Package ‘MetCirc’

April 26, 2017

Type Package

Title Navigating mass spectral similarity in high-resolution MS/MS metabolomics data

Version 1.2.0

Date 2017-01-28

Author Thomas Naake <thomasnaake@googlemail.com> and Emmanuel Gaquerel
<emmanuel.gaquerel@cos.uni-heidelberg.de>

Maintainer Thomas Naake <thomasnaake@googlemail.com>

VignetteBuilder knitr

Depends R (>= 3.3), amap (>= 0.8), circlize (>= 0.3.9), graphics (>= 3.3), grDevices (>= 3.3), methods (>= 3.3), scales (>= 0.3.0), shiny (>= 1.0.0), stats (>= 3.3)

Suggests BiocGenerics, knitr (>= 1.11)

biocViews Metabolomics, MassSpectrometry, Visualization

Description MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data: create an MSP object, a format for MS/MS library data, bin m/z values of precursors, calculate similarity between precursors based on the normalised dot product and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.

License GPL-2

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>adduct</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>adduct<-</td>
<td>3</td>
</tr>
<tr>
<td>allocatePrecursor2mz</td>
<td>4</td>
</tr>
<tr>
<td>binnedMSP</td>
<td>5</td>
</tr>
<tr>
<td>binning</td>
<td>6</td>
</tr>
<tr>
<td>cart2Polar</td>
<td>7</td>
</tr>
<tr>
<td>circosLegend</td>
<td>8</td>
</tr>
<tr>
<td>classes</td>
<td>9</td>
</tr>
</tbody>
</table>
adduct returns adduct ion names of compounds in MSP-object.

Description

adduct returns adduct ion names of compounds in MSP-object.
adduct<-

Usage

adduct(x)

Arguments

- **x**: object of class MSP

Format

An object of class NULL of length 0.

Value

character

Functions

- adduct: returns adduction names of compounds in MSP-objects

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
    splitIndMZ = 2, splitIndRT = NULL)
adduct(finalMSP)
```

adduct<-

sets adduction names in MSP-object

Description

adduct<- sets adduction names in MSP-object

Arguments

- **x**: object of class MSP, see ?convert2MSP for further information
- **value**: character vector with new adduction names

Format

An object of class NULL of length 0.

Value

MSP-object

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
    splitIndMZ = 2, splitIndRT = NULL)
adduct(finalMSP) <- rep("Unknown")
```
allocatePrecursor2mz

allocatePrecursor2mz: Join two data sources

Description

Allocates precursor ions to candidate m/z values based on minimal distance of m/z and deviance of rt based on an objective function

Usage

allocatePrecursor2mz(sd01, sd02, kNN = 10, mzCheck = 1, rtCheck = 30, mzVsRTbalance = 10000, splitPattern = " ", splitInd = 2)

Arguments

sd01 is the output of the XCMS and CAMERA processing and statistical analysis and XCMS and CAMERA scripts (see Li et al. 2015 and vignette for further information)

ds02 data.frame with idMS/MS deconvoluted spectra with fragment ions (m/z, retention time, relative intensity in %) and the corresponding peak correlation group of the precursor ion. sd02 has to have at least four columns: a column 'mz', 'rt', 'intensity' and 'id'

kNN numerical, number of k-nearest neighbours based on deviation from m/z (i.e. the k entries with the smallest deviation)

mzCheck numerical, maximum tolerated distance for m/z (strong criterion here)

rtCheck numerical, maximum tolerated distance for retention time

mzVsRTbalance numerical, multiplicator for mz value before calculating the (euclidean) distance between two peaks, high value means that there is a strong weight on the deviation m/z value

splitPattern character, character vector to use for splitting, see ?strsplit for further information

splitInd numeric, extract precursor mz at position splitInd

Details

This function combines different data sources. convertExampleDF is a data.frame which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name, the spectrum reference file name and additional information (here: TRIO/LVS). allocatePrecursor2mz uses data.frames of the kind of sd01_outputXCMS and sd02_deconvoluted to create a data.frame of the kind of convertExampleDF. Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviation of retention time based on an objective function. We can specify threshold values for m/z and retention time to be used in allocatePrecursor2mz, as well as the number of neighbours based on deviation from m/z values. Also, we can specify the weight to base the selection on the m/z compared to the retention time (mzVsRTbalance). This might be useful because m/z values might differ less than the retention time in sd01_outputXCMS and sd02_deconvoluted. Please note, that it might be problematic to compare sd01_outputXCMS and sd02_deconvoluted and allocate precursor ions therefrom, especially when data were acquired under different conditions.
Value

allocatePrecursor2mz returns a data frame containing average retention time, average mz, metabolite name, adduct ion name, spectrum reference

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

References

Examples

data("sd01_outputXCMS", package = "MetCirc")
data("sd02_deconvoluted", package = "MetCirc")
data("convertExampleDF", package = "MetCirc")
allocatePrecursor2mz(sd01 = sd01_outputXCMS, sd02 = sd02_deconvoluted,
 kNN = 10, mzCheck = 1, rtCheck = 30, mzVsRTbalance = 10000, splitPattern = " _ ", splitInd = 2)

binnedMSP

Example data for MetCirc: binnedMSP

Description

The object binnedMSP is a matrix, where rows are metabolites detected in the tissues sepal (SPL), limb (LIM), anther (ANT) and style (STY). The columns contain binned m/z values. Entries contain the intensity (in percent) of a certain metabolite at a certain m/z value. binnedMSP is derived from the object tissue and compartmentTissue.

Usage

binnedMSP

Format

matrix

Value

matrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
data("idMSMStissueproject", package = "MetCirc")
tissueSPL <- compartmentTissue[compartmentTissue[,"SPL"] == TRUE, 1]
tissueLIM <- compartmentTissue[compartmentTissue[,"LIM"] == TRUE, 1]
tissueANT <- compartmentTissue[compartmentTissue[,"ANT"] == TRUE, 1]
tissueSTY <- compartmentTissue[compartmentTissue[,"STY"] == TRUE, 1]
truncate tissue
create msp and combine msp objects of different tissues
finalMSP <- convert2MSP(tissueSPL, splitIndMZ = 1, splitIndRT = 2, rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueLIM, splitIndRT = 2, rt = TRUE))
finalMSP <- combine(finalMSP, convert2MSP(tissueANT, splitIndRT = 2, rt = TRUE))
finalMSP <- combine(finalMSP, convert2MSP(tissueSTY, splitIndRT = 2, rt = TRUE))
create vector with compartments
compSPL <- rep("SPL", length(convert2MSP(tissueSPL)))
compLIM <- rep("LIM", length(convert2MSP(tissueLIM)))
compANT <- rep("ANT", length(convert2MSP(tissueANT)))
compSTY <- rep("STY", length(convert2MSP(tissueSTY)))
compartment <- c(compSPL, compLIM, compANT, compSTY)
binnedMSP <- binning(msp = finalMSP, tol = 0.01, group = compartment, method = "median")
save(binnedMSP, file = "binnedMSP.RData", compress = "bzip2")

binning

Bin m/z values

Description

Bin m/z values

Usage

binning(msp, tol = 0.01, group = NULL, method = c("median", "mean"))

Arguments

- **msp** MSP-object, see ?convert2MSP for further information
- **tol** numerical, boundary value until which neighboured peaks will be joined together
- **group** character vector, to which group does the entry belong to
- **method** character vector, method has to be median or mean

Details

The functions `binning` bins fragments together by obtaining bins via calculating either median or means of fragments which were put in intervals according to the `tol` parameter.

Value

`binning` returns a matrix where rownames are precursor ions (m/z / retention time) and colnames are newly calculated m/z values which were binned. Entries are intensity values in
Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("idMSMStoMSP", package = "MetCirc")
binning(msp = finalMSP, tol = 0.01, group = NULL, method = "median")
```

cart2Polar

Calculate polar coordinates from cartesian coordinates

Description

cart2Polar calculates polar coordinates from cartesian coordinates

Usage

cart2Polar(x, y)

Arguments

- **x**: cartesian x coordinate
- **y**: cartesian y coordinate

Details

cart2Polar is employed to translate cartesian coordinates into polar coordinates especially in interactive shiny applications when using hovering and clicking features.

Value

cart2Polar returns a list of colar coordinates r and theta

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
x <- 1; y <- 1
cart2Polar(x, y)
```
circosLegend

Description

circosLegend plots a legend for circos plot using group names.

Usage

circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)

Arguments

groupname character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
highlight logical, should colours be adjusted to highlight settings?
colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
cex numeric, parameter that controls size of the legend in the plot

Details

Internal use in shinyCircos or outside of shinyCircos to reproduce figures.

Value

The function will open a new plot and display colours together with labels.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(similarityMat)
## plot legend
circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)
```
classes returns class names of compounds in MSP-object.

Usage

classes(x)

Arguments

 x object of class MSP

Format

An object of class NULL of length 0.

Value

character

Functions

• classes: returns class names of metabolites in MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
classes(finalMSP)

classes<- sets information in MSP-object

Description

classes<- sets information in MSP-object.

Arguments

 x object of class MSP, see ?convert2MSP for further information
 value character vector with new classes

Format

An object of class NULL of length 0.
Value

MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
classes(finalMSP) <- rep("Unknown")

combine combine method for MSP-class

Description

combine combines two objects of class MSP.

Usage

combine(object1, object2)

S4 method for signature 'MSP,MSP'
combine(object1, object2)

Arguments

object1 object of class MSP
object2 object of class MSP

Value

MSP-object

Methods (by class)

• object1 = MSP, object2 = MSP: combines two object of class MSP

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP1 <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSP2 <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
combine(finalMSP1, finalMSP2)
Example data for MetCirc: compartmentTissue

Description

The data.frame compartmentTissue is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of MetCirc. In compartmentTissue, information on the organ-localisation of each MS/MS spectrum is stored.

Usage

tissue

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

convert2MSP

Convert deconvoluted matrix into MSP-object

Description

Convert deconvoluted matrix into MSP-object

Usage

convert2MSP(mm, splitPattern = "_", splitIndMZ = 1, splitIndRT = NULL, rt = FALSE, names = FALSE, information = FALSE, classes = FALSE, adduct = FALSE)

Arguments

- **mm**
 - matrix, mm has to have three columns with colnames "mz", "intensity" and "id" (order is not important). The column comprises information about the precursor ion which will be assessed by splitPattern and splitInd. Optionally, mm can have colnames "rt", "names", "information", "classes" and "adduct".

- **splitPattern**
 - character, splitPattern is the pattern which separates elements and precursor m/z
convert2MSP

splitIndMZ numeric, the position of the precursor m/z in the character string concerning separation by splitPattern

splitIndRT numeric or NULL, the position of the retention time in the character string concerning separation by splitPattern, if NULL the retention time will be the mean of all retention time values of the MS/MS feature fragments

rt logical, should retention times be retrieved? If set to TRUE, convert2MSP will access the column "rt" in mm which contains the retention time values for each fragment when splitIndRT is NULL, if rt is set to TRUE and splitIndRT is numeric, convert2MSP will access the column "id" to get the retention time at position splitIndRT when splitting with splitPattern

names logical, should names be retrieved? If set to TRUE, convert2MSP will access the column "names" in mm which contains the names of the metabolites

information logical, should further information of metabolites be retrieved? If set to TRUE, convert2MSP will access the column "information" in mm which contains information about the metabolites

classes logical, should classes of metabolites be retrieved? If set to TRUE, convert2MSP will access the column "classes" in mm which contains the names of the metabolites

adduct logical, should adduct ion names of metabolites be retrieved? If set to TRUE, convert2MSP will access the column "adduct" in mm which contains the adduct ion names of the metabolites

Details

The function convert2MSP creates a data entry for each precursor ion. Each entry in the return object has the following information: Num Peaks and a list of fragments together with their intensities; it will further contain information on m/z values of the precursor ion, the retention time, metabolite names, classes, adduct ion name and further information. convert2MSP will access the columns "rt", "names", "information", "classes" and "adduct", respectively, if arguments are set to TRUE. The column "id" has to contain a unique identifier for each MS/MS feature. It is obligatory that each element in the column "id" contains the precursor m/z value, but may contain further elements (e.g. peak correlation value or retention time of the precursor ion). Information about the m/z value will be assessed by splitPattern and splitInd. E.g. items in the column "id" can be in the form of "1_163.23", which has to be accessed by setting splitPattern = "_" and splitInd = 2 to access the m/z value of the precursor ion (here: 162.23). If rt is set to TRUE and splitIndRT is NULL, convert2MSP will access the column "rt" to get the retention time values corresponding to each fragment and calculate the mean value, if rt is set to TRUE and splitIndRT numeric, convert2MSP will retrieve the retention time value from column "id".

Value

convert2MSP returns an object of class MSP

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("sd02_deconvoluted", package = "MetCirc")

convert2MSP(mm = sd02_deconvoluted, splitPattern = " _ ", splitIndMZ = 2,
 splitIndRT = NULL, rt = FALSE, names = FALSE, information = FALSE,
 classes = FALSE, adduct = FALSE)
convertExampleDF

Example data for MetCirc: convertExampleDF

Description

convertExampleDF is a data.frame which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name and the spectrum reference file name. The function allocatePrecursor2mz uses data.frames of the kind of sd01_outputXCMS and sd02_deconvoluted to create a data.frame of the kind of convertExampleDF. Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviance of retention time based on an objective function. See ?allocatePrecursor2mz for further information.

Usage

convertExampleDF

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

convertMSP2MSP

Convert MSP data frame into object of MSP-class

Description

Convert msp data frame into object of MSP-class

Usage

convertMSP2MSP(msp)

Arguments

msp data.frame, see Details for further information.
createLink0Matrix

Details

msp is a data frame of a .MSP file, a typical data file for MS/MS libraries. The data frame has two columns and contains in the first column the entries "NAME:“, "PRECURSORMZ:“ (or "EX- ACTMASS:“), "Num Peaks:“ and information on fragments and peak areas/intensities. It may additionally contain row entries: convertMSP2MSP will try to find the row entries "RETENTION- TIME:“, "ADDITIONNAME:“ (or "PRECURSORTYPE:“), "CLASS:“ and "INFORMATION:“ and extract the respective information in the second column.

Value

convertMSP2MSP returns an object of class MSP.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("convertMSP2MSP", package = "MetCirc")
convertMSP2MSP(msp = msp2msp)

createLink0Matrix Create a link matrix

Description

Create a link matrix which links every feature in similarity matrix with another.

Usage

createLink0Matrix(similarityMatrix)

Arguments

similarityMatrix
matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set

Details

createLink0Matrix creates a matrix from a similarity matrix which includes all connections between features in the similarity matrix, but exclude links which have a similarity of exactly 0.

Value

createLink0Matrix returns a matrix that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
createLinkMatrix

Create a matrix which contains features to link (indices)

Description
Create a matrix which contains features to link (indices)

Usage
createLinkMatrix(similarityMatrix, threshold_low, threshold_high)

Arguments

- `similarityMatrix` matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set
- `threshold_low` numeric, threshold value for NDP values, below this value linked features will not be included
- `threshold_high` numeric, threshold value for NDP values, above this value linked features will not be included

Details
threshold_low and threshold_high are numerical values and truncate similar/identical precursor ions; similarity is currently based on the normalised dot product.

Value
createLinkMatrix returns a matrix that gives per each row information on linked features

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[,c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
createLinkMatrix(similarityMatrix = similarityMat,
 threshold_low = 0.5, threshold_high=1)
createOrderedSimMat

Update colnames and rownames of a similarity matrix according to order m/z, retention time and clustering

Description

Internal function for shiny application. May also be used outside of shiny to reconstruct figures.

Usage

createOrderedSimMat(similarityMatrix, order = c("retentionTime", "mz", "clustering"))

Arguments

similarityMatrix

matrix, similarityMatrix contains pair-wise similarity coefficients which give information about the similarity between precursors

order

character, one of "retentionTime", "mz" or "clustering"

Details

createOrderSimMat takes a similarity matrix and a character vector as arguments. It will then reorder rows and columns of the similarityMatrix object such, that it orders rows and columns of similarityMatrix according to m/z, retention time or clustering in each group. createOrderSimMat is employed in the shinyCircos function to create similarityMatrix objects which will allow to switch between different types of ordering in between groups (sectors) in the circos plot. It may be used as well externally, to reproduce plots outside of the reactive environment (see vignette for a workflow).

Value

createOrderedSimMat returns a similarity matrix with ordered rownames according to the character vector given to order

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")
data("similarityMat", package = "MetCirc")
order according to retention time
createOrderedSimMat(similarityMatrix = similarityMat, order = "retentionTime")
createSimilarityMatrix

Create similarity matrix

Description

Creates the similarity matrix by calculating the normalised dot product (NDP) between precursors.

Usage

createSimilarityMatrix(mm, m = 0.5, n = 2)

Arguments

- **mm**: matrix, colnames are all fragments which occur in the dataset, rownames are m/z / rt values, entries of mm are intensity values corresponding to their m/z values.
- **m**: numeric, see ?NDP for further details.
- **n**: numeric, see ?NDP for further details.

Details

createSimilarityMatrix calls a function to calculate the NDP between all precursors in the data set. For further information on how the NDP is calculated see ?NDP and Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155. Currently m = 0.5 and n = 2 are set as default.

Value

createSimilarityMatrix returns a similarity matrix that contains the NDP similarity measure between all precursors in the data set.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")
truncate binnedMSP
binnedMSP <- binnedMSP[1:28,]
createSimilarityMatrix(binnedMSP, m = 0.5, n = 2)
cutLinkMatrix Create a cut link matrix

Description
Create a cut link matrix

Usage
cutLinkMatrix(LinkMatrix, type = c("all", "inter", "intra"))

Arguments
- LinkMatrix: matrix, that gives per each row information on linked features
- type: character, one of "all", "inter" or "intra"

Details
This function is used to cut features from LinkMatrix. If type = "all", LinkMatrix will not be changed; if type = "inter" the cut LinkMatrix will only contain entries of links which are between groups and not inside groups; contrary to that, if type = "intra" the cut LinkMatrix will only contain entries of links which are inside groups and not between groups.

Value
cutLinkMatrix returns a matrix that gives per each row information on linked features

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[c(c(1:20, 29:48, 113:132, 240:259)),]
similarityMat <- createSimilarityMatrix(binnedMSP)
linkMat <- createLinkMatrix(similarityMatrix = similarityMat, threshold_low = 0.75, threshold_high = 1)
cutLinkMatrix(LinkMatrix = linkMat, type = "all")

cutUniquePrecursor Get unique precursor ions

Description
Get unique precursor ions

Usage
cutUniquePrecursor(precursor, splitPattern = splitPattern, splitInd = splitInd, returnCharacter = TRUE)
Arguments

precursor character where features are separated by splitPattern
splitPattern character, character vector to use for splitting, see ?strsplit for further information
splitInd numeric, extract precursor mz at position splitInd
returnCharacter logical, if TRUE return character, if FALSE return numeric

Details

Function for internal usage.

Value

The function cutUniquePrecursor returns character or numeric as specified by parameters.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

precursor <- "A_269.0455469_-1"
splitPattern <- "_"
splitInd <- 2
cutUniquePrecursor(precursor, splitPattern = splitPattern, splitInd = splitInd, returnCharacter = TRUE)

getBegEndIndMSP

Get beginning and end indices of each entry in a data.frame in peaks(MSP)-objects

Description

Get beginning and end indices of each entry in a data.frame in peaks(MSP)-object

Usage

getBegEndIndMSP(msp)

Arguments

msp data.frame in peaks(MSP)-object, see ?convert2MSP for further information

Details

Internal use to retrieve start and end row indices for fragments of MS/MS features.

Value

getBegEndIndMSP returns a list of length 2 where the first entry contains the start indices and the second the end indices
getLinkMatrixIndices

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
  splitIndMZ = 2, splitIndRT = 3)
finalMSPdf <- peaks(finalMSP)
getBegEndIndMSP(finalMSPdf)
```

getLinkMatrixIndices

Get indices in LinkMatrix of feature

Description

Gets indices in LinkMatrix of feature

Usage

getLinkMatrixIndices(groupnameselected, linkMatrix)

Arguments

- `groupnameselected` character vector with groupname of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
- `linkMatrix` matrix, in each row there is information about features to be connected

Details

Internal use for function highlight.

Value

getLinkMatrixIndices returns indices concerning linkMatrix to which groupnameselected connects

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## Not run: getLinkMatrixIndices(groupnameselected, linkMatrix)
```
getPrecursorMZ

getcursorMZ returns precursor m/z values of an MSP-object

Description
getPrecursorMZ returns a numeric vector with precursor m/z values

Usage
getPrecursorMZ(x)

Arguments
x object of class MSP

Format
An object of class NULL of length 0.

Value
numeric

Functions
• getPrecursorMZ: returns precursor m/z values of an MSP object

Examples
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
getPrecursorMZ(finalMSP)

getRT

getcursorRT returns precursor RT values of an MSP-object

Description
getcursorRT returns a numeric vector with all retention time values

Usage
getcursorRT(x)

Arguments
x object of class MSP

Format
An object of class NULL of length 0.
Value

numeric

Functions

- getRT: returns precursor RT values of an MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
splitIndMZ = 2, splitIndRT = NULL)
getRT(finalMSP)

highlight Add links and highlight sectors

Description

A function to add links and highlight sectors to an initialised and plotted circlize plot with one track.

Usage

highlight(groupname, ind, LinkMatrix, colour = NULL, transparency = 0.4, links = TRUE)

Arguments

groupname character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
ind numeric, indices which will be highlighted
LinkMatrix matrix, in each row there is information about features to be connected
colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
transparency numeric, defines the transparency of the colours
links logical, should links of unselected features be plotted

Details

Internal use for shinyCircos or outside of shinyCircos to reproduce the figure.

Value

The function will update an existing plot by highlighting a specified sector and connected links.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
## order similarityMat according to retentionTime and update rownames
simM <- createOrderedSimMat(similarityMat, order = "retentionTime")
## create link matrix
linkMat <- createLinkMatrix(similarityMatrix = simM,
    threshold_low = 0.95, threshold_high = 1)
## cut link matrix (here: only display links between groups)
linkMat_cut <- cutLinkMatrix(linkMat, type = "inter")
## set circlize parameters
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
    track.margin = c(0.0, 0))
groupname <- rownames(simM)
## here: set selectedFeatures arbitrarily
indSelected <- c(2,23,42,62)
selectedFeatures <- groupname[indSelected]
## actual plotting
plotCircos(groupname, linkMat_cut, initialize = TRUE,
    featureNames = TRUE, cexFeatureNames = 0.2, groupSector = TRUE,
    groupName = FALSE, links = FALSE, highlight = TRUE)
## highlight
highlight(groupname = groupname, ind = indSelected, LinkMatrix =
    linkMat_cut, colour = NULL, transparency = 0.4, links = TRUE)
```

Description

finalMSP is of instance MSP, a container for MS/MS data. finalMSP is derived from the object tissue and compartmentTissue.

Usage

finalMSP

Format

object of class MSP

Value

object of class MSP

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
data("idMSMStissueproject", package = "MetCirc") ## create vectors with precursor names present in tissue
tissueSPL <- compartmentTissue[compartmentTissue[,"SPL"] == TRUE, 1]
tissueLIM <- compartmentTissue[compartmentTissue[,"LIM"] == TRUE, 1]
tissueANT <- compartmentTissue[compartmentTissue[,"ANT"] == TRUE, 1]
tissueSTY <- compartmentTissue[compartmentTissue[,"STY"] == TRUE, 1]

truncate tissue

create msp and combine msp objects of different tissues
finalMSP <- convert2MSP(tissueSPL, rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueLIM), rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueANT), rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueSTY), rt = TRUE)

write finalMSP to idMSMStoMSP.RData
save(finalMSP, file = "idMSMStoMSP.RData", compress = "xz")

information

returns information of metabolites in MSP-object

Description

information returns information in MSP-object.

Usage

`information(x)`

Arguments

- **x**: object of class MSP, see `?convert2MSP` for further information

Format

An object of class `NULL` of length 0.

Value

character

Functions

- `information`: returns information of metabolites in MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
information(finalMSP)
information<- sets information in MSP-object

Description
information<- sets information in MSP-object

Arguments

 x object of class MSP, see ?convert2MSP for further information
value character vector with new information

Format
An object of class NULL of length 0.

Value
MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
information(finalMSP) <- rep("Unknown")

length method for MSP-class

Description
Gives the number of entries in the MSP object.

Usage

S4 method for signature 'MSP'
length(x)

Arguments

 x object of class MSP

Value
numeric

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
length(finalMSP)
minFragCart2Polar
Calculate the nearest feature in polar coordinates given cartesian coordinates

Description

Calculates the nearest feature in polar coordinates given cartesian coordinates.

Usage

```r
minFragCart2Polar(x, y, degreeOfFeatures)
```

Arguments

- `x`
 cartesian x coordinate
- `y`
 cartesian y coordinate
- `degreeOfFeatures`
 list of positions of features

Details

`minFragCart2Polar` is employed to find the feature with the smallest distance from given cartesian coordinates.

Value

`minFragCart2Polar` returns the index of the feature that has the smallest distance to the given coordinates. As `minFragCart2Polar` is used in `shinyCircos` for the track 1 only polar r coordinates between 0.8 and 1 will be used to find the feature with smallest distance.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
simM <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(simM)
plotCircos(groupname, NULL, initialize = TRUE, featureNames = FALSE, 
  grouping = FALSE, groupSector = FALSE, links = FALSE, highlight = FALSE)
x <- 1
y <- 0
degreeFeatures <- lapply(groupname, 
  function(x) mean(circlize:::get.sector.data(x)[c("start.degree", "end.degree")]))
minFragCart2Polar(x, y, degreeOfFeatures = degreeFeatures)
```
MSP

MSP-class

Description

Definition of MSP-class in MetCirc. Entries are MS/MS features including their spectra. Allows easy computation of number of entries by entering length(msp), where msp is of class MSP. The MSP-class incorporates accessors for auxiliary information of MS/MS features (names, classes, information, adduct ion name).

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

msp2FunctionalLossesMSP

Convert MSP to MSP with functional losses

Description

msp2FunctionalLossesMSP converts a MSP-object (with fragments) into a MSP-object with neutral losses

Usage

msp2FunctionalLossesMSP(msp)

Arguments

- **msp**: MSP-object

Details

The function msp2FunctionalLosses can be used when calculating the similarity based on neutral losses instead of fragments.

Value

msp2FunctionalLossesMSP returns a MSP-object (with neutral losses)

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = "_",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSPNL <- msp2FunctionalLossesMSP(msp = finalMSP)
Example data for MetCirc: msp2msp

Description

`convertMSP2MSP` contains the object `msp2msp` that is a data frame in .MSP format, a typical format for MS/MS library building. Each entry consists of the metabolite name (NAME), the precursor mz (PRECURSORMZ), the retention time (RETENTIONTIME), number of peaks (Num Peaks), together with fragments and their intensity values. In the example used in the function `convertMSP2MSP` the matrix `msp2msp` is used to construct an object of class `MSP`.

Usage

`msp2msp`

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

names

Description

`names` returns names in MSP-object.

Usage

```r
## S4 method for signature 'MSP'
names(x)
```

Arguments

- `x` object of class MSP, see ?convert2MSP for further information
names <-

Value
character

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
names(finalMSP)

NDP

Calculate the normalised dot product

Description
Calculate the normalised dot product (NDP)

Usage
NDP(matrow1, matrow2, m = 0.5, n = 2, mass)
Arguments

matrow1 character or numeric vector, the entries correspond to the mass vector and contain corresponding intensities to the masses, it is the first feature to compare

matrow2 character or numeric vector, the entries correspond to the mass vector and contain corresponding intensities to the masses, it is the second feature to compare

m numeric, exponent to calculate peak intensity-based weights

n numeric, exponent to calculate peak intensity-based weights

mass character or numeric vector, vector with all masses which occur in the data set

Details

The NDP is calculated according to the following formula:

\[
NDP = \frac{\sum (W_{S1,i} \cdot W_{S2,i})^2}{\sum (W_{S1,i}^2) \cdot \sum (W_{S2,i}^2)}
\]

, with \(W = \text{peakintensity}^m \cdot \text{m/z}^n \). For further information see Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155. NDP returns a numeric value ranging between 0 and 1, where 0 indicates no similarity between the two MS/MS features, while 1 indicates that the MS/MS features are identical.

Value

NDP returns a numeric similarity coefficient between 0 and 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")
NDP(matrow1 = binnedMSP[1,], matrow2 = binnedMSP[2,], m = 0.5, n = 2, mass = colnames(binnedMSP))

Description

peaks returns the data.frame entry with peak information of an MSP object.

Usage

peaks(object)

S4 method for signature 'MSP'

peaks(object)
plotCircos

Arguments

- `object` object of class MSP

Value

data.frame

Methods (by class)

- MSP: returns the data.frame of an MSP-object

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
                        splitIndMZ = 2, splitIndRT = NULL)
peaks(finalMSP)
```

plotCircos

Description

Circular plot to visualise similarity

Usage

```r
plotCircos(groupname, linkMat, initialize = c(TRUE, FALSE),
            featureNames = c(TRUE, FALSE), cexFeatureNames = 0.3,
            groupSector = c(TRUE, FALSE), groupName = c(TRUE, FALSE),
            links = c(TRUE, FALSE), highlight = c(TRUE, FALSE), colour = NULL,
            transparency = 0.2)
```

Arguments

- `groupname` character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
- `linkMat` data.frame containing linked features in each row, has five columns (group1, name1, group2, name2, NDP)
- `initialize` logical, should plot be initialized?
- `featureNames` logical, should feature names be displayed?
- `cexFeatureNames` numeric, size of feature names
- `groupSector` logical, should groups be displayed with background colours?
- `groupName` logical, should group names (e.g. compartment names or individual names) be displayed?
- `links` logical, should links be plotted?
- `highlight` logical, highlight is set to TRUE
- `colour` NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
- `transparency` numeric, defines the transparency of the colours
Details

Internal use for shinyCircos or used outside of shinyCircos to reproduce figure.

Value

The function will initialize a circlize plot and/or will plot features of a circlize plot.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
## order similarityMat according to retentionTime
simM <- createOrderedSimMat(similarityMat, order = "retentionTime")
## create link matrix
linkMat <- createLinkMatrix(similarityMatrix = simM,
    threshold_low=0.8, threshold_high=1)
## cut link matrix (here: only display links between groups)
linkMat_cut <- cutLinkMatrix(linkMat, type = "inter")
## set circlize paramters
circos.par(gap.degree = 0, cell.padding = c(0, 0, 0, 0),
    track.margin = c(0, 0, 0))
groupname <- rownames(simM)
## actual plotting
plotCircos(groupname, linkMat_cut, initialize = TRUE,
    featureNames = TRUE, cexFeatureNames = 0.3, groupSector = TRUE,
    groupName = FALSE, links = FALSE, highlight = FALSE, colour = NULL,
    transparency = 0.2)
```

printInformationSelect

Display information on connected features of selected features

Description

Displays information on connected features of selected features.

Usage

```r
printInformationSelect(groupname, msp = NULL, ind,
    lMatInd, linkMatrixThreshold, similarityMatrix, roundDigits = 2)
```
printInformationSelect

Arguments

- **groupName**: character vector with groupName of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element.
- **msp**: MSP, an S4 object of class MSP for information about the selected feature.
- **ind**: numeric.
- **lMatInd**: numeric indices of selected features.
- **linkMatrixThreshold**: matrix that contains information of linked features for given thresholds.
- **similarityMatrix**: matrix that is used to get information on the degree of similarity, similarityMat is an ordered version of a similarity matrix, see ?createOrderedSimMat.
- **roundDigits**: numeric, how many digits should be displayed?

Details

printInformationSelect is for internal use.

Value

character that is in HTML format.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("idMSMstoMSP", package = "MetCirc")
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(similarityMat)
order similarityMat according to mz
simMat <- createOrderedSimMat(similarityMat, order = "mz")
groupnameMZ <- rownames(simMat)
linkMat_thr <- createLinkMatrix(simMat, 0.8, 1)
ind <- 2
indMZ <- which(groupname[ind] == truncateName(groupnameMZ, NULL, group = TRUE))
linkMatInds <- getLinkMatrixIndices(groupnameMZ[indMZ], linkMat_thr)
MetCirc:::printInformationSelect(groupname = groupname,
msp = NULL, ind = ind, lMatInd = linkMatInds,
linkMatrixThreshold = linkMat_thr,
similarityMatrix = similarityMat, roundDigits = 2)
sd01_outputXCMS

Example data for MetCirc: sd01_outputXCMS

Description

sd01_outputXCMS is the output file from the package XCMS using the data from Li et al. (2015). See Li et al. (2015) for further details.

Usage

sd01_outputXCMS

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

Li et al. (2015)

sd02_deconvoluted

Example data for MetCirc: sd02_deconvoluted

Description

sd02_deconvoluted contains MS/MS data from Li et al. (2015). It is a data.frame which hosts m/z values, retention time, intensity and the respective precursor m/z values. sd02_deconvoluted originates from Li et al. (2015). See Li et al. (2015) for further information.

Usage

sd02_deconvoluted

Format

data.frame

Value

data.frame
shinyCircos

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
Li et al. (2015)

Description
Visualise the similarity of MS/MS features in a reactive context. See Details the vignette for further descriptions on how to use shinyCircos.

Usage

```
shinyCircos(similarityMatrix, msp = NULL, ...)
```

Arguments

- `similarityMatrix`
 matrix, `similarityMatrix` contains pair-wise similarity coefficients which give information about the similarity between MS/MS features

- `msp`
 MSP, an S4 object of class `MSP`, the MSP-object will be used to display information about the selected feature

- `...`
 further arguments passed to `shinyCircos`, e.g. `cexFeatureNames` to pass to `plotCircos` to set font size in `plotCircos` of feature names

Details

The function is based on the `shiny` and `circlize` package. The user can choose interactively thresholds, type of links (between or within groups), display information about MS/MS features, permanently select MS/MS features and export selected precursors. When running `shinyCircos` with the object of class `MSP`, annotation data of selected MS/MS features will be displayed.

Value

`shinyCircos` returns a character vector with the (permanently) selected precursors or an object with the entries `msp` and `selectedFeatures` if a MSP-object was passed to `shinyCircos`

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>
Examples

```r
data("idMSMStoMSP", package = "MetCirc")
## truncate files
finalMSP <- finalMSP[c(1:20, 29:48, 113:132, 240:259)]
data("binnedMSP", package = "MetCirc")
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
## Not run: shinyCircos(similarityMatrix = similarityMat, msp = finalMSP)
```

show

show method for MSP-class

Description

show prints information on the MSP-object (number of entries).

Usage

```r
## S4 method for signature 'MSP'
show(object)
```

Arguments

- `object`
 - object of class MSP

Value

character

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = "_",
                        splitIndMZ = 2, splitIndRT = NULL)
show(finalMSP)
```

similarityMat

Example data for MetCirc: similarityMat

Description

similarityMat is a matrix containing the pair-wise similarity scores derived from the idMSMStissueproject data set. See the vignette for a workflow to reproduce the object similarityMat.

Usage

- `similarityMat`

Format

- matrix
thresholdLinkMatrix

Value

matrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

data("binnedMSP", package = "MetCirc")
similarityMat <- createSimilarityMatrix(binnedMSP)
save(similarityMat, file = "similarityMat.RData", compress = "xz")

thresholdLinkMatrix

Threshold a link matrix

Usage

thresholdLinkMatrix(linkMatrix, threshold_low, threshold_high)

Arguments

linkMatrix matrix, a link matrix that gives per each row information on linked features
threshold_low numeric, threshold value for NDP values, below this value linked features will not be returned
threshold_high numeric, threshold value for NDP values, above this value linked features will not be returned

Details

threshold_low and threshold_high are numerical values and truncates similar/identical precursor ions; similarity is momentarily based on the normalised dot product.

Value

thresholdLinkMatrix returns a matrix that gives per each row information on linked features which are linked above a certain threshold

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")

use only a selection
binnedMSP <- binnedMSP[c(c(1:20, 29:48, 113:132, 240:259)),]
similarityMat <- createSimilarityMatrix(binnedMSP)
linkMatrix <- createLink0Matrix(similarityMatrix = similarityMat)
thresholdLinkMatrix(linkMatrix = linkMatrix,
threshold_low = 0.5, threshold_high=1)
Example data for MetCirc: `tissue`

Description

The data.frame `tissue` is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of MetCirc. MS/MS data are merged across floral organs in this data.frame.

Usage

tissue

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

truncateName

Description

A function to truncate names

Usage

`truncateName(groupname, roundDigits = 2, group = FALSE)`

Arguments

- `groupName` character vector with group and unique identifier (name)
- `roundDigits` numeric, how many digits should be displayed?
- `group` logical, should groups be returned?

Details

groupname is a vector of character strings consisting of a group, retention time and m/z value, separated by "_". It is cumbersome to display such long strings. `truncateName` truncates these strings by rounding retention time and m/z values by digits given by `roundDigits`. `truncateName` is an internal function.
Value

truncateName returns groupname with truncated names without group)

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

groupname <- "a_100.12345/10.12345"
truncateName(groupname, roundDigits = 2, group = FALSE)

Extract parts of a MSP-object

Description

| operator acting on an MSP-object to extract parts.

Usage

```r
## S4 method for signature 'MSP,numeric'
x[i]
```

Arguments

- `x`: object of class MSP
- `i`: numeric

Value

MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSP[1]
Index

*Topic datasets
 adduct, 2
 adduct<-., 3
 classes, 9
 classes<-, 9
 getPrecursorMZ, 21
 getRT, 21
 information, 24
 information<-, 25
 [, 39
 [,MSP,numeric-method ([]), 39
 adduct, 2
 adduct,MSP-method (adduct), 2
 adduct<-, 3
 adduct<-,MSP,character-method (adduct<->), 3
 allocatePrecursor2mz, 4
 binnedMSP, 5
 binning, 6
 cart2Polar, 7
 circosLegend, 8
 classes, 9
 classes,MSP-method (classes), 9
 classes<-, 9
 classes<-,MSP,character-method (classes<->), 9
 combine, 10
 combine,MSP,MSP-method (combine), 10
 combine,MSP-method (combine), 10
 compartmentTissue, 11
 convert2MSP, 11
 convertExampleDF, 13
 convertMSP2MSP, 13
 createLink0Matrix, 14
 createLinkMatrix, 15
 createOrderedSimMat, 16
 createSimilarityMatrix, 17
 cutLinkMatrix, 18
 cutUniquePrecursor, 18
 finalMSP (idMSMStoMSP-data), 23

getBegEndIndMSP, 19
getLinkMatrixIndices, 20
getPrecursorMZ, 21
getPrecursorMZ,MSP-method (getPrecursorMZ), 21
getRT, 21
getRT,MSP-method (getRT), 21
highlight, 22
idMSMStoMSP-data, 23
information, 24
information,MSP-method (information), 24
information<-, 25
information<-,MSP,character-method (information<->), 25
length, 25
length,MSP-method (length), 25
minFragCart2Polar, 26
MSP, 27
MSP-class (MSP), 27
msp2FunctionallLossesMSP, 27
msp2msp, 28
names, 28
names,MSP-method (names), 28
names<-, 29
names<-,MSP,character-method (names<->), 29
NDP, 29
peaks, 30
peaks,MSP-method (peaks), 30
plotCircos, 31
printInformationSelect, 32
sd01_outputXCMS, 34
sd02_deconvoluted, 34
shinyCircos, 35
show, 36
show,MSP-method (show), 36
similarityMat, 36
INDEX

thresholdLinkMatrix, 37

tissue, 38

truncatexName, 38