Package ‘MinimumDistance’

March 28, 2017

Title A Package for De Novo CNV Detection in Case-Parent Trios
Version 1.18.0
Date 2016-03-05
Author Robert B Scharpf and Ingo Ruczinski
Maintainer Robert B Scharpf <rscharpf@jhu.edu>
Description Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms.
License Artistic-2.0
Depends R (>= 3.3), VanillaICE (>= 1.31.3)
Imports methods, BiocGenerics, Biobase, S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges (>= 1.17.16), SummarizedExperiment (>= 0.2.0), oligoClasses, DNAcopy, ff, foreach, matrixStats, lattice, data.table, grid, stats, utils
Suggests human610quadv1bCrlmm (>= 1.0.3), BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg19, SNPchip, RUnit
Enhances snow, doSNOW
LazyLoad yes
biocViews Microarray, SNP, CopyNumberVariation
RoxygenNote 5.0.1
NeedsCompilation no
R topics documented:

acf2 ... 3
calculateMindist .. 3
coe}

deno}Hemizygous .. 5
DNAcopyParam ... 6
exampleTrioSetList .. 6
filterExperiment .. 7
FilterParamMD ... 7
FilterParamMD-class ... 8
mad2 ... 9
MAP .. 9
MAP2 ... 10
mdLegend ...

MDRanges-class .. 11
md_exp ...

md_gr ...

mindist .. 13
MinDistExperiment .. 14
MinDistExperiment-class .. 14
MinDistGRanges ... 15
MinDistGRanges-class ... 16
MinDistParam ... 17
MinDistParam-class .. 18
MinDistPosterior-class ... 19
MinimumDistance ... 19
nMAD ...

offspringNames ... 20
ParentOffspring-class .. 21
ParentOffspringList-class .. 22
Pedigree ...

Pedigree-class .. 24
pedigreeGrid ... 24
pedigreeName ... 25
pedigreeViewports .. 26
PennParam ... 26
plotDenovo ... 27
range,ILimit-method ... 28
segment2 ... 28
TrioSet ...

TrioSet-class ... 30
TrioSetList ... 31
TrioSetList-class .. 32
TrioSetListLD ... 34

Index 35
acf2

Function for computing autocorrelations

Description

By default, this function returns the lag-10 autocorrelations of a numeric vector and omits missing values.

Usage

acf2(x, lag.max = 10, type = c("correlation", "covariance", "partial"), plot = FALSE, na.action = na.omit, demean = TRUE, ...)

Arguments

x a numeric vector
lag.max see acf
type see acf
plot logical, as in acf
na.action ignored. Missing values are automatically omitted.
demean logical, as in acf
... additional arguments passed to acf

See Also

acf

Examples

x <- rnorm(100)
x[5] <- NA
acf2(x)

calculateMindist

Deprecated function to calculate the minimum distance

Description

The 'minimum distance' is the minimum signed absolute difference of the parental log R ratios and the offspring log R ratios. Specifically, let IO-Fl denote the absolute difference in the log R ratios comparing offspring to father and IO-Ml the absolute difference in the log R ratios comparing offspring to mother. The minimum distance at a marker is the signed minimum of IO-Ml and IO-Fl. After segmentation of the minimum distance, non-zero segments can indicate a de novo difference in the log R ratio of the offspring and either parent. For example, a positive minimum distance suggests that the log R ratio from the offspring is greater than the log R ratio of either parent.
Usage

calculateMindist(object, ...)

S4 method for signature 'TrioSet'
calculateMindist(object, verbose = TRUE, ...)

S4 method for signature 'TrioSetList'
calculateMindist(object)

S4 method for signature 'list'
calculateMindist(object, outdir = ldPath(), ...)

S4 method for signature 'arrayORff_array'
calculateMindist(object, outdir, center, ...)

S4 method for signature 'matrix'
calculateMindist(object, ...)

Arguments

object see showMethods("calculateMindist")
...
verbose logical. Whether to display messages indicating progress.
outdir character string indicating path to save output
center ignored

Arguments

from see showMethods("coerce")
to see showMethods("coerce")

Value

a TrioSet

Description

Coercion methods in MinimumDistance package

Coerces a TrioSetList to a TrioSet

Usage

as(from, to)

S4 method for signature 'TrioSetList'
stack(x, ...)

Arguments

x a TrioSetList
...
ignored
from see showMethods("coerce")
to see showMethods("coerce")

Value

a TrioSet

Coercion methods in MinimumDistance package
denovoHemizygous

Filter the genomic intervals for denovo copy number states

Description

This function filters the genomic intervals for denovo events.

Usage

```
denovoHemizygous(object, filters = FilterParamMD(state = "221"))
denovoHomozygous(object, filters = FilterParamMD(state = "220"))
denovo(object, filters = FilterParamMD(state = c("220", "221", "224")))
denovoDuplication(object, filters = FilterParamMD(state = "224"))
```

S4 method for signature 'MinDistPosterior'

```
denovoHemizygous(object, filters = FilterParamMD(state = "221"))
denovoHomozygous(object, filters = FilterParamMD(state = "220"))
denovoDuplication(object, filters = FilterParamMD(state = "224"))
denovo(object, filters = FilterParamMD(state = c("220", "221", "224")))
```

Arguments

- `object` see `showMethods(denovo)` for a list of defined methods
- `filters` an object of class `FilterParamMD`

Details

The function `denovo` filters genomic intervals for states ‘220’, ‘221’, and ‘224’, corresponding to denovo homozygous deletion, denovo hemizygous deletion, and denovo duplication, respectively. `denovoHemizygous` filters genomic intervals for state ‘221’. `denovoHomozygous` filters genomic intervals for state ‘220’

See Also

FilterParamMD-class
DNAcopyParam
Constructor for DNAcopyParam class

Description

Creates an instance of a parameter class for circular binary segmentation of the minimum distance and the log R ratios. Parameters in this object are passed to the `segment` function in the package `DNAcopy`.

Usage

```r
DNAcopyParam(alpha = 0.01, min.width = 2L, undo.splits = c("none", "prune", "sundo"), undo.SD = 3)
```

Arguments

- `alpha`: see `segment`
- `min.width`: see `segment`
- `undo.splits`: see `segment`
- `undo.SD`: see `segment`

See Also

`segment`

Examples

```r
segment_params <- DNAcopyParam(alpha=0.01)
params <- MinDistParam(dnacopy=segment_params)
```

exampleTrioSetList
An example TrioSetList object

Description

A dataset containing log R ratios and B allele frequencies for two chromosomes, organized as a `TrioSetList`. Each element in the list class is a `TrioSet` object. Both `TrioSetList` and `TrioSet` classes are deprecated; the example data will be removed in a future release.

Format

a `TrioSetList`
filterExperiment
Methods for filtering MinDistExperiment objects

Description
Filter a MinDistExperiment object to exclude markers with missing values in the low-level summaries, exclude markers that lie in segments (granges argument) with small minimum distance values (unlikely to be de novo).

Usage

```r
filterExperiment(object, granges, param)
```

S4 method for signature 'MinDistExperiment,GRanges'

```r
code
```

S4 method for signature 'MinDistExperiment,GRangesList'

```r
code
```

S4 method for signature 'MinDistExperiment,MinDistGRanges'

```r
code
```

Arguments

- **object**: A MinDistExperiment
- **granges**: A GRanges, GRangesList, or MinDistGRanges object
- **param**: a MinDistParam object

Value

a MinDistExperiment

FilterParamMD
Parameters for filtering results from the segmentation and copy number inference

Description
A container for criteria used to filter the segmentation results post-hoc. Options including filtering on the posterior call, the posterior probability of the posterior call, the minimum number of markers spanned by the segment, the minimum width of the segment, and chromosome. Convenience functions are available for commonly used filters.

Usage

```r
FilterParamMD(state = trioStateNames(), seqnames = paste0("chr", 1:22), ...)
```
FilterParamMD-class

Arguments

- **state**: trio copy number states to select
- **seqnames**: chromosome names to select
- **...**: additional arguments passed to `FilterParam`

Examples

```r
library(VanillaICE)
data(md_gr)
data(md_exp)
mdparam <- MinDistParam()
fit <- MAP2(md_exp, md_gr, mdparam)
## return all segments
segs(fit)

## Default filters
param <- FilterParamMD()
param
cnvFilter(fit, param)

param2 <- FilterParamMD(seqnames="chr22", probability=0.9, numberFeatures=10)
cnvFilter(fit, param2)
denovoHemizygous(fit)
```

FilterParamMD-class A class for filtering genomic intervals called by MinimumDistance

Description

Options for filtering include the number of markers spanned by a segment, the posterior probability of the maximum a posteriori estimate of the trio copy number state, and the trio copy number state.

Usage

```r
## S4 method for signature 'FilterParamMD'
show(object)
```

Arguments

- **object**: a `FilterParamMD` object

See Also

denovo
mad2

Deprecated wrapper for computing the median absolute deviation of low-level summaries

Description

Deprecated wrapper for computing the median absolute deviation of low-level summaries

Usage

mad2(object, byrow = FALSE, ...)

S4 method for signature 'list'
mad2(object, byrow, pedigree, ...)

S4 method for signature 'TrioSetList'
mad2(object, byrow = FALSE, ...)

S4 method for signature 'matrix'
mad2(object, byrow, pedigree, ...)

S4 method for signature 'array'
mad2(object, byrow, pedigree, ...)

Arguments

object see showMethods("mad2")
byrow logical if TRUE, compute the median absolute deviation of the rows of a matrix
... additional arguments to mad
pedigree an object of class Pedigree

MAP

Computes the maximum a posteriori trio copy number state for the segmented minimum distance

Description

This functions is deprecated and will be defunct in a future release. The replacement function is MAP2.

Usage

MAP(object, ranges, id, TAUP = 1e+10, tauMAX = 1 - 5e-08, cnStates = c(-2, -0.4, 0, 0, 0.4, 1), pr.nonmendelian = 1.5e-06, mdThr = 0.9, ...)
Arguments

object see showMethods(MAP)
ranges A GRanges object
id character string for sample identifier
TAUP scalar for transition probabilities
tauMAX the maximum probability that the current state is the same as the previous state
cnStates character vector for hidden Markov model state labels
pr.nonmendelian numeric: the a priori probability of a non-Mendelian copy number alteration
mdThr a length-one numeric vector. A minimum distance below this threshold in absolute value will not be evaluated for copy number alterations.
...
Ignored.

Description

Computes maximum a posteriori estimate for the trio copy number state

Usage

MAP2(object, mdgr, param = MinDistParam(), ...)

S4 method for signature 'MinDistExperiment,MinDistGRanges'
MAP2(object, mdgr,
param = MinDistParam(), ...)

S4 method for signature 'MinDistExperiment,GRangesList'
MAP2(object, mdgr,
param = MinDistParam(), ...)

S4 method for signature 'MinDistExperiment,GRanges'
MAP2(object, mdgr,
param = MinDistParam(), ...)

Arguments

object An object of class MinDistExperiment
mdgr An object of class MinDistGRanges, GRangesList, or GRanges.
param An object of class MinDistParam.
...
ignored

Value

An object of class MinDistPosterior
Examples

```r
library(oligoClasses)
library(VanillaICE)
## A MinDistExperiment object:
data(md_exp)
## Segmented data
data(md_gr)
e_param <- EmissionParam(temper=1, p_outlier=1/100)
param <- MinDistParam(thin=1L, emission=e_param)
## Not run:
md_g <- MAP2(md_exp, md_gr, param)
## End(Not run)
```

mdLegend

Text summary of information encapsulated in a MDRanges object for a particular interval

Description

Text summary of information encapsulated in a MDRanges object for a particular interval

Usage

```r
mdLegend(g)
```

Arguments

- `g` a MDRanges object

MDRanges-class

A GRanges-derived class

Description

Contains maximum a posteriori estimates for each genomic interval

Usage

```r
MDRanges(..., posteriors)
```

Arguments

- `...` additional arguments to GRanges constructor
- `posteriors` a DataFrame

Examples

```r
MDRanges()
```
An example MinDistExperiment

Description

This dataset contains log R ratios and B allele frequencies from a parent-offspring trio (three individuals). Only markers from chromosomes 7 and 22 are included in this object. The MinDistExperiment class extends RangedSummarizedExperiment, and so many of the methods defined for RangedSummarizedExperiment such as findOverlaps are available through inheritance.

Format

a MinDistExperiment

Examples

```r
## Not run:
library(oligoClasses)
library(VanillaICE)
library(data.table)
library(BSgenome.Hsapiens.UCSC.hg18)

extdir <- system.file("extdata", package="VanillaICE")
features <- suppressWarnings(fread(file.path(extdir, "SNP_info.csv")))

fgr <- GRanges(paste0("chr", features$Chr), IRanges(features$Position, width=1),
                isSnp=features[["Intensity Only"]]==0)

fgr <- SnpGRanges(fgr)

sl <- seqlevels(BSgenome.Hsapiens.UCSC.hg18)
seqlevels(fgr) <- sl[sl %in% seqlevels(fgr)]
seqinfo(fgr) <- seqinfo(BSgenome.Hsapiens.UCSC.hg18)[seqlevels(fgr),]

fgr <- sort(fgr)

files <- list.files(extdir, full.names=TRUE, recursive=TRUE, pattern="FinalReport")

# parse files
parsedDir <- "ParsedFiles"
if(!file.exists(parsedDir)) dir.create(parsedDir)
views <- ArrayViews(rowRanges=fgr, sourcePaths=files, parsedPath=parsedDir)
dat <- fread(files[[1]])

select_columns <- match(c("SNP Name", "Allele1 - AB", "Allele2 - AB", "Log R Ratio", "B Allele Freq"), names(dat))

index_genome <- match(names(fgr), dat["SNP Name"])

scan_params <- CopyNumScanParams(index_genome=index_genome, select=select_columns,
                                  cnvar="Log R Ratio", bafvar="B Allele Freq",
                                  gtvar=c("Allele1 - AB", "Allele2 - AB"))

invisible(sapply(views, parseSourceFile, param=scan_params))

ped_hapmap <- ParentOffspring(id = "hapmap", father="12287_03",
                              mother="12287_02",
                              offspring="12287_01",
                              parsedPath=parsedPath(views))

ped_list <- ParentOffspringList(pedigrees=list(
  ParentOffspring(id = "hapmap", father="12287_03",
                 mother="12287_02",
                 offspring="12287_01",
                 parsedPath=parsedPath(views)),
```
Description

Prior to inferring de novo trio copy number states, the log R ratios are segmented independently for each individual in a `ParentOffspring` class. The segmentation results are recorded in separate `GRanges` objects for the parents. For segmentation of the offspring log R ratios and the minimum distance, the segments are stored in separate `GRangesList` objects. For convenience, these `GRanges`, `GRangesList`, and pedigree information are bound in a single container referred to as a `MinDistGRanges` object. The example `MinDistGRanges` object provided in this package was obtained from the segmentation of the data stored in the example `MinDistExperiment` object.

Format

A `MinDistGRanges` object

mindist

Getter and setter for the minimum distance statistic

Description

Getter and setter for the minimum distance statistic

Usage

```
mindist(object)
mindist(object) <- value
```

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>see showMethods("mindist")</td>
<td>a matrix of the minimum distance</td>
</tr>
</tbody>
</table>
MinDistExperiment-class

Constructor for MinDistExperiment class

Description

Constructor for MinDistExperiment class

Usage

MinDistExperiment(object = ArrayViews(), pedigree = ParentOffspring(), ...)

S4 method for signature 'ArrayViews,ParentOffspring'
MinDistExperiment(object = ArrayViews(),
 pedigree = ParentOffspring(), ...)

Arguments

object see showMethods(MinDistExperiment)
pedigree a ParentOffspring object
... ignored

Value

an object of class MinDistExperiment

MinDistExperiment-class

Class and methods for MinDistExperiment

Description

Class and methods for MinDistExperiment

Usage

S4 method for signature 'MinDistExperiment'
show(object)

S4 method for signature 'MinDistExperiment'
pedigree(object)

S4 replacement method for signature 'MinDistExperiment'
pedigree(object) <- value

S4 method for signature 'MinDistExperiment'
mindist(object)

S4 replacement method for signature 'MinDistExperiment,ANY'
mindist(object) <- value

S4 method for signature 'MinDistExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MinDistExperiment'
offspring(object)

S4 method for signature 'MinDistExperiment'
father(object)

S4 method for signature 'MinDistExperiment'
mother(object)

S4 method for signature 'MinDistExperiment'
segment2(object, param = MinDistParam())

S4 method for signature 'RangedSummarizedExperiment'
father(object)

S4 method for signature 'RangedSummarizedExperiment'
mother(object)

S4 method for signature 'RangedSummarizedExperiment'
offspring(object)

Arguments

object a MinDistExperiment object
value a ParentOffspring object
x a MinDistExperiment object
i a numeric-vector for indexing the rows (optional)
j a numeric-vector for indexing the columns (optional)
... additional arguments propogated to subsetting methods for RangedSummarizedExperiment
drop logical. Whether to simplify a one-row or one-column matrix to a vector. In most cases, this should always be FALSE.
param a MinDistParam object

Slots

mindist a matrix
pedigree a ParentOffspring object
Description

The MinDistGRanges class contains the segmentation of the father, mother, offspring, and the minimum distance for each possible parent-offspring trio. For the parents, the segmentation results are expected to be in GRanges format. To accommodate multiple-offspring families, both the offspring segments and minimum distance segments should be of class GRangesList where the length of the list corresponds to the number of offspring.

Usage

MinDistGRanges(mindist = GRangesList(), offspring = GRangesList(),
father = GRanges(), mother = GRanges(), pedigree = ParentOffspring())

Arguments

mindist a GRangesList object
offspring a GRangesList object
father a GRanges object
mother a GRanges object
pedigree a ParentOffspring object

Examples

MinDistGRanges()
MinDistParam

father(object)

S4 method for signature 'MinDistGRanges'
pedigree(object)

S4 method for signature 'MinDistGRanges'
show(object)

S4 method for signature 'GRangesList'
offspring(object)

Arguments

 x a MinDistGRanges object
 object a MinDistGRanges object
 value a GRangesList object

Slots

 mindist a GRangesList object
 offspring a GRangesList object
 father a GRanges object
 mother a GRanges object
 pedigree a ParentOffspring object

Examples

 data(md_gr)
 offspring(md_gr)
 father(md_gr)
 mother(md_gr)
 mindist(md_gr)

MinDistParam Constructor for MinDistParam class

Description

 The MinDistParam class contains parameters used for the segmentation implemented in the DNAcopy package, parameters extracted from the PennCNV HMM such as parent-offspring transmission parobabilities (see citation below), and initial values / parameters for computing emission probabilities.

Usage

 MinDistParam(nMAD = 0.75, dnacopy = DNAcopyParam(), penncnv = PennParam(),
 emission = EmissionParam(), thin = 10L)
Arguments

nMAD a length-one numeric vector indicating the minimal number of median absolute deviations of the mean segmented minimum distance from zero. For non-zero segments (# median absolute deviations > nMAD), maximum a posteriori estimates of the parent-offspring copy number states are computed. Segments with minimum distance values near zero are not called as they are less likely to correspond to regions with de novo copy number alterations.

dnacopy an object of class DNAcopyParam.
penncnv probabilities/parameters of the PennCNV hidden Markov model
emission an object of class EmissionParam
thin a length-one vector indicating whether to thin the data. This is primarily for internal use in conjunction with the filterExperiment function.

See Also

segment

Description

Contains parameters used for circular binary segmentation (package DNAcopy), parameters in the PennCNV hidden Markov model, and parameters used for computing emission probabilities.

Usage

```r
## S4 method for signature 'MinDistParam'
MinDistParam(nMAD(object))

## S4 replacement method for signature 'MinDistParam,numeric'
MinDistParam(object) <- value

## S4 method for signature 'MinDistParam'
show(object)

## S4 method for signature 'DNAcopyParam'
show(object)
```

Arguments

object a MinDistParam object
value a length-one numeric vector.
MinDistPosterior-class

Container for the segmentation results from a MinDistExperiment

Description

MinDistPosterior is a GRangesList-derived container for the segmentation and maximum a posteriori trio copy number states.

Usage

```r
## S4 method for signature 'MinDistPosterior,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
## S4 method for signature 'MinDistPosterior'
show(object)
```

Arguments

- `x` a MinDistPosterior object
- `i` an index for subsetting rows
- `j` an index for subsetting columns
- `...` additional arguments passed to subsetting matrices
- `drop` logical – whether to coerce single-row matrices to vectors
- `object` a MinDistPosterior object

See Also

- `denovo`

MinimumDistance

De novo copy number alterations in parent-offspring trios

Description

De novo copy number alterations in parent-offspring trios
nMAD

Setter and getter for number of median absolute deviations the mean minimum distance of a genomic interval is from zero

Description

Setter and getter for number of median absolute deviations the mean minimum distance of a genomic interval is from zero

Usage

nMAD(object)

nMAD(object) <- value

Arguments

object see showMethods("nMAD")
value a length-one numeric vector

offspringNames

Deprecated functions and methods

Description

These functions will be defunct in a future release.

Usage

offspringNames(object)

offspringNames(object) <- value

trios(object)
pedigree(object)
pedigree(object) <- value

Arguments

object see showMethods("offspringNames")
value a character vector of offspring identifiers
ParentOffspring-class

Object containing the sample identifiers for members in a pedigree

Description

Container for registering sample identifiers with membership in a pedigree. For representing multiple pedigrees, see ParentOffspringList.
Access for the sample identifiers for the members in a pedigree
Constructor for ParentOffspring class

Usage

offspring(object)
mother(object)
father(object)

ParentOffspring(id = character(), father = character(),
mother = character(), offspring = character(), parsedPath = character())

S4 method for signature 'ParentOffspring'
pedigreeName(object)

S4 method for signature 'ParentOffspring'
father(object)

S4 method for signature 'ParentOffspring'
mother(object)

S4 method for signature 'ParentOffspring'
offspring(object)

S4 method for signature 'ParentOffspring'
show(object)

S4 method for signature 'ParentOffspring'
names(x)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>a ParentOffspring object</td>
</tr>
<tr>
<td>id</td>
<td>length-one character vector providing a family-level id</td>
</tr>
<tr>
<td>father</td>
<td>length-one character vector providing sample ids for father</td>
</tr>
<tr>
<td>mother</td>
<td>length-one character vector providing sample ids for mother</td>
</tr>
<tr>
<td>offspring</td>
<td>character vector providing sample ids for offspring (can have length greater than one if there is more than one offspring)</td>
</tr>
<tr>
<td>parsedPath</td>
<td>character vector providing path to low-level data</td>
</tr>
<tr>
<td>x</td>
<td>a ParentOffspring object</td>
</tr>
</tbody>
</table>
Slots

- id length-one character vector providing a family-level id
- father length-one character vector providing sample ids for father
- mother length-one character vector providing sample ids for mother
- offspring character vector providing sample ids for offspring (can have length greater than one if there is more than one offspring)
- parsedPath character vector providing path to parsed files of the marker-level summaries

See Also

ParentOffspringList-class

Examples

ParentOffspring()

A list of ParentOffspring objects

Description

Each element of the list is an element of class ParentOffspring.

Constructor for ParentOffspringList class

Usage

ParentOffspringList(pedigrees = list(), id)

S4 method for signature 'ParentOffspringList'
pedigreeName(object)

S4 method for signature 'ParentOffspringList'
show(object)

S4 method for signature 'ParentOffspringList,ANY,ANY'
x[[i, j, ..., drop = FALSE]]

S4 method for signature 'ParentOffspringList,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ParentOffspringList'
length(x)
Arguments

- **pedigrees**: a list of `ParentOffspring` objects
- **id**: identifier for a pedigree
- **object**: a `ParentOffspringList` object
- **x**: a `ParentOffspringList` object
- **i**: a numeric vector for subsetting the list (optional)
- **j**: ignored
- **...**: ignored
- **drop**: ignored

Slots

- **id**: a character vector of identifiers for the pedigrees. `id` must have the same length as `pedigrees`
- **pedigrees**: A list of `ParentOffspring` objects.

Examples

```r
ParentOffspringList()
```

Pedigree

Deprecated function for constructing an instance of class Pedigree

Description

This function is deprecated and will be removed in a future release.

Usage

```r
Pedigree(pedigreeInfo, fatherIds = character(), motherIds = character(), offspringIds = character())
```

Arguments

- **pedigreeInfo**: a `data.frame` with column names 'F' (father), 'M' (mother), and 'O' (offspring). Elements of the `data.frame` are the sample names.
- **fatherIds**: character vector of identifiers for the father
- **motherIds**: character vector of identifiers for the mother
- **offspringIds**: character vector of identifiers for the offspring

Examples

```r
Pedigree()
```
Pedigree-class Deprecated class for storing pedigree data

Description

Deprecated class for storing pedigree data

Usage

```r
## S4 method for signature 'Pedigree'
trios(object)
```

```r
## S4 method for signature 'Pedigree'
offspringNames(object)
```

```r
## S4 method for signature 'Pedigree'
show(object)
```

```r
## S4 method for signature 'Pedigree,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
```

```r
## S4 method for signature 'Pedigree'
dim(x)
```

Arguments

- `object` a Pedigree object
- `x` a Pedigree object
- `i` a numeric vector for subsetting (optional)
- `j` ignored
- `...` ignored
- `drop` ignored

Slots

- `trios` a data.frame with colnames 'F', 'M', and 'O' containing sample identifiers for the father (F), mother (M), and offspring (O).
- `trioIndex` a data.frame

pedigreeGrid Plot the log R ratios and BAFs on a grid given by precomputed viewports

Description

Plot the log R ratios and BAFs on a grid given by precomputed viewports
pedigreeName

Usage

```r
pedigreeGrid(g, vps, figs)
```

Arguments

- `g`: a MDRanges object
- `vps`: a list of viewports. See `pedigreeViewports`.
- `figs`: a list of trellis objects created by the function `plotDenovo`.

See Also

- `plotDenovo`
- `pedigreeViewports`

Examples

```r
library(VanillaICE)
require(grid)
##marker-level summaries
data(md_exp)
seqlevels(md_exp, force=TRUE) <- "chr22"
## segmentation results
data(md_gr)
posteriorCalls <- MAP2(md_exp, md_gr, MinDistParam())
g <- denovoHemizygous(posteriorCalls)

vps <- MinimumDistance:::pedigreeViewports()
param <- HmmTrellisParam()
p <- plotDenovo(md_exp, g[1], param)
leg <- mdLegend(g[1])
upViewport(0)
pushViewport(vps["legend"])
grid.text(leg, x=unit(0.02, "npc"), y=unit(0.95, "npc"), just=c("left", "top"),
gp=gpar(cex=0.6, fontfamily="mono"))

## combine adjacent denovo hemizygous
##
g2 <- reduce(denovoHemizygous(posteriorCalls), min.gapwidth=500e3)
post <- MAP2(md_exp, g2)
g2 <- denovoHemizygous(post)
p <- plotDenovo(md_exp, g2, param)
p <- pedigreeGrid(g=g2, vps=vps, figs=p)
leg <- mdLegend(g2)
upViewport(0)
pushViewport(vps["legend"])
grid.text(leg, x=unit(0.02, "npc"), y=unit(0.95, "npc"), just=c("left", "top"),
gp=gpar(cex=0.6, fontfamily="mono"))
```

pedigreeName
Accessor for pedigree name

Description

Accessor for pedigree name
Usage

```r
pedigreeName(object)
```

Arguments

- `object` a `ParentOffspring` or `ParentOffspringList` object

See Also

- `ParentOffspring`
- `ParentOffspringList`

pedigreeViewports

Default viewports for plotting log R ratios, BAFs, chromosome idiogram, and a legend for a case-parent trio

Description

Default viewports for plotting log R ratios, BAFs, chromosome idiogram, and a legend for a case-parent trio

Usage

```r
pedigreeViewports()
```

See Also

- `plotDenovo`
- `pedigreeGrid`

Examples

```r
vps <- pedigreeViewports()
```

PennParam

Constructor for class PennParam

Description

Parameters for the PennCNV Hidden Markov model

Usage

```r
PennParam(states, referenceState = "222", prLessLikelyCN = 9e-04, 
prNonMendelian = 1.5e-06, prInitialStateNotDiploid = 4/5, 
prTransitionToNewState = 0.5, tauNM = 0.01)
```

```r
## S4 method for signature 'PennParam'
show(object)
```
plotDenovo

Arguments

- **states**: character vector of possible trio states
- **referenceState**: the reference (normal) trio copy number state (typically '222')
- **prLessLikelyCN**: as defined in Wang et al. 2007, this is the probability of the less likely allele-specific copy numbers for the trio
- **prNonMendelian**: the prior probability of a non-Mendelian copy number alteration
- **prInitialStateNotDiploid**: initial probability for non-diploid states
- **prTransitionToNewState**: probability of transitioning to a new state
- **tauNM**: probability of transitioning from a Mendelian given previous event was non-Mendelian (and vice versa).
- **object**: a PennParam object

References

Wang et al., Genome Res. 2007 Nov;17(11):1665-74. PMID: 17921354

plotDenovo

Plot marker-level summaries for a genomic interval of interest

Description

Plot marker-level summaries for a genomic interval of interest

Usage

```r
plotDenovo(object, g, param)
```

Arguments

- **object**: see showMethods("plotDenovo")
- **g**: a MDRanges object
- **param**: a HmmTrellisParam object
range,ILimit-method compute the range of an ILimit instance

Description

The range method for class ILimit is used internally in MinimumDistance.

Usage

S4 method for signature 'ILimit'
range(x, ..., na.rm = FALSE)

Arguments

x a ILimit object
... ignored
na.rm logical. If TRUE, missing values are removed.

segment2 A wrapper for DNAcopy’s segment function

Description

Methods for circular binary segmentation.

Usage

segment2(object, ...)

S4 method for signature 'TrioSet'
segment2(object, md = NULL, segmentParents = TRUE, verbose = TRUE, ...)

S4 method for signature 'matrix'
segment2(object, pos, chrom, id, featureNames, ...)

S4 method for signature 'ff_matrix'
segment2(object, pos, chrom, id, featureNames, ...)

S4 method for signature 'arrayORff_array'
segment2(object, pos, chrom, id, featureNames, segmentParents = TRUE, verbose = TRUE, ...)
TrioSet

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>see showMethods(segment2)</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to DNAcopy's segment.</td>
</tr>
<tr>
<td>md</td>
<td>a matrix of the minimum distance</td>
</tr>
<tr>
<td>segmentParents</td>
<td>logical. Whether to segment the log R ratios of the parents using circular binary segmentation.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical. Whether to display messages that indicate progress.</td>
</tr>
<tr>
<td>pos</td>
<td>integer vector of physical position of markers in the genome</td>
</tr>
<tr>
<td>chrom</td>
<td>character or integer vector of chromosome names</td>
</tr>
<tr>
<td>id</td>
<td>character vector of trio identifiers for subsetting object</td>
</tr>
<tr>
<td>featureNames</td>
<td>character vector specifying marker names for subsetting object</td>
</tr>
</tbody>
</table>

See Also

segment
segment

Description

The TrioSet class has been deprecated and may be removed in a future release.

Usage

```
TrioSet(pedigreeData = Pedigree(), sample.sheet, row.names = NULL, lrr, baf,  
featureData, cdfname, drop = TRUE, mindist = NULL, genome = c("hg19",  
"hg18"))
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedigreeData</td>
<td>an object of class Pedigree</td>
</tr>
<tr>
<td>sample.sheet</td>
<td>a data.frame containing metadata on the trios</td>
</tr>
<tr>
<td>row.names</td>
<td>a character vector providing row identifiers for the sample. sheet argument that match the names of the trios in the pedigreeData argument.</td>
</tr>
<tr>
<td>lrr</td>
<td>a matrix of log R ratios</td>
</tr>
<tr>
<td>baf</td>
<td>a matrix of B allele frequencies</td>
</tr>
<tr>
<td>featureData</td>
<td>a GenomeAnnotatedDataFrame object for the SNPs/nonpolymorphic markers</td>
</tr>
<tr>
<td>cdfname</td>
<td>character string indicating the annotation package used to extract physical position and chromosome of markers</td>
</tr>
<tr>
<td>drop</td>
<td>logical. When FALSE, the dimnames on the log R ratio and BAF arrays is set to NULL</td>
</tr>
<tr>
<td>mindist</td>
<td>can be either NULL or a matrix of the minimum distance</td>
</tr>
<tr>
<td>genome</td>
<td>character string providing the UCSC genome build</td>
</tr>
</tbody>
</table>
Value

TrioSet

Examples

path <- system.file("extdata", package="MinimumDistance")
load(file.path(path, "logRratio.rda"))
load(file.path(path, "baf.rda"))
load(file.path(path, "pedigreeInfo.rda"))
trioSet <- TrioSet(lrr=logRratio,
baf=baf,
pedigree=Pedigree(pedigreeInfo),
cdfname="human610quadv1bCrlmm",
genome="hg18")

TrioSet-class

Deprecated class for storing low-level genomic data for trios

Description

This class is deprecated and will be defunct in a future release.

Usage

S4 method for signature 'TrioSet'
pedigree(object)

S4 method for signature 'TrioSet'
show(object)

S4 method for signature 'TrioSet'
mindist(object)

S4 replacement method for signature 'TrioSet,matrix'
mindist(object) <- value

S4 method for signature 'TrioSet'
dim(x)

S4 method for signature 'TrioSet'
trios(object)

S4 method for signature 'TrioSet,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'TrioSet,GRanges'
MAP(object, ranges,
 transition_param = TransitionParam(), emission_param = EmissionParam(),
 mdThr = 0.9, ...)

S4 method for signature 'ff_array,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
TrioSetList

Arguments

object a TrioSet object
value a matrix
x a TrioSet object
i a numeric vector for subsetting rows (optional)
j a numeric vector for subsetting trios (optional)
... additional arguments passed to subsetting methods for matrices and data frames
drop logical. Whether to simplify matrices to numeric vectors. This should be left as FALSE.
ranges a GRanges object
transition_param an object of class TransitionParam
emission_param an object of class EmissionParam
mdThr the minimum absolute value of the minimum distance segment mean. Segments with means below mdThr in absolute value will not be called as they are unlikely to be de novo.

Slots

fatherPhenoData AnnotatedDataFrame containing covariates for the father
motherPhenoData AnnotatedDataFrame containing covariates for the mother
pedigree an object of class Pedigree
mindist a numeric matrix of the minimum distance for each trio, or NULL

TrioSetList Constructor for TrioSetList class

Description

The TrioSetList class has been deprecated and may be removed in a future release. Use MinDistExperiment instead.

Usage

TrioSetList(chromosome = integer(), pedigreeData = Pedigree(), sample.sheet, row.names = NULL, lrr, baf, featureData, cdfname, ffname = "", genome)

Arguments

chromosome integer vector of chromosome names
pedigreeData a Pedigree object
sample.sheet a data.frame containing sample covariates
row.names a character vector
lrr a matrix of log R ratios
baf a matrix of B allele frequencies
TrioSetList-class

Description

This class is deprecated and will be defunct in a future release.

Usage

```r
## S4 method for signature 'TrioSetList,RangedSummarizedExperiment'
coerce(from, to)

## S4 method for signature 'TrioSetList'
pedigree(object)

## S4 method for signature 'TrioSetList'
trios(object)

## S4 method for signature 'TrioSetList'
offspringNames(object)

## S4 method for signature 'TrioSetList,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'TrioSetList,ANY,ANY'
x[[i, j, ..., exact = TRUE]]

## S4 method for signature 'TrioSetList'
show(object)

## S4 method for signature 'TrioSetList'
length(x)

## S4 method for signature 'TrioSetList'
x$name

## S4 method for signature 'TrioSetList,GRanges'
MAP(object, ranges, id, TAUP = 1e+10,
    tauMAX = 1 - 5e-08, cnStates = c(-2, -0.4, 0, 0, 0.4, 1),
    pr.nonmendelian = 1.5e-06, mdThr = 0.9, ...)

## S4 method for signature 'TrioSetList'
segment2(object, md = NULL, segmentParents = TRUE,
    verbose = TRUE, ...)
```
S4 method for signature 'list'

segment2(object, pos, chrom, id = NULL, featureNames,
 segmentParents = TRUE, verbose = TRUE, genome, ...)

Arguments

- `object`: a TrioSetList object
- `x`: a TrioSetList
- `i`: a numeric vector for subsetting the chromosomes (optional)
- `j`: a numeric vector for subsetting trios (optional)
- `...`: additional arguments passed to subsetting methods for matrices and data frames
- `drop`: logical. Whether to simplify matrices to numeric vectors. This should be left as FALSE.
- `exact`: ignored
- `name`: character string of a variable name in the phenoData
- `ranges`: a GRanges object
- `id`: a character vector of trio identifiers
- `TAUP`: length-one numeric vector. Larger values decrease the probability of transitioning to a different state.
- `tauMAX`: the maximum allowed transition probability
- `cnStates`: a length-six numeric vector providing initial values for the mean copy number for each of the 6 states
- `pr.nonmendelian`: a length-one numeric vector indicating the probability of a non-Mendelian copy number alteration in the offspring
- `mdThr`: a length-one numeric vector indicating the minimum value of the mean minimum distance. Segments with absolute mean value less than `mdThr` are not called.
- `md`: a list of minimum distance matrices. Length of list should be the same as the length of the TrioSetList object.
- `segmentParents`: logical. Whether to segment the parental log R ratios.
- `verbose`: logical. Whether to display messages indicating progress.
- `pos`: a list of the genomic positions (integers)
- `chrom`: list of chromosome names
- `featureNames`: a list of the marker names
- `genome`: a character vector indicating the UCSC genome build used for the annotation (i.e., 'hg18' or 'hg19').

Slots

- `fatherPhenoData`: AnnotatedDataFrame containing covariates for the father
- `motherPhenoData`: AnnotatedDataFrame containing covariates for the mother
- `pedigree`: an object of class Pedigree
Deprecation Note

TrioSetListLD is deprecated. Use MinDistExperiment instead.

Description

The TrioSetListLD constructor uses ff objects to handle large datasets. This function is defunct. Use MinDistExperiment instead.

Usage

TrioSetListLD(path, fnames, ext = "", samplesheet, row.names, pedigreeData, featureData, annotationPkg, outdir = ldPath(), ffprefix = "", genome = c("hg19", "hg18"))

Arguments

path Path to plain-text files containing log R ratios and B allele frequencies. Files should contain data for a single sample.

fnames Character string providing filenames.

ext Character string indicating whether the fnames has a file extension (e.g., ".txt")

samplesheet (Optional) data.frame containing phenotypic / experimental covariates on the samples. Note that if samplesheet is provided, row.names must be specified.

row.names Character vector indicating the sample id for each row in samplesheet. row.names should be unique and, ideally, correspond to fnames.

pedigreeData An object of class Pedigree.

featureData A GenomeAnnotatedDataFrame.

annotationPkg Character string indicating the annotation package used to extract information on the features (chromosome, physical position, and whether the feature is polymorphic (‘isSnp’)).

outdir Character string indicating the path for storing ff objects. Ignored if the ff package is not loaded.

ffprefix Character string indicating the prefix used to name ff objects. Ignored if the ff package is not loaded.

genome character string indicating UCSC genome build. Only "hg19" is allowed for annotation packages that support a single build. Supported builds for most platforms are "hg18" and "hg19".

Value

A TrioSetList object

See Also

TrioSetList
Index

[,MinDistExperiment,ANY,ANY,ANY-method
calculateMindist,TrioSetList-method
(coerce), 3
calculateMindist,TrioSetList-method
(coerce), 3
calculateMindist,MinDistExperiment-method
(coerce), 4
calculateMindist,MinDistGRanges-method
(coerce), 4
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
calculateMindist,MinDistPosterior-method
(coerce), 5
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
calculateMindist,MinDistPosterior-method
(coerce), 5
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
calculateMindist,MinDistPosterior-method
(coerce), 5
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
calculateMindist,MinDistPosterior-method
(coerce), 5
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
calculateMindist,MinDistPosterior-method
(coerce), 5
calculateMindist,ParentOffspring-class
(coerce), 21
calculateMindist,ParentOffspring-method
(coerce), 21
calculateMindist,Pedigree-class
(coerce), 4
calculateMindist,Pedigree-method
(coerce), 4
calculateMindist,TrioSet-class
(coerce), 4
calculateMindist,TrioSet-method
(coerce), 4
calculateMindist,TrioSetList-class
(coerce), 4
calculateMindist,TrioSetList-method
(coerce), 4
INDEX

ParentOffspring
 (ParentOffspring-class), 21
ParentOffspring-class, 21
ParentOffspringList, 21, 26
ParentOffspringList
 (ParentOffspringList-class), 22
ParentOffspringList-class, 22
Pedigree, 23
pedigree (offspringNames), 20
pedigree, MinDistExperiment-method
 (MinDistExperiment-class), 14
pedigree, MinDistGRanges-method
 (MinDistGRanges-class), 16
pedigree, TrioSet-method
 (TrioSet-class), 30
pedigree, TrioSetList-method
 (TrioSetList-class), 32
Pedigree-class, 24
pedigree <- (offspringNames), 20
pedigree-, MinDistExperiment-method
 (MinDistExperiment-class), 14
pedigreeGrid, 24, 26
pedigreeName, 25
pedigreeName, ParentOffspring-method
 (ParentOffspring-class), 21
pedigreeName, ParentOffspringList-method
 (ParentOffspringList-class), 22
pedigreeViewports, 25, 26
PennParam, 26
plotDenovo, 25, 26, 27
plotDenovo, MinDistExperiment, MDRanges-method
 (plotDenovo), 27

range, ILimit-method, 28

segment, 6, 18, 29
segment2, 28
segment2, arrayORff_array-method
 (segment2), 28
segment2, ff_matrix-method (segment2), 28
segment2, list-method
 (TrioSetList-class), 32
segment2, matrix-method (segment2), 28
segment2, MinDistExperiment-method
 (MinDistExperiment-class), 14
segment2, TrioSet-method (segment2), 28
segment2, TrioSetList-method
 (TrioSetList-class), 32
show, DNAcopyParam-method
 (MinDistParam-class), 18
show, FilterParamMD-method
 (FilterParamMD-class), 8

show, MinDistExperiment-method
 (MinDistExperiment-class), 14
show, MinDistGRanges-method
 (MinDistGRanges-class), 16
show, MinDistParam-method
 (MinDistParam-class), 18
show, MinDistPosterior-method
 (MinDistPosterior-class), 19
show, ParentOffspring-method
 (ParentOffspring-class), 21
show, ParentOffspringList-method
 (ParentOffspringList-class), 22
show, Pedigree-method (Pedigree-class), 24
show, PennParam-method (PennParam), 26
show, TrioSet-method (TrioSet-class), 30
show, TrioSetList-method
 (TrioSetList-class), 32
stack, TrioSetList-method (coerce), 4
stack, TrioSetList-method (coerce), 4
trios (offspringNames), 20
trios, Pedigree-method (Pedigree-class), 24
trios, TrioSet-method (TrioSet-class), 30
trios, TrioSetList-method
 (TrioSetList-class), 32
TrioSet, 29
TrioSet-class, 30
TrioSetList, 31, 34
trioSetList (exampleTrioSetList), 6
TrioSetList-class, 32
TrioSetListLD, 34