonTest, 8
*Topic datasets
 GolubTrain, 6

ClusterGeneList, 1
ClusterList, 3
DistMatrices, 4
GetClusters, 5
GolubTrain, 6
MantelCorrs, 7
PermutationTest(PermutationTest), 8
PermutationTest, 8