Package ‘MassSpecWavelet’

January 23, 2020

Type Package
Title Mass spectrum processing by wavelet-based algorithms
Version 1.52.0
Date 2014-03-18
Depends waveslim
Suggests xcms, caTools
Author Pan Du, Warren Kibbe, Simon Lin
Maintainer Pan Du <dupan.mail@gmail.com>
Description Processing Mass Spectrometry spectrum by using wavelet based algorithm
License LGPL (>= 2)
biocViews ImmunoOncology, MassSpectrometry, Proteomics
git_url https://git.bioconductor.org/packages/MassSpecWavelet
git_branch RELEASE_3_10
git_last_commit 11469a7
git_last_commit_date 2019-10-29
Date/Publication 2020-01-22

R topics documented:

MassSpecWavelet-package ... 2
cwt ... 3
exampleMS ... 4
extendLength ... 4
extendNBase ... 5
getLocalMaximumCWT ... 6
getRidge .. 7
getRidgeLength .. 8
getRidgeValue ... 8
identifyMajorPeaks ... 9
localMaximum .. 11
mzInd2vRange ... 12
mzV2indRange .. 12
peakDetectionCWT ... 13
plotLocalMax ... 14
plotPeak .. 15
MassSpecWavelet-package

Description

Process Mass Spectrum (MS) by Wavelet Transforms-based algorithms

Details

Package: MassSpecWavelet
Type: Package
Version: 1.0.4
Date: 2007-04-05
License: GPL 2 or newer

MassSpecWavelet R package is aimed to process Mass Spectrometry (MS) data mainly based on Wavelet Transforms. The current version only supports the peak detection based on Continuous Wavelet Transform (CWT). Future versions will include more functions covering entire MS data processes.

Author(s)

Pan Du, Simon Lin

Maintainer: Pan Du <dupan@northwestern.edu>

References

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))
Continuous Wavelet Transform (CWT)

Description

CWT (Continuous Wavelet Transform) with Mexican Hat wavelet (by default) to match the peaks in Mass Spectrometry spectrum.

Usage

```r
cwt(ms, scales = 1, wavelet = "mexh")
```

Arguments

- `ms`: Mass Spectrometry spectrum (a vector of MS intensities).
- `scales`: a vector represents the scales at which to perform CWT.
- `wavelet`: The wavelet base, Mexican Hat by default. User can provide wavelet \(\Psi(x) \) as a form of two row matrix. The first row is the \(x \) value, and the second row is \(\Psi(x) \) corresponding to \(x \).

Value

The return is the 2-D CWT coefficient matrix, with column names as the scale. Each column is the CWT coefficients at that scale.

Author(s)

Pan Du, Simon Lin

Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mehx')

## Plot the 2-D CWT coefficients as image (It may take a while!)
xTickInterval <- 1000
image(5000:11000, scales, wCoefs, col=terrain.colors(256), axes=FALSE, xlab='m/z index', ylab='CWT coefficient scale', main='CWT coefficients', axis(1, at=seq(5000, 11000, by=xTickInterval))
axis(2, at=c(1, seq(10, 64, by=10)))
box()
```
exampleMS

An example mass spectrum

Description

An example mass spectrum from CAMDA 2006. All-in-1 Protein Standard II (Ciphergen Cat. \# C100-0007) were measured on Ciphergen NP20 chips. There are 7 polypeptides in the sample with m/z values of 7034, 12230, 16951, 29023, 46671, 66433, 147300.

Usage

data(exampleMS)

Format

A numeric vector represents the mass spectrum with equal sample intervals.

Source

extendLength

Extend the length of a signal or matrix

Description

Extend the length of a signal or matrix by row

Usage

`extendLength(x, addLength = NULL, method = c("reflection", "open", "circular"), direction = c("right", "left", "both"))`

Arguments

- `x`: a vector or matrix with column with each column as a signal
- `addLength`: the length to be extended
- `method`: three methods available, c("reflection", "open", "circular"). By default, it is "reflection".
- `direction`: three options available: c("right", "left", "both")

Value

return the extended vector or matrix.

Author(s)

Pan Du
extendNBase

See Also
extendNBase

Examples
a = matrix(rnorm(9), 3)
extendNBase(a) ## not exposed function

extendNBase

Extend the row number of a matrix as the exponential of base N

Description

Extend the data as the exponential of base N by increasing row number.

Usage

```r
extendNBase(x, nLevel=1, base=2, ...)
```

Arguments

- `x`: data matrix
- `nLevel`: the level of DWT decomposition. Basically, it is equivalent to changing the 'base' as base\^nLevel
- `base`: the base, 2 by default
- `...`: other parameters of used by `extendLength`

Details

The method 'open' is padding the the matrix with the last row.

Value

Return a extended matrix

Author(s)

Pan Du

See Also

textendNBase

Examples

```r
# a = matrix(rnorm(9), 3)
# extendNBase(a) ## not exposed function
```
getLocalMaximumCWT

Description

Identify the local maximum of each column in 2-D CWT coefficients matrix by using a slide window. The size of slide window linearly changes from the coarse scale (bigger window size) to detail scale. The scale of CWT increases with the column index.

Usage

getLocalMaximumCWT(wCoefs, minWinSize= 5, amp.Th = 0)

Arguments

wCoefs 2-D CWT coefficients, each column corresponding to CWT coefficient at one scale. The column name is the scale.
minWinSize The minimum slide window size used.
amp.Th The minimum peak amplitude.

Value

return a matrix with same dimension as CWT coefficient matrix, wCoefs. The local maxima are marked as 1, others are 0.

Author(s)

Pan Du

See Also

localMaximum

Examples

data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
plotLocalMax(localMax)
getRidge

Identify ridges based on the local maximum matrix

Description

Identify ridges by connecting the local maximum of 2-D CWT coefficients from the coarse scale to
detail scale. The local maximum matrix is returned from getLocalMaximumCWT

Usage

getRidge(localMax, iInit = ncol(localMax), step = -1, iFinal = 1, minWinSize= 5, gapTh = 3, skip = NULL)

Arguments

localMax The local maximum matrix is returned from getLocalMaximumCWT with 1 represents maximum, others are 0.
iInit The start column to search ridge. By default, it starts from the coarsest scale
level.
step Search step. -1 by default, which means searching from coarse scale to detail
scale column by column.
iFinal The final column index of search ridge.
minWinSize The minimum slide window size used.
gapTh The gap allowed during searching for ridge. 3 by default.
skip The column to be skipped during search.

Value

Return a list of ridge. As some ridges may end at the scale larger than 1, in order to keep the
uniqueness of the ridge names, we combined the smallest scale of the ridge and m/z index of the
peak at that scale together to name the ridges. For example the ridge name "1_653" means the peak
ridge ends at the CWT scale 1 with m/z index 653 at scale 1.

Author(s)

Pan Du, Simon Lin

References

Du, P., Kibbe, W.A. and Lin, S.M. (2006) Improved peak detection in mass spectrum by incorpo-
rating continuous wavelet transform-based pattern matching, Bioinformatics, 22, 2059-2065.

See Also

getLocalMaximumCWT, identifyMajorPeaks
Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)
plotRidgeList(ridgeList)
```

getRidgeLength

Estimate the length of the ridge

Description

Estimate the length of the ridge line, which is composed of local maxima at adjacent CWT scales. The ridge line is cut off at the end point, whose amplitude divided by the maximum ridge amplitude is larger than the cutoff amplitude ratio threshold (0.5 by default).

Usage

```r
getRidgeLength(ridgeList, Th = 0.5)
```

Arguments

- `ridgeList`: a list of identified ridges
- `Th`: the cutoff amplitude ratio (the amplitude divided by the maximum amplitude of the ridge) threshold of the ridge line end.

Value

A vector of estimated ridge length

Author(s)

Pan Du

getRidgeValue

Get the CWT coefficient values corresponding to the peak ridge

Description

Get the CWT coefficient values corresponding to the peak ridge

Usage

```r
getRidgeValue(ridgeList, wCoefs, skip = 0)
```
identifyMajorPeaks

Arguments

ridgeList a list of ridge lines
wCoefs 2-D CWT coefficients
skip the CWT scale level to be skipped, by default the 0 scale level (raw spectrum) is skipped.

Value

A list of ridge values corresponding to the input ridgeList.

Author(s)

Pan Du

Description

Identify the peaks based on the ridge list (returned by getRidge) in 2-D CWT coefficient matrix and estimated Signal to Noise Ratio (SNR)

Usage

identifyMajorPeaks(ms, ridgeList, wCoefs, scales = as.numeric(colnames(wCoefs)), SNR.Th = 3, peakScaleRange = 5, ridgeLength = 32, nearbyPeak = FALSE, nearbyWinSize = 100, winSize.noise = 500, SNR.method = "quantile", minNoiseLevel = 0.001)

Arguments

ms the mass spectrometry spectrum
ridgeList returned by getRidge
wCoefs 2-D CWT coefficients
scales scales of CWT, by default it is the colnames of wCoefs
SNR.Th threshold of SNR
peakScaleRange the CWT scale range of the peak.
ridgeLength the maximum ridge scale of the major peaks.
nearbyPeak determine whether to include the small peaks close to large major peaks
nearbyWinSize the window size to determine the nearby peaks. Only effective when nearbyPeak is true.
winSize.noise the local window size to estimate the noise level.
SNR.method method to estimate noise level. Currently, only 95 percentage quantile is supported.
minNoiseLevel the minimum noise level used in calculating SNR, i.e., if the estimated noise level is less than "minNoiseLevel", it will use "minNoiseLevel" instead. If the noise level is less than 0.5, it will be treated as the ratio to the maximum amplitude of the spectrum.
Details

The determination of the peaks is based on three rules: Rule 1: The maximum ridge scale of the peak should larger than a certain threshold Rule 2: Based on the scale of the peak (corresponding to the maximum value of the peak ridge) should be within certain range Rule 3: Based on the peak SNR

Value

Return a list with following elements:

- **peakIndex** the m/z indexes of the identified peaks
- **peakCenterIndex** the m/z indexes of peak centers, which correspond to the maximum on the ridge. peakCenterIndex includes all the peaks, not just the identified major peaks.
- **peakCenterValue** the CWT coefficients (the maximum on the ridge) corresponding to peakCenterIndex
- **peakSNR** the SNR of the peak, which is the ratio of peakCenterValue and noise level
- **peakScale** the estimated scale of the peak, which corresponds to the peakCenterIndex
- **potentialPeakIndex** the m/z indexes of all potential peaks, which satisfy all requirements of a peak without considering its SNR. Useful, if you want to change to a lower SNR threshold later.
- **allPeakIndex** the m/z indexes of all the peaks, whose order is the same as peakCenterIndex, peakCenterValue, peakSNR and peakScale.

All of these return elements have peak names, which are the same as the corresponding peak ridges. see `getRidge` for details.

Author(s)

Pan Du, Simon Lin

References

See Also

`peakDetectionCWT`, `tuneInPeakInfo`

Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS, scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)

SNR.Th <- 3
majorPeakInfo <- identifyMajorPeaks(exampleMS, ridgeList, wCoefs, SNR.Th=SNR.Th)
```
Plot the identified peaks

```r
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))
```

localMaximum

Identify local maximum within a slide window.

Description

Find local maximum by transform the vector as matrix, then get the the maximum of each column. This operation is performed twice with vector shifted half of the winSize.

Usage

```r
localMaximum(x, winSize = 5)
```

Arguments

- `x`: a vector represents a signal profile
- `winSize`: the slide window size, 5 by default.

Details

Instead of find the local maximum by a slide window, which slide all possible positions, we find local maximum by transform the vector as matrix, then get the the maximum of each column. This operation is performed twice with vector shifted half of the winSize. The main purpose of this is to increase the efficiency of the algorithm.

Value

Return a vector with the same length of the input `x`. The position of local maximum is set as 1, 0 elsewhere.

Author(s)

Pan Du

See Also

`getLocalMaximumCWT`

Examples

```r
x <- rnorm(200)
lmax <- localMaximum(x, 5)
maxInd <- which(lmax > 0)
plot(x, type='l')
points(maxInd, x[maxInd], col='red')
```
mzInd2vRange Match m/z index to m/z value with a certain error range

Description
Match m/z index to m/z value with a certain error range

Usage
mzInd2vRange(mzInd, error = 0.003)

Arguments
mzInd a vector of m/z index
error error range

Value
return a vector of sorted m/z values

Author(s)
Pan Du

See Also
mzV2indRange

mzV2indRange Match m/z value to m/z index with a certain error range

Description
Match m/z value to m/z index with a certain error range

Usage
mzV2indRange(mzV, error = 0.003)

Arguments
mzV a vector of m/z value
error error range

Value
return a vector of sorted m/z indexes

Author(s)
Pan Du
See Also

mzInd2vRange

Description

This function is a wrapper of cwt, getLocalMaximumCWT, getRidge, identifyMajorPeaks

Usage

peakDetectionCWT(ms, scales = c(1, seq(2, 30, 2), seq(32, 64, 4)), SNR.Th = 3, nearbyPeak = TRUE, peakScaleRange = 5, amp.Th = 0.01, minNoiseLevel = amp.Th/SNR.Th, ridgeLength = 24, peakThr=NULL, tuneIn = FALSE, ...)

Arguments

ms the mass spectrometry spectrum
scales scales of CWT
SNR.Th SNR (Signal to Noise Ratio) threshold
nearbyPeak Determine whether to include the nearby small peaks of major peaks. TRUE by default
peakScaleRange the scale range of the peak. larger than 5 by default.
amp.Th the minimum required relative amplitude of the peak (ratio to the maximum of CWT coefficients)
minNoiseLevel the minimum noise level used in computing the SNR
ridgeLength the minimum highest scale of the peak in 2-D CWT coefficient matrix
peakThr Minimal absolute intensity (above the baseline) of peaks to be picked. If this value is provided, then the smoothing function sav.gol will be called to estimate the local intensity.(added based on the suggestion and code of Steffen Neumann)
tuneIn determine whether to tune in the parameter estimation of the detected peaks
... other parameters used by identifyMajorPeaks and smoothing function sav.gol

Value

majorPeakInfo return of identifyMajorPeaks
ridgeList return of getRidge
localMax return of getLocalMaximumCWT
wCoefs 2-D CWT coefficient matrix, see cwt for details.

Author(s)

Pan Du, Simon Lin

References

plotLocalMax

See Also
cwt, getLocalMaximumCWT, getRidge, identifyMajorPeaks

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

In some cases, users may want to add peak filtering based on the absolute peak amplitude
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th, peakThr=500)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))

plotLocalMax

Plot the local maximum matrix

Description
Plot the local maximum matrix of 2-D CWT coefficients returned by getLocalMaximumCWT

Usage
plotLocalMax(localMax, wCoefs = NULL, range = c(1, nrow(localMax)), colorMap = "RYB", main = NULL, cex = 3, pch = ".", ...)

Arguments
- `localMax` local maximum matrix of 2-D CWT coefficients returned by getLocalMaximumCWT
- `wCoefs` 2-D CWT coefficients
- `range` plot range of m/z index
- `colorMap` the colormap used in plotting the points
- `main` parameter of plot
- `cex` parameter of plot
- `pch` parameter of plot
- `...` other parameters of points

Author(s)
Pan Du

See Also
getLocalMaximumCWT
plotPeak

Examples

```r
data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
plotLocalMax(localMax)
```

plotPeak

Plot the identified peaks over the spectrum

Description

Plot the identified peaks over the spectrum. The identified peaks are returned by `peakDetectionCWT` or `identifyMajorPeaks`

Usage

```r
plotPeak(ms, peakIndex = NULL, mz = 1:length(ms), range = c(min(mz), max(mz)), method = c("p", "l"), main = NULL, log = "", ...)```

Arguments

- `ms`: the MS spectrum
- `peakIndex`: m/z indexes of the identified peaks
- `mz`: m/z value correspond to m/z index
- `range`: the plot range of m/z value
- `method`: plot method of the identified peaks. method 'p' plot circles on the peaks; method 'l' add vertical lines over the peaks.
- `main`: parameter of `plot`
- `log`: parameter of `plot`
- `...`: other parameters of `points`

Author(s)

Pan Du

See Also

`peakDetectionCWT`, `identifyMajorPeaks`

Examples

```r
data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo = peakInfo$majorPeakInfo
peakIndex <- majorPeakInfo$peakIndex
plotPeak(exampleMS, peakIndex, main=paste('Identified peaks with SNR >', SNR.Th))
```
plotRidgeList

Plot the ridge list

Description

Plot the ridge list returned by getRidge

Usage

plotRidgeList(ridgeList, wCoefs = NULL, range = NULL, colorMap = "RYB", main = NULL, pch = ".", cex = ...)

Arguments

ridgeList returned by getRidge
wCoefs 2-D CWT coefficients
range plot range of m/z index
colorMap colorMap to plot the points of local maximum
main parameter of plot
pch parameter of plot
cex parameter of plot
... other parameters of points

Author(s)

Pan Du

See Also

getRidge

Examples

data(exampleMS)
scales <- seq(1, 64, 3)
wCoefs <- cwt(exampleMS[5000:11000], scales=scales, wavelet='mexh')

localMax <- getLocalMaximumCWT(wCoefs)
ridgeList <- getRidge(localMax)
plotRidgeList(ridgeList)
Estimate the baseline by using Savitzky-Golay Algorithm

**Usage**

```r
div(T, fl, forder = 4, dorder = 0)
```

**Arguments**

- `T`: vector of signals to be filtered
- `fl`: filter length (for instance fl = 51..151)
- `forder`: filter order (2 = quadratic filter, 4= quartic)
- `dorder`: derivative order (0 = smoothing, 1 = first derivative, etc.)

**Value**

The return is a smoothed vector (baseline).

**Note**

This function was added by Steffen Neumann. We appreciated his help to make the package better.

**Author(s)**

Steffen Neumann <sneumann@ipb-halle.de>

---

smoothDWT

Smooth (denoise) the spectrum by DWT (Discrete Wavelet Transform)

**Usage**

```r
smoothDWT(ms, nLevel = 6, wf = "la8", localNoiseTh = seq(1, 0, by = -0.2), localWinSize = 500, globalNoiseTh = 0.75)
```
## Arguments

- **ms**: a vector representing the mass spectrum
- **nLevel**: the level of DWT decomposition
- **wf**: the name of wavelet for DWT
- **localNoiseTh**: local noise level threshold
- **localWinSize**: local window size for estimate local noise threshold
- **globalNoiseTh**: global noise level threshold
- **smoothMethod**: the method used for denoising. 'hard' means keeping the dwt coefficients higher than the threshold unchanged; "soft" means the dwt coefficients higher than the threshold were subtracted by the threshold.
- **method**: 'dwt' or 'modwt' used for decomposition

## Value

return the smoothed mass spectrum with the 'detail' component of DWT as an attribute 'detail'.

## Author(s)

Pan Du

---

### Description

Based on the identified peak position, more precise estimation of the peak information, i.e., peak position and peak scale, can be got by this function. The basic idea is to cut the segment of spectrum near the identified peaks, and then do similar procedures as `peakDetectionCWT`, but with more detailed scales around the estimated peak scale.

### Usage

```r
tuneInPeakInfo(ms, majorPeakInfo = NULL, peakIndex = NULL, peakScale = NULL, maxScale = 128, ...)
```

### Details

The majorPeakInfo or peakIndex and peakScale must be provided.
tuneInPeakInfo

Value

- peakCenterIndex: the updated peak center m/z index
- peakScale: the updated peak scale
- peakValue: the corresponding peak value

Author(s)

Pan Du

References


See Also

peakDetectionCWT

Examples

data(exampleMS)
SNR.Th <- 3
peakInfo <- peakDetectionCWT(exampleMS, SNR.Th=SNR.Th)
majorPeakInfo <- peakInfo$majorPeakInfo
betterPeakInfo <- tuneInPeakInfo(exampleMS, majorPeakInfo)
plot(500:length(exampleMS), exampleMS[500:length(exampleMS)], type='l', log='x')
abline(v=betterPeakInfo$peakCenterIndex, col='red')
Index

*Topic datasets
   exampleMS, 4

*Topic hplot
   plotLocalMax, 14
   plotPeak, 15
   plotRidgeList, 16

*Topic methods
   cwt, 3
   extendLength, 4
   extendNBase, 5
   getLocalMaximumCWT, 6
   getRidge, 7
   getRidgeLength, 8
   getRidgeValue, 8
   identifyMajorPeaks, 9
   localMaximum, 11
   mzInd2vRange, 12
   mzV2indRange, 12
   peakDetectionCWT, 13
   sav.gol, 13
   smoothDWT, 17
   tuneInPeakInfo, 10

*Topic package
   MassSpecWavelet-package, 2

   cwt, 3, 13, 14
   exampleMS, 4
   extendLength, 4, 5
   extendNBase, 5, 5
   getLocalMaximumCWT, 6, 7, 11, 13, 14, 18
   getRidge, 7, 9, 10, 13, 14, 16, 18
   getRidgeLength, 8
   getRidgeValue, 8
   identifyMajorPeaks, 7, 9, 13–15, 18

   localMaximum, 6, 11

   MassSpecWavelet
      (MassSpecWavelet-package), 2
   MassSpecWavelet-package, 2
   mzInd2vRange, 12, 13
   mzV2indRange, 12, 12

   peakDetectionCWT, 10, 13, 15, 18, 19
   plot, 14–16
   plotLocalMax, 14
   plotPeak, 15
   plotRidgeList, 16
   points, 14–16
   sav.gol, 13, 17
   smoothDWT, 17
   tuneInPeakInfo, 10, 18