Package ‘MiPP’
March 28, 2017

Version 1.46.0
Date 2007-01-31
Title Misclassification Penalized Posterior Classification
Author HyungJun Cho <hj4cho@korea.ac.kr>,
 Sukwoo Kim <s4kim@korea.ac.kr>,
 Mat Soukup <soukup@fda.gov>, and
 Jae K. Lee <jaeklee@virginia.edu>
Maintainer Sukwoo Kim <s4kim@korea.ac.kr>
Depends R (>= 2.4)
Imports Biobase, e1071, MASS, stats
Description This package finds optimal sets of genes that separate samples into two or more classes.
License GPL (>= 2)
URL http://www.healthsystem.virginia.edu/internet/hes/biostat/bioinformatics/
biocViews Microarray, Classification
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>colon</td>
<td>2</td>
</tr>
<tr>
<td>cv.mipp.rule</td>
<td>2</td>
</tr>
<tr>
<td>get.mipp</td>
<td>2</td>
</tr>
<tr>
<td>get.mipp.lda</td>
<td>2</td>
</tr>
<tr>
<td>get.mipp.logistic</td>
<td>3</td>
</tr>
<tr>
<td>get.mipp.qda</td>
<td>3</td>
</tr>
<tr>
<td>get.mipp.svm.linear</td>
<td>3</td>
</tr>
<tr>
<td>get.mipp.svm.rbf</td>
<td>3</td>
</tr>
<tr>
<td>leuk1</td>
<td>3</td>
</tr>
<tr>
<td>leuk2</td>
<td>4</td>
</tr>
<tr>
<td>leukemia</td>
<td>4</td>
</tr>
<tr>
<td>linearkernel.decision.function</td>
<td>5</td>
</tr>
<tr>
<td>mipp</td>
<td>5</td>
</tr>
<tr>
<td>mipp.preproc</td>
<td>7</td>
</tr>
<tr>
<td>mipp.rule</td>
<td>8</td>
</tr>
<tr>
<td>mipp.seq</td>
<td>8</td>
</tr>
<tr>
<td>pre.select</td>
<td>10</td>
</tr>
<tr>
<td>quant.normal</td>
<td>10</td>
</tr>
</tbody>
</table>
colon

Gene expression data for colon cancer

Description

This data set consists of gene expression of colon cancer study.

Usage

```r
data(colon)
```

Format

A matrix containing 2000 probe sets and 2 classes (T, F)

Source

cv.mipp.rule

Fitting cross-validation MiPP

Description

Fits cross-validation MiPP

get.mipp

Choosing a rule

Description

Choose a rule to compute MiPP

get.mipp.lda

Fitting LDA to compute MiPP

Description

Fits LDA to compute MiPP
get.mipp.logistic
Fitting logistic model to compute MiPP

Description
Fits logistic model to compute MiPP

get.mipp.qda
Fitting QDA to compute MiPP

Description
Fits QDA to compute MiPP

get.mipp.svm.linear
Fitting SVM (linear) to compute MiPP

Description
Fits SVM (linear) to compute MiPP

get.mipp.svm.rbf
Fitting SVM (RBF) to compute MiPP

Description
Fits SVM (RBF) to compute MiPP

leuk1
Gene expression data for leukemia

Description
This data set consists of gene expression of leukemia study.

Usage
data(leukemia)

Format
A matrix containing 6817 probe sets and 38 samples (2 classes: AML, ALL)

Source
leuk2

Description

This data set consists of gene expression of leukemia study.

Usage

data(leukemia)

Format

A matrix containing 6817 probe sets and 34 samples (2 classes: AML, ALL)

Source

linearkernel.decision.function

SVM (linear) kernel to compute MiPP

Description

SVM (linear) kernel to compute MiPP

mipp

MiPP-based Classification

Description

Finds optimal sets of genes for classification

Usage

mipp(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL, rule = "lda", method.cut = "t.test", percent.cut = 0.01, model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2, n.fold = 5, p.test = 1/3, n.split = 20, n.split.eval = 100)

Arguments

x data matrix
y class vector
x.test test data matrix if available
y.test test class vector if available
probe.ID probe set IDs; if NULL, row numbers are assigned.
rule classification rule: "lda", "qda", "logistic", "svm_lin", "svm_rbf"; the default is "lda".
method.cut method for pre-selection; t-test is available.
percent.cut proportion of pre-selected genes; the default is 0.01.
model.sMiPP.margin smallest set of genes s.t. sMiPP <= (max sMiPP - model.sMiPP.margin); the default is 0.01.
min.sMiPP Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.
n.drops Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.
n.fold number of folds; default is 5.
p.test partition percent of train and test samples when test samples are not available; the default is 1/3 for test set.
n.split number of splits; the default is 20.
n.split.eval number of splits for evaluation; the default is 100.
mipp

Value

model candidate genes (for each split if no indep set is available
model.eval Optimal sets of genes for each split when no indep set is available

Author(s)

Soukup M, Cho H, and Lee JK

References

Examples

##########
#Example 1: When an independent test set is available

data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))

#Compute MiPP
out <- mipp(x=x.train, y=y.train, x.test=x.test, y.test=y.test, probe.ID = 1:nrow(x.train), n.fold=5, percent.cut=0.05, rule="lda")

#Print candidate models
out$model

##########
#Example 2: When an independent test set is not available

data(colon)

#Normalize data
x <- mipp.preproc(colon)

out$model
mipp.preproc

Description
Performs IQR normalization, thresholding, and log2-transformation

Usage
mipp.preproc(x, data.type = "MAS5")

Arguments
x data
data.type data type is MAS5, MAS4, or dChip

See Also
mipp

Examples
library(MiPP)
data(colon)
colon.nor <- mipp.preproc(colon)
mipp.rule

Computing MiPP

Description

Computes MiPP

mipp.seq

MiPP-based Classification

Description

sequentially finds optimal sets of genes for classification

Usage

mipp.seq(x, y, x.test = NULL, y.test = NULL, probe.ID = NULL,
rule = "lda", method.cut = "t.test", percent.cut = 0.01,
model.sMiPP.margin = 0.01, min.sMiPP = 0.85, n.drops = 2,
n.fold = 5, p.test = 1/3, n.split = 20, n.split.eval = 100,
n.seq=3, cutoff.sMiPP=0.7, remove.gene.each.model="all")

Arguments

x data matrix
y class vector
x.test test data matrix if available
y.test test class vector if available
probe.ID probe set IDs; if NULL, row numbers are assigned.
rule classification rule: "lda","qda","logistic","svmlin","svmrbf"; the default is "lda".
method.cut method for pre-selection; t-test is available.
percent.cut proportion of pre-selected genes; the default is 0.01.
model.sMiPP.margin smallest set of genes s.t. sMiPP <= (max sMiPP-model.sMiPP-margin); the default is 0.01.
min.sMiPP Adding genes stops if max sMiPP is at least min.sMiPP; the default is 0.85.
n.drops Adding genes stops if sMiPP decreases (n.drops) times, in addition to min.sMiPP criterion.; the default is 2.
n.fold number of folds; default is 5.
p.test partition percent of train and test samples when test samples are not available;
the default is 1/3 for test set.
n.split number of splits; the default is 20.
n.split.eval number of splits for evaluation; the default is 100.
n.seq Number of sequential gene model selection; the default is 3.
cutoff.sMiPP Cutoff point of 5 percent sMiPP to select gene models
remove.gene.each.model Re-run after removing all genes in the selected models if "all" and the first gene
for each of the selected models if "first"
mipp.seq

Value
model candidate genes (for each split if no indep set is available
model.eval Optimal sets of genes for each split when no indep set is available
genes.selected a list of genes selected by sequential selection

Author(s)
Soukup M, Cho H, and Lee JK

References
misclassification penalized posterior, Bioinformatics, 21 (Suppl): i423-i430.
gene expression data, Journal of Bioinformatics and Computational Biology, 1(4) 681-694

Examples

##########
#Example 1: When an independent test set is available

data(leukemia)

#Normalize combined data
leukemia <- cbind(leuk1, leuk2)
leukemia <- mipp.preproc(leukemia, data.type="MAS4")

#Train set
x.train <- leukemia[,1:38]
y.train <- factor(c(rep("ALL",27),rep("AML",11)))

#Test set
x.test <- leukemia[,39:72]
y.test <- factor(c(rep("ALL",20),rep("AML",14)))

#Compute MiPP
out <- mipp.seq(x=x.train, y=y.train, x.test=x.test, y.test=y.test, n.fold=5, percent.cut=0.01, rule="lda", n.seq=3)

#Print candidate models
out$model

#Print the genes selected
out$genes.selected

##########
#Example 2: When an independent test set is not available

data(colon)

#Normalize data
x <- mipp.preproc(colon)
Deleting contaminated chips
x <- x[-c(51,55,45,49,56)]
y <- y[-c(51,55,45,49,56)]

Compute MiPP
out <- mipp.seq(x=x, y=y, n.fold=5, p.test=1/3, n.split=5, n.split.eval=100, percent.cut=0.05, rule="lda", n.seq=2)

Print candidate models for each split
out$model

Print optimal models and independent evaluation for each split
out$model.eval

Print the genes selected
out$genes.selected

<table>
<thead>
<tr>
<th>pre.select</th>
<th>Pre-selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Pre-select genes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quant.normal</th>
<th>Quantile normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Performs quantile normalization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quant.normal2</th>
<th>Quantile normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Performs quantile normalization</td>
</tr>
</tbody>
</table>
Description

SVM (RBF) kernel to compute MiPP
Index

*Topic datasets
 colon, 2
 leuk1, 3
 leuk2, 4
 leukemia, 4

*Topic models
 cv.mipp.rule, 2
 get.mipp, 2
 get.mipp.lda, 2
 get.mipp.logistic, 3
 get.mipp.qda, 3
 get.mipp.svm.linear, 3
 get.mipp.svm.rbf, 3
 linearkernel.decision.function, 5
 mipp, 5
 mipp.preproc, 7
 mipp.rule, 8
 mipp.seq, 8
 pre.select, 10
 quant.normal, 10
 quant.normal2, 10
 rbfkernel.decision.function, 11

colon, 2

get.mipp, 2
 get.mipp.lda, 2
 get.mipp.logistic, 3
 get.mipp.qda, 3
 get.mipp.svm.linear, 3
 get.mipp.svm.rbf, 3

leuk1, 3
leuk2, 4
leukemia, 4
leukimia (leukemia), 4
linearkernel.decision.function, 5

mipp, 5, 7
 mipp.preproc, 7
 mipp.rule, 8
 mipp.seq, 8

pre.select, 10