Package ‘MinimumDistance’

November 20, 2016

Title A Package for De Novo CNV Detection in Case-Parent Trios
Version 1.18.0
Date 2016-03-05
Author Robert B Scharpf and Ingo Ruczinski
Maintainer Robert B Scharpf <rscharpf@jhu.edu>
Description Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms.
License Artistic-2.0
Depends R (>= 3.3), VanillaICE (>= 1.31.3)
Imports methods, BiocGenerics, Biobase, S4Vectors (>= 0.9.25), IRanges, GenomeInfoDb, GenomicRanges (>= 1.17.16), SummarizedExperiment (>= 0.2.0), oligoClasses, DNAcopy, ff, foreach, matrixStats, lattice, data.table, grid, stats, utils
Suggests human610quadv1bCrlmm (>= 1.0.3), BSgenome.Hsapiens.UCSC.hg18, BSgenome.Hsapiens.UCSC.hg19, SNPchip, RUnit
Collate 'help.R' 'AllClasses.R' 'AllGenerics.R' 'coercion-methods.R'
'datasets.R' 'defunct.R' 'functions.R' 'generator-funs.R'
'lattice-methods.R' 'mad-methods.R'
'methods-AnnotatedDataFrame.R' 'methods-AssayData.R'
'methods-FileViews.R' 'methods-FilterParamMD.R'
'methods-ILimit.R' 'methods-MDRanges.R'
'methods-MinDistExperiment.R' 'methods-MinDistGRanges.R'
'methods-MinDistParam.R' 'methods-MinDistPosterior.R'
'methods-ParentOffspring.R' 'methods-ParentOffspringList.R'
'methods-Pedigree.R' 'methods-PennParam.R'
'methods-ShallowSimpleList.R' 'methods-SummarizedExperiment.R'
'methods-TrioSet.R' 'methods-TrioSetList.R'
'methods-ff_array.R' 'methods-grid.R' 'methods-list.R'
'methods-matrix.R' 'segment2-methods.R' 'utils.R' 'zzz.R'
Enhances snow, doSNOW
LazyLoad yes
biocViews Microarray, SNP, CopyNumberVariation
RoxygenNote 5.0.1
NeedsCompilation no
R topics documented:

<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>acf2</td>
<td>3</td>
</tr>
<tr>
<td>calculateMindist</td>
<td>3</td>
</tr>
<tr>
<td>coerce</td>
<td>4</td>
</tr>
<tr>
<td>denovoHemizygous</td>
<td>5</td>
</tr>
<tr>
<td>DNAcopyParam</td>
<td>6</td>
</tr>
<tr>
<td>exampleTrioSetList</td>
<td>6</td>
</tr>
<tr>
<td>filterExperiment</td>
<td>7</td>
</tr>
<tr>
<td>FilterParamMD</td>
<td>7</td>
</tr>
<tr>
<td>FilterParamMD-class</td>
<td>8</td>
</tr>
<tr>
<td>mad2</td>
<td>9</td>
</tr>
<tr>
<td>MAP</td>
<td>9</td>
</tr>
<tr>
<td>MAP2</td>
<td>10</td>
</tr>
<tr>
<td>mdLegend</td>
<td>11</td>
</tr>
<tr>
<td>MDRanges-class</td>
<td>11</td>
</tr>
<tr>
<td>md_exp</td>
<td>12</td>
</tr>
<tr>
<td>md_gr</td>
<td>13</td>
</tr>
<tr>
<td>mindist</td>
<td>13</td>
</tr>
<tr>
<td>MinDistExperiment</td>
<td>14</td>
</tr>
<tr>
<td>MinDistExperiment-class</td>
<td>14</td>
</tr>
<tr>
<td>MinDistGRanges</td>
<td>15</td>
</tr>
<tr>
<td>MinDistGRanges-class</td>
<td>16</td>
</tr>
<tr>
<td>MinDistParam</td>
<td>17</td>
</tr>
<tr>
<td>MinDistParam-class</td>
<td>18</td>
</tr>
<tr>
<td>MinDistPosterior-class</td>
<td>19</td>
</tr>
<tr>
<td>MinimumDistance</td>
<td>19</td>
</tr>
<tr>
<td>nMAD</td>
<td>20</td>
</tr>
<tr>
<td>offspringNames</td>
<td>20</td>
</tr>
<tr>
<td>ParentOffspring-class</td>
<td>21</td>
</tr>
<tr>
<td>ParentOffspringList-class</td>
<td>22</td>
</tr>
<tr>
<td>Pedigree</td>
<td>23</td>
</tr>
<tr>
<td>Pedigree-class</td>
<td>24</td>
</tr>
<tr>
<td>pedigreeGrid</td>
<td>24</td>
</tr>
<tr>
<td>pedigreeName</td>
<td>25</td>
</tr>
<tr>
<td>pedigreeViewports</td>
<td>26</td>
</tr>
<tr>
<td>PennParam</td>
<td>26</td>
</tr>
<tr>
<td>plotDenoovo</td>
<td>27</td>
</tr>
<tr>
<td>range_ILimit-method</td>
<td>28</td>
</tr>
<tr>
<td>segment2</td>
<td>28</td>
</tr>
<tr>
<td>TrioSet</td>
<td>29</td>
</tr>
<tr>
<td>TrioSet-class</td>
<td>30</td>
</tr>
<tr>
<td>TrioSetList</td>
<td>31</td>
</tr>
<tr>
<td>TrioSetList-class</td>
<td>32</td>
</tr>
<tr>
<td>TrioSetListLD</td>
<td>34</td>
</tr>
</tbody>
</table>

Index

35
Function for computing autocorrelations

Description
By default, this function returns the lag-10 autocorrelations of a numeric vector and omits missing values.

Usage
acf2(x, lag.max = 10, type = c("correlation", "covariance", "partial"), plot = FALSE, na.action = na.omit, demean = TRUE, ...)

Arguments
x a numeric vector
lag.max see acf
type see acf
plot logical, as in acf
na.action ignored. Missing values are automatically omitted.
demean logical, as in acf
... additional arguments passed to acf

See Also
acf

Examples
x <- rnorm(100)
x[5] <- NA
acf2(x)

calculateMindist Deprecated function to calculate the minimum distance

Description
The 'minimum distance' is the minimum signed absolute difference of the parental log R ratios and the offspring log R ratios. Specifically, let IO-Fl denote the absolute difference in the log R ratios comparing offspring to father and IO-Ml the absolute difference in the log R ratios comparing offspring to mother. The minimum distance at a marker is the signed minimum of IO-Ml and IO-Fl. After segmentation of the minimum distance, non-zero segments can indicate a de novo difference in the log R ratio of the offspring and either parent. For example, a positive minimum distance suggests that the log R ratio from the offspring is greater than the log R ratio of either parent.
Usage

calculateMindist(object, ...)

S4 method for signature 'TrioSet'
calculateMindist(object, verbose = TRUE, ...)

S4 method for signature 'TrioSetList'
calculateMindist(object)

S4 method for signature 'list'
calculateMindist(object, outdir = ldPath(), ...)

S4 method for signature 'arrayORff_array'
calculateMindist(object, outdir, center, ...)

S4 method for signature 'matrix'
calculateMindist(object, ...)

Arguments

object see showMethods("calculateMindist")
...
verbose logical. Whether to display messages indicating progress.
outdir character string indicating path to save output
center ignored

Description

Coercion methods in MinimumDistance package

Coerces a TrioSetList to a TrioSet

Usage

as(from, to)

S4 method for signature 'TrioSetList'
stack(x, ...)

Arguments

x a TrioSetList
...
ignored
from see showMethods("coerce")
to see showMethods("coerce")

Value

a TrioSet
denovoHemizygous

Filter the genomic intervals for denovo copy number states

Description
This function filters the genomic intervals for denovo events.

Usage

denovoHemizygous(object, filters = FilterParamMD(state = "221"))
denovoHomozygous(object, filters = FilterParamMD(state = "220"))
denovo(object, filters = FilterParamMD(state = c("220", "221", "224")))
denovoDuplication(object, filters = FilterParamMD(state = "224"))

S4 method for signature 'MinDistPosterior'
denovoHemizygous(object,
 filters = FilterParamMD(state = "221"))

S4 method for signature 'MinDistPosterior'
denovoHomozygous(object,
 filters = FilterParamMD(state = "220"))

S4 method for signature 'MinDistPosterior'
denovoDuplication(object,
 filters = FilterParamMD(state = "224"))

S4 method for signature 'MinDistPosterior'
denovo(object, filters = FilterParamMD(state =
 c("220", "221", "224")))

Arguments

object see showMethods(denovo) for a list of defined methods

filters an object of class FilterParamMD

Details
The function denovo filters genomic intervals for states '220', '221', and '224', corresponding to
denovo homozygous deletion, denovo hemizygous deletion, and denovo duplication, respectively.
denovoHemizygous filters genomic intervals for state '221'.
denovoHomozygous filters genomic intervals for state '220'

See Also

FilterParamMD-class
DNAcopyParam

Constructor for DNAcopyParam class

Description

Creates an instance of a parameter class for circular binary segmentation of the minimum distance and the log R ratios. Parameters in this object are passed to the `segment` function in the package DNAcopy.

Usage

```r
DNAcopyParam(alpha = 0.01, min.width = 2L, undo.splits = c("none", "prune", "sdundo"), undo.SD = 3)
```

Arguments

- `alpha`
- `min.width`
- `undo.splits`
- `undo.SD`

See Also

`segment`

Examples

```r
segment_params <- DNAcopyParam(alpha=0.01)
params <- MinDistParam(dnacopy=segment_params)
```

exampleTrioSetList

An example TrioSetList object

Description

A dataset containing log R ratios and B allele frequencies for two chromosomes, organized as a TrioSetList. Each element in the list class is a TrioSet object. Both TrioSetList and TrioSet classes are deprecated; the example data will be removed in a future release.

Format

a TrioSetList
Methods for filtering MinDistExperiment objects

Description
Filter a MinDistExperiment object to exclude markers with missing values in the low-level summaries, exclude markers that lie in segments (granges argument) with small minimum distance values (unlikely to be de novo).

Usage

```r
filterExperiment(object, granges, param)
```

S4 method for signature 'MinDistExperiment,GRanges'

```r
filterExperiment(object, granges, param)
```

S4 method for signature 'MinDistExperiment,GRangesList'

```r
filterExperiment(object, granges, param)
```

S4 method for signature 'MinDistExperiment,MinDistGRanges'

```r
filterExperiment(object, granges, param)
```

Arguments

- `object`: A MinDistExperiment
- `granges`: A GRanges, GRangesList, or MinDistGRanges object
- `param`: a MinDistParam object

Value

a MinDistExperiment

FilterParamMD Parameters for filtering results from the segmentation and copy number inference

Description
A container for criteria used to filter the segmentation results post-hoc. Options including filtering on the posterior call, the posterior probability of the posterior call, the minimum number of markers spanned by the segment, the minimum width of the segment, and chromosome. Convenience functions are available for commonly used filters.

Usage

```r
FilterParamMD(state = trioStateNames(), seqnames = paste0("chr", 1:22), ...)
```
Arguments

state trio copy number states to select
seqnames chromosome names to select
... additional arguments passed to FilterParam

Examples

library(VanillaICE)
data(md_gr)
data(md_exp)
mdparam <- MinDistParam()
fit <- MAP2(md_exp, md_gr, mdparam)
return all segments
segs(fit)

Default filters
param <- FilterParamMD()
param
cnvFilter(fit, param)

param2 <- FilterParamMD(seqnames="chr22", probability=0.9, numberFeatures=10)
cnvFilter(fit, param2)
denovoHemizygous(fit)

FilterParamMD-class A class for filtering genomic intervals called by MinimumDistance

Description

Options for filtering include the number of markers spanned by a segment, the posterior probability of the maximum a posteriori estimate of the trio copy number state, and the trio copy number state.

Usage

S4 method for signature 'FilterParamMD'
show(object)

Arguments

object a FilterParamMD object

See Also
denovo
Description

Deprecated wrapper for computing the median absolute deviation of low-level summaries

Usage

mad2(object, byrow = FALSE, ...)

S4 method for signature 'list'
mad2(object, byrow, pedigree, ...)

S4 method for signature 'TrioSetList'
mad2(object, byrow = FALSE, ...)

S4 method for signature 'matrix'
mad2(object, byrow, pedigree, ...)

S4 method for signature 'array'
mad2(object, byrow, pedigree, ...)

Arguments

object see showMethods("mad2")
byrow logical if TRUE, compute the median absolute deviation of the rows of a matrix
... additional arguments to mad
pedigree an object of class Pedigree

MAP

Computes the maximum a posteriori trio copy number state for the segmented minimum distance

Description

This function is deprecated and will be defunct in a future release. The replacement function is MAP2.

Usage

MAP(object, ranges, id, TAUP = 1e+10, tauMAX = 1 - 5e-08, cnStates = c(-2, -0.4, 0, 0, 0.4, 1), pr.nonmendelian = 1.5e-06, mdThr = 0.9, ...)
Arguments

- **object**: see `showMethods(MAP)`
- **ranges**: A GRanges object
- **id**: character string for sample identifier
- **TAUP**: scalar for transition probabilities
- **tauMAX**: the maximum probability that the current state is the same as the previous state
- **cnStates**: character vector for hidden Markov model state labels
- **pr.nonmendelian**: numeric: the a priori probability of a non-Mendelian copy number alteration
- **mdThr**: a length-one numeric vector. A minimum distance below this threshold in absolute value will not be evaluated for copy number alterations.
- **...**: Ignored.

Description

Computes maximum a posteriori estimate for the trio copy number state

Usage

```r
MAP2(object, mdgr, param = MinDistParam(), ...)
```

S4 method for signature 'MinDistExperiment,MinDistGRanges'

```r
MAP2(object, mdgr, 
    param = MinDistParam(), ...)
```

S4 method for signature 'MinDistExperiment,GRangesList'

```r
MAP2(object, mdgr, 
    param = MinDistParam(), ...)
```

S4 method for signature 'MinDistExperiment,GRanges'

```r
MAP2(object, mdgr, 
    param = MinDistParam(), ...)
```

Arguments

- **object**: An object of class MinDistExperiment
- **mdgr**: An object of class MinDistGRanges, GRangesList, or GRanges.
- **param**: An object of class MinDistParam.
- **...**: ignored

Value

An object of class MinDistPosterior
Examples

```r
library(oligoClasses)
library(VanillaICE)
## A MinDistExperiment object:
data(md_exp)
## Segmented data
data(md_gr)
e_param <- EmissionParam(temper=1, p_outlier=1/100)
param <- MinDistParam(thin=1L, emission=e_param)
## Not run:
md_g <- MAP2(md_exp, md_gr, param)
## End(Not run)
```

mdLegend

Text summary of information encapsulated in a MDRanges object for a particular interval

Description

Text summary of information encapsulated in a MDRanges object for a particular interval

Usage

```r
mdLegend(g)
```

Arguments

- `g` a MDRanges object

MDRanges-class

A GRanges-derived class

Description

Contains maximum a posteriori estimates for each genomic interval

Usage

```r
MDRanges(..., posteriors)
```

Arguments

- `...` additional arguments to GRanges constructor
- `posteriors` a DataFrame

Examples

```r
MDRanges()
```
Description

This dataset contains log R ratios and B allele frequencies from a parent-offspring trio (three individuals). Only markers from chromosomes 7 and 22 are included in this object. The MinDistExperiment class extends RangedSummarizedExperiment, and so many of the methods defined for RangedSummarizedExperiment such as findOverlaps are available through inheritance.

Format

a MinDistExperiment

Examples

```r
## Not run:
library(oligoClasses)
library(VanillaICE)
library(data.table)
library(BSgenome.Hsapiens.UCSC.hg18)
extdir <- system.file("extdata", package="VanillaICE")
features <- suppressWarnings(fread(file.path(extdir, "SNP_info.csv")))
fg <- GRanges(paste0("chr", features$Chr), IRanges(features$Position, width=1),
isSnp=features[["Intensity Only"]]==0)
fg <- SnpGRanges(fg)
names(fg) <- features[["Name"]]
s1 <- seqlevels(BSgenome.Hsapiens.UCSC.hg18)
seqlevels(fg) <- s1[s1 %in% seqlevels(fg)]
seqinfo(fg) <- seqinfo(BSgenome.Hsapiens.UCSC.hg18)[seqlevels(fg),]
fg <- sort(fg)
files <- list.files(extdir, full.names=TRUE, recursive=TRUE, pattern="FinalReport")
## parse files
parsedDir <- "ParsedFiles"
if(!file.exists(parsedDir)) dir.create(parsedDir)
views <- ArrayViews(rowRanges=fg, sourcePaths=files, parsedPath=parsedDir)
dat <- fread(files[1])
select_columns <- match(c("SNP Name", "Allele1 - AB", "Allele2 - AB",
"Log R Ratio", "B Allele Freq"), names(dat))
index_genome <- match(names(fg), dat[["SNP Name"]])
scan_params <- CopyNumScanParams(index_genome=index_genome, select=select_columns,
cnvar="Log R Ratio",
bafvar="B Allele Freq",
gtvar=c("Allele1 - AB", "Allele2 - AB"))
invisible(sapply(views, parseSourceFile, param=scan_params))
ped_hapmap <- ParentOffspring(id = "hapmap", father="12287_03",
  mother="12287_02",
  offspring="12287_01",
  parsedPath=parsedPath(views))
ped_list <- ParentOffspringList(pedigrees=list(
  ParentOffspring(id = "hapmap", father="12287_03",
    mother="12287_02",
    offspring="12287_01",
    parsedPath=parsedPath(views)),
```
```
Prior to inferring de novo trio copy number states, the log R ratios are segmented independently for each individual in a `ParentOffspring` class. The segmentation results are recorded in separate `GRanges` objects for the parents. For segmentation of the offspring log R ratios and the minimum distance, the segments are stored in separate `GRangesList` objects. For convenience, these `GRanges`, `GRangesList`, and pedigree information are bound in a single container referred to as a `MinDistGRanges` object. The example `MinDistGRanges` object provided in this package was obtained from the segmentation of the data stored in the example `MinDistExperiment` object.

**Format**

A `MinDistGRanges` object

**mindist**

**Description**

Getter and setter for the minimum distance statistic

**Usage**

```
mindist(object)
mindist(object) <- value
```

**Arguments**

- `object` see `showMethods("mindist")`
- `value` a matrix of the minimum distance
MinDistExperiment-class

Constructor for MinDistExperiment class

Description

Constructor for MinDistExperiment class

Usage

MinDistExperiment(object = ArrayViews(), pedigree = ParentOffspring(), ...)

## S4 method for signature 'ArrayViews,ParentOffspring'
MinDistExperiment(object = ArrayViews(),
pedigree = ParentOffspring(), ...)

Arguments

object see showMethods(MinDistExperiment)
pedigree a ParentOffspring object
... ignored

Value

an object of class MinDistExperiment

MinDistExperiment-class

Class and methods for MinDistExperiment

Description

Class and methods for MinDistExperiment

Usage

## S4 method for signature 'MinDistExperiment'
show(object)

## S4 method for signature 'MinDistExperiment'
pedigree(object)

## S4 replacement method for signature 'MinDistExperiment'
pedigree(object) <- value

## S4 method for signature 'MinDistExperiment'
mindist(object)

## S4 replacement method for signature 'MinDistExperiment,ANY'
mindist(object) <- value

## S4 method for signature 'MinDistExperiment,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'MinDistExperiment'
offspring(object)

## S4 method for signature 'MinDistExperiment'
father(object)

## S4 method for signature 'MinDistExperiment'
mother(object)

## S4 method for signature 'MinDistExperiment'
segment2(object, param = MinDistParam())

## S4 method for signature 'RangedSummarizedExperiment'
father(object)

## S4 method for signature 'RangedSummarizedExperiment'
mother(object)

## S4 method for signature 'RangedSummarizedExperiment'
offspring(object)

### Arguments

**object**  
a MinDistExperiment object

**value**  
a ParentOffspring object

**x**  
a MinDistExperiment object

**i**  
a numeric-vector for indexing the rows (optional)

**j**  
a numeric-vector for indexing the columns (optional)

**...**  
additional arguments propogated to subsetting methods for RangedSummarizedExperiment

**drop**  
logical. Whether to simplify a one-row or one-column matrix to a vector. In most cases, this should always be FALSE.

**param**  
a MinDistParam object

### Slots

- **mindist**  
a matrix

- **pedigree**  
a ParentOffspring object
Description

The MinDistGRanges class contains the segmentation of the father, mother, offspring, and the minimum distance for each possible parent-offspring trio. For the parents, the segmentation results are expected to be in GRanges format. To accommodate multiple-offspring families, both the offspring segments and minimum distance segments should be of class GRangesList where the length of the list corresponds to the number of offspring.

Usage

MinDistGRanges(mindist = GRangesList(), offspring = GRangesList(),
father = GRanges(), mother = GRanges(), pedigree = ParentOffspring())

Arguments

- **mindist**: a GRangesList object
- **offspring**: a GRangesList object
- **father**: a GRanges object
- **mother**: a GRanges object
- **pedigree**: a ParentOffspring object

Examples

MinDistGRanges()
MinDistParam

father(object)

## S4 method for signature 'MinDistGRanges'
pedigree(object)

## S4 method for signature 'MinDistGRanges'
show(object)

## S4 method for signature 'GRangesList'
offspring(object)

Arguments

x a MinDistGRanges object
object a MinDistGRanges object
value a GRangesList object

Slots

mindist a GRangesList object
offspring a GRangesList object
father a GRanges object
mother a GRanges object
pedigree a ParentOffspring object

Examples

data(md_gr)
offspring(md_gr)
father(md_gr)
mother(md_gr)
mindist(md_gr)

MinDistParam Constructor for MinDistParam class

Description

The MinDistParam class contains parameters used for the segmentation implemented in the DNAcopy package, parameters extracted from the PennCNV HMM such as parent-offspring transmission probabilities (see citation below), and initial values / parameters for computing emission probabilities.

Usage

MinDistParam(nMAD = 0.75, dnacopy = DNAcopyParam(), penncnv = PennParam(), emission = EmissionParam(), thin = 10L)
Arguments

nMAD  a length-one numeric vector indicating the minimal number of median absolute deviations of the mean segmented minimum distance from zero. For non-zero segments (# median absolute deviations > nMAD), maximum a posteriori estimates of the parent-offspring copy number states are computed. Segments with minimum distance values near zero are not called as they are less likely to correspond to regions with de novo copy number alterations.

dnacopy  an object of class DNAcopyParam.

pennncnv  probabilities/parameters of the PennCNV hidden Markov model

emission  an object of class EmissionParam

thin  a length-one vector indicating whether to thin the data. This is primarily for internal use in conjunction with the filterExperiment function.

See Also

segment

MinDistParam-class  Class and methods for parameters of minimum distance algorithm

Description

Contains parameters used for circular binary segmentation (package DNAcopy), parameters in the PennCNV hidden Markov model, and parameters used for computing emission probabilities.

Usage

## S4 method for signature 'MinDistParam'
MinDistParam

nMAD(object)

## S4 replacement method for signature 'MinDistParam,numeric'
nMAD(object) <- value

## S4 method for signature 'MinDistParam'
show(object)

## S4 method for signature 'DNAcopyParam'
show(object)

Arguments

object  a MinDistParam object

value  a length-one numeric vector.
MinDistPosterior-class

Slots

- `nMAD`: a length-one numeric vector
- `dnacopy`: an object of class `DNAcopyParam`
- `pennCnv`: an object of class `PennParam`
- `emission`: an object of class `EmissionParam`
- `thin`: a length-one non-negative integer

**Description**

MinDistPosterior is a GRangesList-derived container for the segmentation and maximum a posteriori trio copy number states.

**Usage**

```r
S4 method for signature 'MinDistPosterior,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MinDistPosterior'
show(object)
```

**Arguments**

- `x`: a `MinDistPosterior` object
- `i`: an index for subsetting rows
- `j`: an index for subsetting columns
- `...`: additional arguments passed to subsetting matrices
- `drop`: logical – whether to coerce single-row matrices to vectors

**See Also**

- `denovo`

---

MinimumDistance

*De novo copy number alterations in parent-offspring trios*

**Description**

De novo copy number alterations in parent-offspring trios
**nMAD**  
*Setter and getter for number of median absolute deviations the mean minimum distance of a genomic interval is from zero*

---

**Description**

Setter and getter for number of median absolute deviations the mean minimum distance of a genomic interval is from zero

**Usage**

```r
nMAD(object)
```

```r
nMAD(object) <- value
```

**Arguments**

- `object` see `showMethods("nMAD")`
- `value` a length-one numeric vector

---

**offspringNames**  
*Deprecated functions and methods*

---

**Description**

These functions will be defunct in a future release.

**Usage**

```r
offspringNames(object)
```

```r
offspringNames(object) <- value
```

```r
trios(object)
```

```r
pedigree(object)
```

```r
pedigree(object) <- value
```

**Arguments**

- `object` see `showMethods("offspringNames")`
- `value` a character vector of offspring identifiers
ParentOffspring-class  Object containing the sample identifiers for members in a pedigree

Description

Container for registering sample identifiers with membership in a pedigree. For representing multiple pedigrees, see ParentOffspringList.

Accessor for the sample identifiers for the members in a pedigree

Constructor for ParentOffspring class

Usage

offspring(object)
mother(object)
father(object)

ParentOffspring(id = character(), father = character(),
mother = character(), offspring = character(), parsedPath = character())

## S4 method for signature 'ParentOffspring'
pedigreeName(object)

## S4 method for signature 'ParentOffspring'
father(object)

## S4 method for signature 'ParentOffspring'
mother(object)

## S4 method for signature 'ParentOffspring'
offspring(object)

## S4 method for signature 'ParentOffspring'
show(object)

## S4 method for signature 'ParentOffspring'
names(x)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>a ParentOffspring object</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>length-one character vector providing a family-level id</td>
</tr>
<tr>
<td>father</td>
<td>length-one character vector providing sample ids for father</td>
</tr>
<tr>
<td>mother</td>
<td>length-one character vector providing sample ids for mother</td>
</tr>
<tr>
<td>offspring</td>
<td>character vector providing sample ids for offspring (can have length greater than one if there is more than one offspring)</td>
</tr>
<tr>
<td>parsedPath</td>
<td>character vector providing path to low-level data</td>
</tr>
<tr>
<td>x</td>
<td>a ParentOffspring object</td>
</tr>
</tbody>
</table>
Slots

id  length-one character vector providing a family-level id
father  length-one character vector providing sample ids for father
mother  length-one character vector providing sample ids for mother
offspring  character vector providing sample ids for offspring (can have length greater than one if there is more than one offspring)
parsedPath  character vector providing path to parsed files of the marker-level summaries

See Also

ParentOffspringList-class

Examples

ParentOffspring()

ParentOffspringList-class

A list of ParentOffspring objects

Description

Each element of the list is an element of class ParentOffspring. Constructor for ParentOffspringList class

Usage

ParentOffspringList(pedigrees = list(), id)

## S4 method for signature 'ParentOffspringList'
pedigreeName(object)

## S4 method for signature 'ParentOffspringList'
show(object)

## S4 method for signature 'ParentOffspringList,ANY,ANY'
x[[i, j, ..., drop = FALSE]]

## S4 method for signature 'ParentOffspringList,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'ParentOffspringList'
length(x)
Pedigree

Arguments

- **pedigrees**: a list of ParentOffspring objects
- **id**: identifier for a pedigree
- **object**: a ParentOffspringList object
- **x**: a ParentOffspringList object
- **i**: a numeric vector for subsetting the list (optional)
- **j**: ignored
- **...**: ignored
- **drop**: ignored

Slots

- **id**: a character vector of identifiers for the pedigrees. **id** must have the same length as **pedigrees**
- **pedigrees**: A list of ParentOffspring objects.

Examples

ParentOffspringList()
Pedigree-class

Deprecated class for storing pedigree data

Description

Deprecated class for storing pedigree data

Usage

## S4 method for signature 'Pedigree'
trios(object)

## S4 method for signature 'Pedigree'
offspringNames(object)

## S4 method for signature 'Pedigree'
show(object)

## S4 method for signature 'Pedigree,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'Pedigree'
dim(x)

Arguments

object a Pedigree object
x a Pedigree object
i a numeric vector for subsetting (optional)
j ignored
... ignored
drop ignored

Slots

trios a data.frame with colnames 'F', 'M', and 'O' containing sample identifiers for the father (F), mother (M), and offspring (O).
trioIndex a data.frame

pedigreeGrid

Plot the log R ratios and BAFs on a grid given by precomputed viewports

Description

Plot the log R ratios and BAFs on a grid given by precomputed viewports
pedigreeName

Usage

pedigreeGrid(g, vps, figs)

Arguments

g  a MDRanges object
vps  a list of viewports. See pedigreeViewports.
figs  a list of trellis objects created by the function plotDenovo.

See Also

plotDenovo pedigreeViewports

Examples

library(VanillaICE)
require(grid)
##marker-level summaries
data(md_exp)
seqlevels(md_exp, force=TRUE) <- "chr22"
## segmentation results
data(md_gr)
priorCalls <- MAP2(md_exp, md_gr, MinDistParam())
g <- denovoHemizygous(priorCalls)
g
vps <- MinimumDistance:::pedigreeViewports()
param <- HmmTrellisParam()
p <- plotDenovo(md_exp, g[[1]], param)
leg <- mdLegend(g[[1]])
upViewport(0)
pushViewport(vps["legend"])
grid.text(leg, x=unit(0.02, "npc"), y=unit(0.95, "npc"), just=c("left", "top"),
gp=gpar(cex=0.6, fontfamily="mono"))
##
## combine adjacent denovo hemizygous
##
g2 <- reduce(denovoHemizygous(priorCalls), min.gapwidth=500e3)
post <- MAP2(md_exp, g2)
g2 <- denovoHemizygous(post)
p <- plotDenovo(md_exp, g2, param)
p <- pedigreeGrid(g=g2, vps=vps, figs=p)
leg <- mdLegend(g2)
upViewport(0)
pushViewport(vps["legend"])
grid.text(leg, x=unit(0.02, "npc"), y=unit(0.95, "npc"), just=c("left", "top"),
gp=gpar(cex=0.6, fontfamily="mono"))

pedigreeName  Accessor for pedigree name

Description

Accessor for pedigree name
Usage
pedigreeName(object)

Arguments
object a ParentOffspring or ParentOffspringList object

See Also
ParentOffspring ParentOffspringList

pedigreeViewports Default viewports for plotting log R ratios, BAFs, chromosome idio-
gram, and a legend for a case-parent trio

Description
Default viewports for plotting log R ratios, BAFs, chromosome idio-
gram, and a legend for a case-parent trio

Usage
pedigreeViewports()

See Also
plotDenovo pedigreeGrid

Examples
vps <- pedigreeViewports()

PennParam Constructor for class PennParam

Description
Parameters for the PennCNV Hidden Markov model

Usage
PennParam(states, referenceState = "222", prLessLikelyCN = 9e-04,
prNonMendelian = 1.5e-06, prInitialStateNotDiploid = 4/5,
prTransitionToNewState = 0.5, tauNM = 0.01)

## S4 method for signature 'PennParam'
show(object)
Arguments

- **states**: character vector of possible trio states
- **referenceState**: the reference (normal) trio copy number state (typically '222')
- **prLess LikelyCN**: as defined in Wang et al. 2007, this is the probability of the less likely allele-specific copy numbers for the trio
- **prNonMendelian**: the prior probability of a non-Mendelian copy number alteration
- **prInitialStateNotDiploid**: initial probability for non-diploid states
- **prTransitionToNewState**: probability of transitioning to a new state
- **tauNM**: probability of transitioning from a Mendelian given previous event was non-Mendelian (and vice versa).
- **object**: a PennParam object

References

Wang et al., Genome Res. 2007 Nov;17(11):1665-74. PMID: 17921354

---

**plotDenovo**

*Plot marker-level summaries for a genomic interval of interest*

**Description**

Plot marker-level summaries for a genomic interval of interest

**Usage**

```r
plotDenovo(object, g, param)
```

## S4 method for signature 'MinDistExperiment,MDRanges'

```r
plotDenovo(object, g, param)
```

**Arguments**

- **object**: see `showMethods("plotDenovo")`
- **g**: a MDRanges object
- **param**: a HmmTrellisParam object
range,ILimit-method  compute the range of an ILimit instance

Description

The range method for class ILimit is used internally in MinimumDistance.

Usage

```r
S4 method for signature 'ILimit'
range(x, ..., na.rm = FALSE)
```

Arguments

- `x`  a ILimit object
- `...`  ignored
- `na.rm`  logical. If TRUE, missing values are removed.

A wrapper for DNAcopy’s segment function

Description

Methods for circular binary segmentation.

Usage

```r
segment2(object, ...)
```

```r
S4 method for signature 'TrioSet'
segment2(object, md = NULL, segmentParents = TRUE, verbose = TRUE, ...)
```

```r
S4 method for signature 'matrix'
segment2(object, pos, chrom, id, featureNames, ...)
```

```r
S4 method for signature 'ff_matrix'
segment2(object, pos, chrom, id, featureNames, ...)
```

```r
S4 method for signature 'arrayORff_array'
segment2(object, pos, chrom, id, featureNames, segmentParents = TRUE, verbose = TRUE, ...)
```
TrioSet

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>see showMethods(segment2)</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to DNACopy's segment.</td>
</tr>
<tr>
<td>md</td>
<td>a matrix of the minimum distance</td>
</tr>
<tr>
<td>segmentParents</td>
<td>logical. Whether to segment the log R ratios of the parents using circular</td>
</tr>
<tr>
<td></td>
<td>binary segmentation.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical. Whether to display messages that indicate progress.</td>
</tr>
<tr>
<td>pos</td>
<td>integer vector of physical position of markers in the genome</td>
</tr>
<tr>
<td>chrom</td>
<td>character or integer vector of chromosome names</td>
</tr>
<tr>
<td>id</td>
<td>character vector of trio identifiers for subsetting object</td>
</tr>
<tr>
<td>featureNames</td>
<td>character vector specifying marker names for subsetting object</td>
</tr>
</tbody>
</table>

See Also

segment

Description

The TrioSet class has been deprecated and may be removed in a future release.

Usage

TrioSet(pedigreeData = Pedigree(), sample.sheet, row.names = NULL, lrr, baf, featureData, cdfname, drop = TRUE, mindist = NULL, genome = c("hg19", "hg18"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedigreeData</td>
<td>an object of class Pedigree</td>
</tr>
<tr>
<td>sample.sheet</td>
<td>a data.frame containing metadata on the trios</td>
</tr>
<tr>
<td>row.names</td>
<td>a character vector providing row identifiers for the sample. sheet argument</td>
</tr>
<tr>
<td></td>
<td>that match the names of the trios in the pedigreeData argument.</td>
</tr>
<tr>
<td>lrr</td>
<td>a matrix of log R ratios</td>
</tr>
<tr>
<td>baf</td>
<td>a matrix of B allele frequencies</td>
</tr>
<tr>
<td>featureData</td>
<td>a GenomeAnnotatedDataFrame object for the SNPs/nonpolymorphic markers</td>
</tr>
<tr>
<td>cdfname</td>
<td>character string indicating the annotation package used to extract physical</td>
</tr>
<tr>
<td></td>
<td>position and chromosome of markers</td>
</tr>
<tr>
<td>drop</td>
<td>logical. When FALSE, the dimnames on the log R ratio and BAF arrays is set</td>
</tr>
<tr>
<td></td>
<td>to NULL</td>
</tr>
<tr>
<td>mindist</td>
<td>can be either NULL or a matrix of the minimum distance</td>
</tr>
<tr>
<td>genome</td>
<td>character string providing the UCSC genome build</td>
</tr>
</tbody>
</table>
TrioSet-class

Value

TrioSet

Examples

path <- system.file("extdata", package="MinimumDistance")
load(file.path(path, "logRratio.rda"))
load(file.path(path, "baf.rda"))
load(file.path(path, "pedigreeInfo.rda"))
trioSet <- TrioSet(lrr=logRratio,
                baf=baf,
                pedigree=Pedigree(pedigreeInfo),
                cdfname="human610quadv1bCrlmm",
                genome="hg18")

TrioSet-class  

Deprecated class for storing low-level genomic data for trios

Description

This class is deprecated and will be defunct in a future release.

Usage

## S4 method for signature 'TrioSet'
pedigree(object)

## S4 method for signature 'TrioSet'
show(object)

## S4 method for signature 'TrioSet'
mindist(object)

## S4 replacement method for signature 'TrioSet,matrix'
mindist(object) <- value

## S4 method for signature 'TrioSet'
dim(x)

## S4 method for signature 'TrioSet'
trios(object)

## S4 method for signature 'TrioSet,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'TrioSet,GRanges'
MAP(object, ranges,
     transition_param = TransitionParam(), emission_param = EmissionParam(),
     mdThr = 0.9, ...)

## S4 method for signature 'ff_array,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]
The TrioSetList class has been deprecated and may be removed in a future release. Use MinDistExperiment instead.

Usage

TrioSetList(chromosome = integer(), pedigreeData = Pedigree(), sample.sheet, row.names = NULL, lrr, baf, featureData, cdfname, ffname = "", genome)

Arguments

chromosome integer vector of chromosome names
pedigreeData a Pedigree object
sample.sheet a data.frame containing sample covariates
row.names a character vector
lrr a matrix of log R ratios
baf a matrix of B allele frequencies
TrioSetList-class

Description

This class is deprecated and will be defunct in a future release.

Usage

```r
S4 method for signature 'TrioSetList,RangedSummarizedExperiment'
coerce(from, to)

S4 method for signature 'TrioSetList'
pedigree(object)

S4 method for signature 'TrioSetList'
trios(object)

S4 method for signature 'TrioSetList'
offspringNames(object)

S4 method for signature 'TrioSetList,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'TrioSetList,ANY,ANY'
x[[i, j, ..., exact = TRUE]]

S4 method for signature 'TrioSetList'
show(object)

S4 method for signature 'TrioSetList'
length(x)

S4 method for signature 'TrioSetList'
x$name

S4 method for signature 'TrioSetList,GRanges'
MAP(object, ranges, id, TAUP = 1e+10,
 tauMAX = 1 - 5e-08, cnStates = c(-2, -0.4, 0, 0, 0.4, 1),
 pr.nonmendelian = 1.5e-06, mdThr = 0.9, ...)

S4 method for signature 'TrioSetList'
segment2(object, md = NULL, segmentParents = TRUE,
 verbose = TRUE, ...)
```
## S4 method for signature 'list'
segment2(object, pos, chrom, id = NULL, featureNames,
        segmentParents = TRUE, verbose = TRUE, genome, ...)

### Arguments

- **from**
  - A TrioSetList
- **to**
  - A RangedSummarizedExperiment
- **object**
  - A TrioSetList object
- **x**
  - A TrioSetList
- **i**
  - A numeric vector for subsetting the chromosomes (optional)
- **j**
  - A numeric vector for subsetting trios (optional)
- **...**
  - Additional arguments passed to subsetting methods for matrices and data frames
- **drop**
  - Logical. Whether to simplify matrices to numeric vectors. This should be left as FALSE.
- **exact**
  - Ignored
- **name**
  - Character string of a variable name in the phenoData
- **ranges**
  - A GRanges object
- **id**
  - A character vector of trio identifiers
- **TAUP**
  - A length-one numeric vector. Larger values decrease the probability of transitioning to a different state.
- **tauMAX**
  - The maximum allowed transition probability
- **cnStates**
  - A length-six numeric vector providing initial values for the mean copy number for each of the 6 states
- **pr.nonmendelian**
  - A length-one numeric vector indicating the probability of a non-Mendelian copy number alteration in the offspring
- **mdThr**
  - A length-one numeric vector indicating the minimum value of the mean minimum distance. Segments with absolute mean value less than mdThr are not called.
- **md**
  - A list of minimum distance matrices. Length of list should be the same as the length of the TrioSetList object.
- **segmentParents**
  - Logical. Whether to segment the parental log R ratios.
- **verbose**
  - Logical. Whether to display messages indicating progress.
- **pos**
  - A list of the genomic positions (integers)
- **chrom**
  - List of chromosome names
- **featureNames**
  - A list of the marker names
- **genome**
  - A character vector indicating the UCSC genome build used for the annotation (i.e., 'hg18' or 'hg19').

### Slots

- **fatherPhenoData**
  - AnnotatedDataFrame containing covariates for the father
- **motherPhenoData**
  - AnnotatedDataFrame containing covariates for the mother
- **pedigree**
  - An object of class Pedigree
TrioSetListLD

Description

The TrioSetListLD constructor uses ff objects to handle large datasets. This function is defunct. Use MinDistExperiment instead.

Usage

TrioSetListLD(path, fnames, ext = "", samplesheet, row.names, pedigreeData, featureData, annotationPkg, outdir = ldPath(), ffprefix = "", genome = c("hg19", "hg18"))

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>Path to plain-text files containing log R ratios and B allele frequencies. Files should contain data for a single sample.</td>
</tr>
<tr>
<td>fnames</td>
<td>Character string providing filenames.</td>
</tr>
<tr>
<td>ext</td>
<td>Character string indicating whether the fnames has a file extension (e.g., &quot;.txt&quot;)</td>
</tr>
<tr>
<td>samplesheet</td>
<td>(Optional) data.frame containing phenotypic / experimental covariates on the samples. Note that if samplesheet is provided, row.names must be specified.</td>
</tr>
<tr>
<td>row.names</td>
<td>Character vector indicating the sample id for each row in samplesheet. row.names should be unique and, ideally, correspond to fnames</td>
</tr>
<tr>
<td>pedigreeData</td>
<td>An object of class Pedigree.</td>
</tr>
<tr>
<td>featureData</td>
<td>A GenomeAnnotatedDataFrame</td>
</tr>
<tr>
<td>annotationPkg</td>
<td>Character string indicating the annotation package used to extract information on the features (chromosome, physical position, and whether the feature is polymorphic (&quot;isSnp&quot;)).</td>
</tr>
<tr>
<td>outdir</td>
<td>Character string indicating the path for storing ff objects. Ignored if the ff package is not loaded.</td>
</tr>
<tr>
<td>ffprefix</td>
<td>Character string indicating the prefix used to name ff objects. Ignored if the ff package is not loaded.</td>
</tr>
<tr>
<td>genome</td>
<td>Character string indicating UCSC genome build. Only &quot;hg19&quot; is allowed for annotation packages that support a single build. Supported builds for most platforms are &quot;hg18&quot; and &quot;hg19&quot;.</td>
</tr>
</tbody>
</table>

Value

A TrioSetList object

See Also

TrioSetList
### Index

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinDistExperiment, ANY, ANY, ANY-method</td>
<td>14</td>
</tr>
<tr>
<td>MinDistPosterior, ANY, ANY, ANY-method</td>
<td>19</td>
</tr>
<tr>
<td>ParentOffspringList, ANY, ANY, ANY-method</td>
<td>22</td>
</tr>
<tr>
<td>ParentOffspringList, ANY-method</td>
<td>22</td>
</tr>
<tr>
<td>Pedigree, ANY, ANY, ANY-method</td>
<td>24</td>
</tr>
<tr>
<td>Pedigree, ANY-method</td>
<td>24</td>
</tr>
<tr>
<td>TrioSet, ANY, ANY, ANY-method</td>
<td>30</td>
</tr>
<tr>
<td>TrioSet, ANY-method</td>
<td>30</td>
</tr>
<tr>
<td>TrioSetList, ANY, ANY, ANY-method</td>
<td>32</td>
</tr>
<tr>
<td>TrioSetList, ANY-method</td>
<td>32</td>
</tr>
<tr>
<td>ff_array, ANY, ANY, ANY-method</td>
<td>30</td>
</tr>
<tr>
<td>ff_array, ANY-method</td>
<td>30</td>
</tr>
<tr>
<td>ParentOffspringList, ANY, ANY-method</td>
<td>22</td>
</tr>
<tr>
<td>TrioSetList, ANY, ANY-method</td>
<td>32</td>
</tr>
<tr>
<td>TrioSetList-method</td>
<td>32</td>
</tr>
<tr>
<td>acf</td>
<td>3</td>
</tr>
<tr>
<td>acf2</td>
<td>3</td>
</tr>
<tr>
<td>as (coerce)</td>
<td>4</td>
</tr>
<tr>
<td>calculateMindist, TrioSetList-method</td>
<td>3</td>
</tr>
<tr>
<td>calculateMindist, arrayORff_array-method</td>
<td>3</td>
</tr>
<tr>
<td>calculateMindist, list-method</td>
<td>3</td>
</tr>
<tr>
<td>calculateMindist, matrix-method</td>
<td>3</td>
</tr>
<tr>
<td>calculateMindist, TrioSet-method</td>
<td>3</td>
</tr>
<tr>
<td>denovo</td>
<td>19</td>
</tr>
<tr>
<td>denovoDuplication</td>
<td>5</td>
</tr>
<tr>
<td>denovoDuplication, MinDistPosterior-method</td>
<td>5</td>
</tr>
<tr>
<td>denovoHemizygous</td>
<td>5</td>
</tr>
<tr>
<td>denovoHemizygous, MinDistPosterior-method</td>
<td>5</td>
</tr>
<tr>
<td>denovoHemizygous, MinDistPosterior-method</td>
<td>5</td>
</tr>
<tr>
<td>denovoHemizygous, MinDistPosterior-method</td>
<td>5</td>
</tr>
<tr>
<td>DNAcopyParam</td>
<td>6</td>
</tr>
<tr>
<td>exampleTrioSetList</td>
<td>6</td>
</tr>
<tr>
<td>father (ParentOffspring-class)</td>
<td>21</td>
</tr>
<tr>
<td>father, MinDistExperiment-method (MinDistExperiment-class)</td>
<td>14</td>
</tr>
<tr>
<td>father, MinDistGRanges-method (MinDistGRanges-class)</td>
<td>16</td>
</tr>
<tr>
<td>father, ParentOffspring-method (ParentOffspring-class)</td>
<td>21</td>
</tr>
<tr>
<td>father, RangedSummarizedExperiment-method (MinDistExperiment-class)</td>
<td>14</td>
</tr>
</tbody>
</table>
INDEX

ParentOffspring (ParentOffspring-class), 21
ParentOffspring-class, 21
ParentOffspringList, 21, 26
ParentOffspringList (ParentOffspringList-class), 22
ParentOffspringList-class, 22
Pedigree, 23
pedigree (offspringNames), 20
pedigree, MinDistExperiment-method (MinDistExperiment-class), 14
pedigree, MinDistGRanges-method (MinDistGRanges-class), 16
pedigree, TrioSet-method (TrioSet-class), 30
pedigree, TrioSetList-method (TrioSetList-class), 32
Pedigree-class, 24
pedigree<-(offspringNames), 20
pedigree<-, MinDistExperiment-method (MinDistExperiment-class), 14
pedigreeGrid, 24, 26
pedigreeName, 25
pedigreeName, ParentOffspring-method (ParentOffspring-class), 21
pedigreeName, ParentOffspringList-method (ParentOffspringList-class), 22
pedigreeViewports, 25, 26
PennParam, 26
plotDenovo, 25, 26, 27
plotDenovo, MinDistExperiment, MDRanges-method (plotDenovo), 27

range, ILimit-method, 28

segment, 6, 18, 29
segment2, 28
segment2, arrayORff_array-method (segment2), 28
segment2, ff_matrix-method (segment2), 28
segment2, list-method (TrioSetList-class), 32
segment2, matrix-method (segment2), 28
segment2, MinDistExperiment-method (MinDistExperiment-class), 14
segment2, TrioSet-method (TrioSet-class), 28
segment2, TrioSetList-method (TrioSetList-class), 32
show, DNAcopyParam-method (MinDistParam-class), 18
show, FilterParamMD-method (FilterParamMD-class), 8

show, MinDistExperiment-method (MinDistExperiment-class), 14
show, MinDistGRanges-method (MinDistGRanges-class), 16
show, MinDistParam-method (MinDistParam-class), 18
show, MinDistPosterior-method (MinDistPosterior-class), 19
show, ParentOffspring-method (ParentOffspring-class), 21
show, ParentOffspringList-method (ParentOffspringList-class), 22
show, Pedigree-method (Pedigree-class), 24
show, PennParam-method (PennParam), 26
show, TrioSet-method (TrioSet-class), 30
show, TrioSetList-method (TrioSetList-class), 32
stack, TrioSetList-method (coerce), 4
stack, TrioSetList-method (coerce), 4

trios (offspringNames), 20
trios, Pedigree-method (Pedigree-class), 24
trios, TrioSet-method (TrioSet-class), 30
trios, TrioSetList-method (TrioSetList-class), 32
TrioSet, 29
TrioSet-class, 30
TrioSetList, 31, 34
trioSetList (exampleTrioSetList), 6
TrioSetList-class, 32
TrioSetListLD, 34