Package ‘Mulcom’

March 23, 2017

Type Package
Title Calculates Mulcom test
Version 1.24.0
Date 2011-10-08
Author Claudio Isella
Maintainer Claudio Isella <claudio.isella@ircc.it>
Depends R (>= 2.10), fields, Biobase
Imports graphics, grDevices, stats, methods
Description Identification of differentially expressed genes and false
discovery rate (FDR) calculation by Multiple Comparison test
License GPL-2
LazyLoad yes

biocViews StatisticalMethod, MultipleComparison, Microarray,
DifferentialExpression, GeneExpression

NeedsCompilation yes

R topics documented:

Affy .. 2
AffyIllum .. 2
harmonicMean ... 3
Illumina .. 3
Illum .. 4
limmaAffySymbols 4
limmaIllumSymbols 4
mulCalc ... 5
mulCAND ... 5
MULCOM-class 6
mulcomGeneListIllum 7
MULCOM_P-class 7
mulDELTA ... 8
mulDiff ... 8
mulFSG ... 9
mulIndex .. 10
mulInt .. 11
mulMSE ... 11
AffyIlmn

cross mapping table

Description

cross mapping table

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
harmonicMean

Description

Computes harmonic means across groups replicate Should not be called directly

Usage

`harmonicMean(index)`

Arguments

- `index`: a numeric vector with the groups labels of the samples. 0 are the control samples. Number must be progressive

Details

`harmonicMean` calculates harmonic means across groups replicate for the estimation of Mulcom Test

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

References

<claudio.isella@ircc.it>

Illumina

Description

Illumina Dataset

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Ilmn Dataset

Description

Ilmn Dataset

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

limmaAffySymbols

significant gene list with limma in Affymetrix

Description

significant gene list with limma in Affymetrix

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

limmaIlmnSymbols

significant gene list with limma in Illumina

Description

significant gene list with limma in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
mulCalc

MulCom Calculation

Description

Calculates MulCom test score for given m and t parameters

Usage

```r
mulCalc(Mulcom_P, m, t)
```

Arguments

- `Mulcom_P`: an object of class MULCOM
- `m`: a numeric value corresponding to log 2 ratio correction for MulCom Test
- `t`: a numeric value corresponding to T values for MulCom Test

Details

`mulCalc` Calculate the Mulcom Score with m and t defined by the user

- `Mulcom_P`: an object of class MULCOM_P
- `m`: a number corresponding to log 2 ratio correction for MulCom Test
- `t`: a number corresponding to T values for MulCom Test

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)
```

mulCAND

Identify the Mulcom candidate feature selection

Description

Identify the Mulcom candidate feature selection by the m and T defined by the user

Usage

```r
mulCAND(eset, Mulcom_P, m, t, ese = "T")
```
Arguments

eset an **AffyBatch**

Mulcom_P an object of class MULCOM

m m: a numeric vector corresponding to log 2 ratio correction

t t: a numeric vector corresponding to the MulCom T values

ese True or False

Details

mulCAND Identify the Mulcom candidate feature selection by the m and T defined by the user

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)

MULCOM-class

This is a class representation MulCom test scores

Objects from the Class

Objects can be created using the function **mulScores** on ExpressionSet.

Slots

FC: Object of class numeric representing difference between all experimental groups and the reference groups

HM: Object of class numeric representing the harmonic means in all subgroups

MSE_Corrected: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test

Author(s)

Claudio Isella

Examples

data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulcomGeneListIlmn

significant gene list with limma in Illumina

Description

significant gene list with limma in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

MULCOM_P-class

Class MulCom Permutation

Description

This is a class representation MulCom test scores permutation

Objects from the Class

Objects can be created using the function `mulScores` on ExpressionSet.

Slots

- **FC**: Object of class numeric representing delta between all experimental groups and the reference groups
- **MSE_Corrected**: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test
- **FCp**: Object of class numeric representing delta between all experimental groups and the reference groups in permutated data
- **MSE_Correctedp**: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test in permutated data

Author(s)

Claudio Isella

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```
mulDELTA
MulCom Delta

Description

Computes Delta for all the experimental points in the datasets in respect to control Should not be called directly.

Usage

```r
mulDELTA(vector, index)
```

Arguments

- `vector`: numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Details

`mulDELTA` An internal function that should not be called directly. It calculates differential expression in the groups defined in the index class vector, in respect to the 0 groups.

Value

- `vector`: a numeric vector with data measurements
- `index`: a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_delta <- mulDELTA(exprs(Affy[,1]), Affy$Groups)
```

mulDiff
MulCom Test Differential analysis

Description

Identify the differentially expressed features for a specific comparison with given m and t value.

Usage

```r
mulDiff(eset, Mulcom_P, m, t, ind)
```
mulFSG

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eset</td>
<td>An ExpressionSet object from package affy</td>
</tr>
<tr>
<td>Mulcom_P</td>
<td>An object of class Mulcom_P</td>
</tr>
<tr>
<td>m</td>
<td>the m values for the analysis</td>
</tr>
<tr>
<td>t</td>
<td>the t values for the analysis</td>
</tr>
<tr>
<td>ind</td>
<td>and index referring to the comparison, should be numeric</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eset</td>
<td>An ExpressionSet object from package affy</td>
</tr>
<tr>
<td>Mulcom_P</td>
<td>An object of class Mulcom_P</td>
</tr>
<tr>
<td>m</td>
<td>the m values for the analysis</td>
</tr>
<tr>
<td>t</td>
<td>the t values for the analysis</td>
</tr>
<tr>
<td>ind</td>
<td>and index referring to the comparison, should be numeric</td>
</tr>
</tbody>
</table>

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)
```

mulFSG

MulCom False Significant Genes

Description

Calculate the False Significant Genes for m and t defined by the user

Usage

```r
mulFSG(Mulcom_P, m, t)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mulcom_P</td>
<td>an object of class MULCOM</td>
</tr>
<tr>
<td>m</td>
<td>m: a numeric value corresponding to log 2 ratio correction for MulCom Test</td>
</tr>
<tr>
<td>t</td>
<td>t: a numeric value corresponding to t values for MulCom Test</td>
</tr>
</tbody>
</table>

Details

mulFDR evaluate the False Significant genes on the Mulcom_P object according to specific m and t parameters. For each permutation it is calculated the number of positive genes. An estimation of the false called genes is evaluated with the median for each experimental subgroups.
mulIndex

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)

mulIndex Mulcom Index for Monte Carlo Simulation

Description

Random assembly of the groups indices for Monte Carlo Simulation

Usage

mulIndex(index, np, seed)

Arguments

index the vector with the groups of analysis, must be numeric and 0 correspond to the reference.
np number of permutation in the simulation
seed seed for permutations

Details

'mulIndex' generates random index for the function mulPerm. It is not directly called by the user.

Value

A matrix with all indices permutations

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_scores <- mulIndex(Affy$Groups, 5, 7)
mulInt

Description

generates a consensus matrix from list of genes

Usage

```r
mulInt(...)
```

Arguments

... the function requires vector files as inputs

Details

mulCAND generates a consensus matrix from list of genes

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm = seq(0, 0.5, 0.1), vt = seq(1, 3, 0.1))

h1_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)
h2_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)

int <- mulInt(h1_opt, h2_opt)
```

mulMSE

Description

Computes Mean Square Error for all the experimental points in the datasets in respect to control
Should not be called directly

Usage

```r
mulMSE(vector, index, tmp = vector())
```
Arguments

- `vector` a numeric vector with data measurements
- `index` a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive
- `tmp` a vector

Details

`mulMSE` An internal function that should not be called directly. It calculates within group means square error for the values defined in the x vector according to the index class vector.

Value

- `vector` a numeric vector with data measurements
- `index` a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive
- `tmp` a vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

mulOpt

MulCom optimization

Description

The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Usage

`mulOpt(Mulcom_P, vm, vt)`

Arguments

- `Mulcom_P` an object of class Mulcom_P
- `vm` a vector of m values to test
- `vt` a vector of t values to test

Details

`mulOpt` The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))

mulOptPars

Description

Function to optimize Mulcom parameter for maximim number of genes with a user defined FDR

Usage

mulOptPars(opt, ind, ths)

Arguments

opt an MulCom optimization object
ind index corresponding to the comparison
ths a threshold for the FDR optimization, default is 0.05

Details

mulOptPars MulCom optimization function to identify best parameters

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
#mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))
#optThs <- mulOptPars(mulcom_opt, 1, 0.05)

mulOptPlot

Description

MulCom optimization plot to identify best configuration parameters

Usage

mulOptPlot(M.Opt, ind, th, smooth = "NO")
mulParOpt

Description
MulCom parameter optimization function to identify best combination of t and m providing maximum number of genes at a given FDR

Usage
mulParOpt(perm, M.Opt, ind, th, image = "T")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>perm</td>
<td>a object with permutated MulCom Scores</td>
</tr>
<tr>
<td>M.Opt</td>
<td>an MulCom optimization object</td>
</tr>
<tr>
<td>ind</td>
<td>index corresponding to the comparison to plot</td>
</tr>
<tr>
<td>th</td>
<td>a threshold for the FDR plot</td>
</tr>
<tr>
<td>image</td>
<td>default = "T", indicates is print the MulCom optimization plot</td>
</tr>
</tbody>
</table>

Examples
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3, 1))
mulOptPlot(mulcom_opt, 1, 0.05)
Details

mulParOpt The function mulParOpt is designed to identify the optimal \(m \) and \(t \) values combination leading to the maximum number of differentially regulated genes satisfying an user defined FDR threshold. In case of equal number of genes, the combination of \(m \) and \(t \) with the lower FDR will be prioritized. In case of both identical number of genes and FDR, the function will choose the highest \(t \). The function optionally will define a graphical output to visually inspect the performance of the test at given \(m \) and \(t \) parameters for a certain comparison.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3, 1))
mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)

mulPerm MulCom Permutation

Description

Reiterate MulCom Test on permutated data to perform Montecarlo simulation

Usage

mulPerm(eset, index, np, seed, segm = "F")

Arguments

eset An an AffyBatch object, each row of must correspond to a variable and each column to a sample.
index a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.
np a numeric values indicating the number of permutation to perform. It is set as default to 10
seed set the seed of the permutation, default is 1
segm a default set to F. This paramethers requires to be setted to avoid segmentation fault of C subroutine in the case of very large datasets.

Details

mulPerm

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
```

Description

R pipe to C function not called directly by user that reiterate MulCom Test on permutated data to perform Monte Carlo simulation

Usage

```r
mulPermC(eset, index, means, mse, n, m, nump, ngroups, reference)
```

Arguments

- `eset`: An an `AffyBatch` object, each row of must correspond to a variable and each column to a sample.
- `index`: a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.
- `means`: entry for the means output.
- `mse`: entry for the mean square errors output
- `n`: number of rows in obext of class eset
- `m`: number of columns
- `nump`: number of permutation to perform
- `ngroups`: a number corresponding to the number of groups in the analysis.
- `reference`: reference for the comparisons. typically it is 0

Details

`mulPerm`

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
```
mulScores

MulCom Score Calculation

Description
Computes the scores for the MulCom test. The function calculates the numerator and the denominator of the test without the parameters m and t.

Usage

```r
mulScores(eset, index)
```

Arguments

- `eset` An `AffyBatch` object, each row of must correspond to a variable and each column to a sample.
- `index` a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.

Details

'mulScore' computes the scores for the MulCom test for multiple point profile. The Mulcom test is designed to compare each experimental mean with the control mean and it is derived from the "Dunnett’s test". Dunnett’s test controls the Experiment-wise Error Rate and is more powerful than tests designed to compare each mean with each other mean. The test is conducted by computing a modified t-test between each experimental group and the control group.

Value

An Object of class MULCOM from Mulcom package

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```

mulSSE

MulCom Sum of Square Error

Description
Computes sum of square errors for all the experimental points in the datasets Should not be called directly

Usage

```r
mulSSE(vec, index)
```
Arguments

vec
a numeric vector with data measurements

index
a numeric vector with the labels of the samples. 0 are the control samples. number should be progressive

Details

mulSSE
An internal function that should not be called directly. It calculates sum of square error in the groups defined in the index class vector.

Value

vec
a numeric vector with data measurements

index
a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Author(s)

Claudio Isella, claudio.isella@ircc.it

samAffySymbols
significant gene list with SAM in Affymetrix

Description

significant gene list with SAM in Affymetrix

Author(s)

Claudio Isella, claudio.isella@ircc.it

samIllum Symbols
significant gene list with SAM in Illumina

Description

significant gene list with SAM in Illumina

Author(s)

Claudio Isella, claudio.isella@ircc.it
Description

Function to optimize Sam parameter for maximim number of genes with a user defined FDR

Usage

```r
samOptPars(opt, ths)
```

Arguments

- `opt` an Sam optimization object
- `ths` a threshold for the FDR optimization

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Index

*Topic MulCom
 Affy, 2
 AffyIlmn, 2
 harmonicMean, 3
 Ilmn, 4
 limmaAffySymbols, 4
 limmaIlmnSymbols, 4
 mulCalc, 5
 mulCAND, 5
 mulcomGeneListIlmn, 7
 mulDELTA, 8
 mulDiff, 8
 mulFSG, 9
 mulIndex, 10
 mulInt, 11
 mulMSE, 11
 mulOpt, 12
 mulOptPars, 13
 mulOptPlot, 13
 mulParOpt, 14
 mulPerm, 15
 mulPermC, 16
 mulScores, 17
 mulSSE, 17
 samAffySymbols, 18
 samIlmnSymbols, 18
 samOptPars, 19

*Topic classes
 MULCOM-class, 6
 MULCOM_P-class, 7

Affy, 2
AffyBatch, 6, 15–17
AffyIlmn, 2

class:MULCOM (MULCOM-class), 6
class:MULCOM_P (MULCOM_P-class), 7

harmonicMean, 3
Illumina, 3
Ilmn, 4
limmaAffySymbols, 4
limmaIlmnSymbols, 4
mulCalc, 5
mulCAND, 5
MULCOM (MULCOM-class), 6
MULCOM-class, 6
MULCOM_P (MULCOM_P-class), 7
MULCOM_P-class, 7
mulcomGeneListIlmn, 7
muDELTA, 8
mulDiff, 8
mulFSG, 9
mulIndex, 10
mulInt, 11
mulMSE, 11
mulOpt, 12
mulOptPars, 13
mulOptPlot, 13
mulParOpt, 14
mulPerm, 15
mulPermC, 16
mulScores, 6, 7, 17
mulSSE, 17
samAffySymbols, 18
samIlmnSymbols, 18
samOptPars, 19