Package ‘MoonlightR’

April 26, 2017

Type Package
Title Identify oncogenes and tumor suppressor genes from omics data
Version 1.2.0
Date 09-06-2016
Author Antonio Colaprico*, Catharina Olsen*, Claudia Cava, Thilde Terkelsen, Laura Cantini, Andre Olsen, Gloria Bertoli, Andrei Zinovyev, Emmanuel Barillot, Isabella Castiglioni, Elena Papaleo, Gianluca Bontempi
Maintainer Antonio Colaprico <antonio.colaprico@ulb.ac.be>, Catharina Olsen <colsen@ulb.ac.be>
Depends R (>= 3.3), doParallel, foreach
Imports parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils
Description Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to
chemotherapeutic treatments.

License GPL (>= 3)

biocViews DNAMethylation, DifferentialMethylation, GeneRegulation,
 GeneExpression, MethylationArray, DifferentialExpression,
 Pathways, Network, Survival, GeneSetEnrichment,
 NetworkEnrichment

Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2,
 png

VignetteBuilder knitr

LazyData true

URL https://github.com/torongs82/Moonlight

BugReports https://github.com/torongs82/Moonlight/issues

RoxygenNote 5.0.1

NeedsCompilation no

R topics documented:

dataFilt .. 3
dataGRN .. 3
dataURA .. 4
DEGsmatrix ... 4
DiseaseList ... 5
DPA ... 5
EAGenes ... 6
FEA ... 6
GDCprojects ... 7
geneInfo .. 7
GEO_TCGAtab ... 8
dataGEO .. 8
dataTCGA .. 9
GRN ... 10
GSEA ... 10
knownDriverGenes 11
listMoonlight .. 12
LPA ... 12
moonlight ... 13
MoonlightR ... 14
plotCircos ... 14
plotFEA .. 15
plotNetworkHive .. 16
plotURA .. 16
PRA ... 17
tabGrowBlock .. 17
URA ... 18

Index 19
dataFilt

Gene Expression (Rnaseqv2) data from TCGA LUAD

Description

A data set containing the following data:

Usage

data(dataFilt)

Format

A 13742x20 matrix

Details

- dataFilt matrix with 13742 rows (genes) and 20 columns samples with TCGA's barcodes (10TP, 10NT)

Value

a 13742x20 matrix

dataGRN

GRN gene regulatory network output

Description

output from GRN function

Usage

data(dataGRN)

Format

A large list of 2 elements

Details

- dataGRN list of 2 elements miTGFgenes, maxmi from GRN function

Value

a large list of 2 elements
DEGsmatrix

dataURA

Output example from function Upstream Regulator Analysis

Description

A data set containing the following data:

Usage

data(dataURA)

Format

A data frame with 100 rows and 2 variables

Details

- dataURA matrix with 100 rows (genes) and 2 columns "apoptosis" "proliferation of cells"

Value

a 100x2 matrix

DEGsmatrix

DEG Differentially expressed genes

Description

A data set containing the following data:

Usage

data(DEGsmatrix)

Format

A 3502x5 matrix

Details

- DEGsmatrix matrix with 3502 rows (genes) and five columns "logFC" "logCPM" "LR" "PValue" "FDR"

Value

the 3502x5 matrix
DiseaseList

Information on 101 biological processes

Description
A data set containing the following data:

Usage
data(DiseaseList)

Format
A list of 101 matrices

Details
- DiseaseList list for 101 biological processes, each containing a matrix with five columns: ID, Genes.in.dataset, Prediction based on expression direction, Log ratio, Findings

Value
list of 101 matrices

DPA

DPA

Description
This function carries out the differential phenotypes analysis

Usage
DPA(dataType, dataFilt, dataConsortium = "TCGA", fdr.cut = 0.01, logFC.cut = 1, diffmean.cut = 0.25, samplesType, colDescription, gset, gsetFile = "gsetFile.RData")

Arguments
- **dataType** selected
- **dataFilt** obtained from getDataTCGA
- **dataConsortium** is TCGA or GEO, default TCGA
- **fdr.cut** is a threshold to filter DEGs according their p-value corrected
- **logFC.cut** is a threshold to filter DEGs according their logFC
- **diffmean.cut** diffmean.cut for DMR
- **samplesType** samplesType
- **colDescription** colDescription
- **gset** gset
- **gsetFile** gsetFile
Value
 result matrix from differential phenotype analysis

Examples
 dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")

EAGenes

<table>
<thead>
<tr>
<th>Information about genes</th>
</tr>
</thead>
</table>

Description
 A data set containing the following data:

Usage
 data(EAGenes)

Format
 A 20038x5 matrix

Details
 • EAGenes matrix with 20038 rows (genes) and five columns "ID" "Gene" "Description" "Location" "Family"

Value
 a 20038x5 matrix

FEA

<table>
<thead>
<tr>
<th>FEA</th>
</tr>
</thead>
</table>

Description
 This function carries out the functional enrichment analysis (FEA)

Usage
 FEA(BPname = NULL, DEGsmatrix)

Arguments
 BPname biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes
 DEGsmatrix DEGsmatrix output from DEA such as dataDEGs

Value
 matrix from FEA
GDCprojects

Description
A character vector of GDC projects:

Usage
```
data(GDCprojects)
```

Format
A character vector of 39 elements

Details
- character vector for GDC projects.

Value
character vector of 39 elements

geneInfo

Information about genes for normalization

Description
A data set containing the following data:

Usage
```
data(geneInfo)
```

Format
A data frame with 20531 rows and 3 variables

Details
- geneInfo matrix with 20531 rows (genes) and 3 columns "geneLength" "gcContent" "chr"

Value
a 20531x3 matrix
GEO_TCGAtab

Information on GEO data (and overlap with TCGA)!

A data set containing the following data:

Description

- GEO_TCGAtab a 18x12 matrix that provides the GEO data set we matched to one of the 18 given TCGA cancer types

Usage

data(GEO_TCGAtab)

Format

A 101x3 matrix

Value

a 101x3 matrix

gDataGEO

gDataGEO

Description

This function retrieves and prepares GEO data

Usage

gDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)

Arguments

GEOobject GEOobject
platform platform
TCGAtumor tumor name

Value

return GEO gset

Examples

Not run:
dataGEO <- gDataGEO(GEOobject = "GSE20347",platform = "GPL571")

End(Not run)
getDataTCGA

Description

This function retrieves and prepares TCGA data

Usage

```r
ggetDataTCGA(cancerType, dataType, directory, cor.cut = 0.6, qnt.cut = 0.25, nSample, stage = "ALL", subtype = 0, samples = NULL, seed = 12345)
```

Arguments

- `cancerType`: select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
- `dataType`: is dataType such as gene expression, cnv, methylation etc.
- `directory`: Directory/Folder where the data was downloaded. Default: GDCdata
- `cor.cut`: cor.cut
- `qnt.cut`: qnt.cut
- `nSample`: nSample
- `stage`: stage
- `subtype`: subtype
- `samples`: samples
- `seed`: set to get same result

Value

returns filtered TCGA data

Examples

```r
## Not run:
dataFilt <- getDataTCGA(cancerType = "LUAD",
dataType = "Gene expression", directory = "data", nSample = 4)

## End(Not run)
```
GRN

Generate network

Description
This function carries out the gene regulatory network inference using Parmigene.

Usage

```
GRN(TFs, DEGsmatrix, DiffGenes = FALSE, normCounts, kNearest = 3,
    nGenesPerm = 10, nBoot = 10, seed = 12345)
```

Arguments

- **TFs**: a vector of genes.
- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs.
- **DiffGenes**: if TRUE consider only diff.expr genes in GRN.
- **normCounts**: is a matrix of gene expression with genes in rows and samples in columns.
- **kNearest**: the number of nearest neighbors to consider to estimate the mutual information.
- **nGenesPerm**: nGenesPerm.
- **nBoot**: nBoot.
- **seed**: set to get same result. Must be less than the number of columns of normCounts.

Value

an adjacent matrix.

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
    DEGsmatrix = dataDEGs,
    DiffGenes = TRUE,
    normCounts = dataFilt)
```

GSEA

GSEA

Description
This function carries out the GSEA enrichment analysis.

Usage

```
GSEA(DEGsmatrix, top, plot = FALSE)
```
knownDriverGenes

Arguments

- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs
- **top**: is the number of top BP to plot
- **plot**: if TRUE return a GSEA’s plot

Value

return GSEA result

Examples

```r
dataDEGs <- DEGsmatrix
# dataFEA <- GSEA(DEGsmatrix = dataDEGs)
```

knownDriverGenes

Information on known cancer driver gene from COSMIC

Description

A data set containing the following data:

Usage

```r
data(knownDriverGenes)
```

Format

A 101x3 matrix

Details

- TSG known tumor suppressor genes
- OCG known oncogenes

Value

a 101x3 matrix
listMoonlight
Output list from Moonlight

Description
A list containing the following data:

Usage
data(listMoonlight)

Format
A Large list with 5 elements

Details
- listMoonlight output from moonlight’s pipeline containing dataDEGs, dataURA, listCandidates

Value
output from moonlight pipeline

LPA
LPA

Description
This function carries out the literature phenotype analysis (LPA)

Usage
LPA(dataDEGs, BP, BPlist)

Arguments

- dataDEGs is output from DEA
- BP is biological process
- BPlist is list of genes annotated in BP

Value
table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data(DEGsmatrix)
BPselected <- c("apoptosis")
BPannotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID
dataLPA <- LPA(dataDEGs = DEGsmatrix[1:5,],
BP = BPselected,
BPlist = BPannotations)
moonlight

moonlight pipeline

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow. Providing different solutions:

1. MoonlighR::FEA
2. MoonlighR::URA
3. MoonlighR::PIA

Usage

moonlight(cancerType = "panCancer", dataType = "Gene expression", directory = "GDCdata", BPname = NULL, cor.cut = 0.6, qnt.cut = 0.25, Genelist = NULL, fdr.cut = 0.01, logFC.cut = 1, corThreshold = 0.6, kNearest = 3, nGenesPerm = 10, DiffGenes = FALSE, nBoot = 100, nTF = NULL, nSample = NULL, thres.role = 0, stage = NULL, subtype = 0, samples = NULL)

Arguments

cancerType select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
dataType dataType
directory directory
BPname biological processes to use, if NULL: all processes will be used in analysis, RF for candidate; if not NULL the candidates for these processes will be determined (no learning)
cor.cut cor.cut Threshold
qnt.cut qnt.cut Threshold
Genelist Genelist
fdr.cut fdr.cut Threshold
logFC.cut logFC.cut Threshold
corThreshold corThreshold
kNearest kNearest
nGenesPerm nGenesPerm
DiffGenes DiffGenes
nBoot nBoot
nTF nTF
nSample nSample
thres.role thres.role
stage stage
subtype subtype
samples samples
plotCircos

Value

table with cancer driver genes TSG and OCG.

Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
to change with moonlight

MoonlightR MoonlightR

Description

MoonlightR

plotCircos plotCircos

Description

This function visualize the plotCircos

Usage

plotCircos(listMoonlight, listMutation = NULL, additionalFilename = NULL,
 intensityColOCG = 0.5, intensityColTSG = 0.5, intensityColDual = 0.5,
 fontSize = 1)

Arguments

listMoonlight output Moonlight function
listMutation listMutation
additionalFilename
 additionalFilename
intensityColOCG intensityColOCG
intensityColTSG intensityColTSG
intensityColDual intensityColDual
fontSize fontSize

Value

no return value, plot is saved

Examples

plotCircos(listMoonlight = listMoonlight, additionalFilename = ".ncancer5")
Description

This function visualize the functional enrichment analysis (FEA)’s barplot

Usage

plotFEA(dataFEA, topBP = 10, additionalFilename = NULL, height, width, offsetValue = 5, angle = 90, xleg = 35, yleg = 5, minY = -5, maxY = 10)

Arguments

dataFEA dataFEA
topBP topBP
additionalFilename additionalFilename
height Figure height
width Figure width
offsetValue offsetValue
angle angle
xleg xleg
yleg yleg
minY minY
maxY maxY

Value

no return value, FEA result is plotted

Examples

dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
plotFEA(dataFEA = dataFEA, additionalFilename = "_example", height = 20, width = 10)
plotNetworkHive: Hive network plot

Description
This function visualizes the GRN as a hive plot.

Usage
```
plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)
```

Arguments
- `dataGRN`: output GRN function
- `namesGenes`: list TSG and OCG to define axes
- `thres`: threshold of edges to be included
- `additionalFilename`: additionalFilename

Value
No results; Hive plot is executed.

Examples
```
data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)
```

plotURA: Upstream regulatory analysis heatmap plot

Description
This function visualizes the URA in a heatmap.

Usage
```
plotURA(dataURA, additionalFilename = "URAplot")
```

Arguments
- `dataURA`: output URA function
- `additionalFilename`: additionalFilename

Value
Heatmap
PRA

Pattern Recognition Analysis (PRA)

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
thres.role = 0)
plotURA(dataURA = dataURA[,c(names(dataDual$TSG), names(dataDual$OCG))],
additionalFilename = "_example")
```

Description

This function carries out the pattern recognition analysis

Usage

```r
PRA(dataURA, BPname, thres.role = 0, seed = 12345)
```

Arguments

- `dataURA`: output URA function
- `BPname`: BPname
- `thres.role`: thres.role
- `seed`: seed value

Value

returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
thres.role = 0)
```

tabGrowBlock

Information growing/blocking characteristics for 101 selected biological processes

Description

A data set containing the following data:

Usage

```r
data(tabGrowBlock)
```
Format

A 101x3 matrix

Details

- tabGrowBlock matrix that defines if a process is growing or blocking cancer development, for each 101 biological processing

Value

A 101x3 matrix

URA Upstream Regulator Analysis

Description

This function carries out the upstream regulator analysis

Usage

URA(dataGRN, DEGsmatrix, BPname, nCores = 1)

Arguments

- dataGRN: output GNR function
- DEGsmatrix: output DPA function
- BPname: biological processes
- nCores: number of cores to use

Value

an adjacent matrix

Examples

dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
 DEGsmatrix = dataDEGs,
 DiffGenes = TRUE,
 normCounts = dataFilt)
dataURA <- URA(dataGRN = dataGRN,
 DEGsmatrix = dataDEGs,
 BPname = c("apoptosis",
 "proliferation of cells"))
Index

*Topic **datasets**
dataFilt, 3
dataGRN, 3
dataURA, 4
DEGsmatrix, 4
DiseaseList, 5
EAGenes, 6
GDCprojects, 7
geneInfo, 7
GEO_TCGAtab, 8
knownDriverGenes, 11
listMoonlight, 12
tabGrowBlock, 17

plotURA, 16
PRA, 17
tabGrowBlock, 17
URA, 18

dataFilt, 3
dataGRN, 3
dataURA, 4
DEGsmatrix, 4
DiseaseList, 5
DPA, 5
EAGenes, 6
FEA, 6
GDCprojects, 7
geneInfo, 7
GEO_TCGAtab, 8
getDataGEO, 8
getDataTCGA, 9
GRN, 10
GSEA, 10

knownDriverGenes, 11
listMoonlight, 12
LPA, 12

moonlight, 13
MoonlightR, 14
MoonlightR-package (MoonlightR), 14

plotCircos, 14
plotFEA, 15
plotNetworkHive, 16