Package ‘Mulcom’

January 15, 2017

Type Package
Title Calculates Mulcom test
Version 1.24.0
Date 2011-10-08
Author Claudio Isella
Maintainer Claudio Isella <claudio.isella@ircc.it>
Depends R (>= 2.10), fields, Biobase
Imports graphics, grDevices, stats, methods
Description Identification of differentially expressed genes and false
discovery rate (FDR) calculation by Multiple Comparison test
License GPL-2
LazyLoad yes
biocViews StatisticalMethod, MultipleComparison, Microarray,
DifferentialExpression, GeneExpression
NeedsCompilation yes

R topics documented:

Affy .. 2
AffyIlmn .. 2
harmonicMean .. 3
Illumina ... 3
Ilmn ... 4
limmaAffySymbols ... 4
limmaIlmnSymbols ... 4
mulCalc .. 5
mulCAND .. 5
MULCOM-class ... 6
mulcomGeneListIlmn ... 7
MULCOM_P-class ... 7
mulDELTA ... 8
mulDiff .. 8
mulFSG .. 9
mulIndex ... 10
mulInt .. 11
mulMSE .. 11
AffyIlmn

Description

Affy Dataset

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Affy Dataset

<table>
<thead>
<tr>
<th>Affy</th>
<th>Affy Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>cross mapping table</td>
</tr>
</tbody>
</table>

Description

cross mapping table

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
harmonicMean

Description
Computes harmonic means across groups replicate Should not be called directly

Usage
harmonicMean(index)

Arguments
index a numeric vector with the groups labels of the samples. 0 are the control samples. Number must be progressive

Details
harmonicMean calculates harmonic means across groups replicate for the estimation of Mulcom Test

Value
a numeric vector

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

References
<claudio.isella@ircc.it>

Illumina

Description
Illumina Dataset

Author(s)
Claudio Isella, <claudio.isella@ircc.it>
ILMN Dataset

Description

ILMN Dataset

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

limmaAffySymbols

significant gene list with limma in Affymetrix

Description

significant gene list with limma in Affymetrix

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

limmaIlmnSymbols

significant gene list with limma in Illumina

Description

significant gene list with limma in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
mulCalc

MulCom Calculation

Description
Calculates MulCom test score for given m and t parameters

Usage
mulCalc(Mulcom_P, m, t)

Arguments
- **Mulcom_P**: an object of class MULCOM
- **m**: a numeric value corresponding to log 2 ratio correction for MulCom Test
- **t**: a numeric value corresponding to T values for MulCom Test

Details
mulCalc Calculate the Mulcom Score with m and t defined by the user
- **Mulcom_P**: an object of class MULCOM_P
- **m**: a number corresponding to log 2 ratio correction for MulCom Test
- **t**: a number corresponding to T values for MulCom Test

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples
```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulcom_calc <- mulCalc(mulcom_scores, 0.2, 2)
```

mulCAND

Identify the Mulcom candidate feature selection

Description
Identify the Mulcom candidate feature selection by the m and T defined by the user

Usage
mulCAND(eset, Mulcom_P, m, t, ese = "T")
MULCOM-class

Arguments

- `eset`: an AffyBatch
- `Mulcom_P`: an object of class MULCOM
- `m`: a numeric vector corresponding to log 2 ratio correction
- `t`: a numeric vector corresponding to the MulCom T values
- `ese`: True or False

Details

`mulCAND` Identify the Mulcom candidate feature selection by the m and T defined by the user

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
mulcom_cand <- mulCAND(Affy, mulcom_perm, 0.2, 2)
```

MULCOM-class

Class MulCom

Description

This is a class representation MulCom test scores

Objects from the Class

Objects can be created using the function `mulScores` on ExpressionSet.

Slots

- `FC`: Object of class numeric representing difference between all experimental groups and the reference groups
- `HM`: Object of class numeric representing the harmonic means in all subgroups
- `MSE_Corrected`: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test

Author(s)

Claudio Isella

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```
mulcomGeneListIlmn

Description

significant gene list with limma in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

MULCOM_P-class

Class MulCom Permutation

Description

This is a class representation MulCom test scores permutation

Objects from the Class

Objects can be created using the function `mulScores` on ExpressionSet.

Slots

- **FC**: Object of class numeric representing delta between all experimental groups and the reference groups
- **MSE_Corrected**: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test
- **FCp**: Object of class numeric representing delta between all experimental groups and the reference groups in permutated data
- **MSE_Correctedp**: Object of class numeric representing the MulCom test estimation of mean square error as described in the formula of the Dunnett’s t-test in permutated data

Author(s)

Claudio Isella

Examples

data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
mulDELTA
MulCom Delta

Description
Computes Delta for all the experimental points in the datasets in respect to control Should not be called directly

Usage
mulDELTA(vector, index)

Arguments
- **vector**: numeric vector with data measurements
- **index**: a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Details
mulDELTA An internal function that should not be called directly. It calculates differential expression in the groups defined in the index class vector, in respect to the 0 groups

Value
- **vector**: a numeric vector with data measurements
- **index**: a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples
```r
data(benchVign)
mulcom_delta <- mulDELTA(exprs(Affy[1,]),Affy$Groups)
```

mulDiff
MulCom Test Differential analysis

Description
Identify the differentially expressed features for a specific comparison with given m and t value

Usage
mulDiff(eset, Mulcom_P, m, t, ind)
mulFSG

Arguments

eset An ExpressionSet object from package affy
Mulcom_P An object of class Mulcom_P
m the m values for the analysis
t the t values for the analysis
ind and index referring to the comparison, should be numeric

Value

eset An ExpressionSet object from package affy
Mulcom_P An object of class Mulcom_P
m the m values for the analysis
t the t values for the analysis
ind and index referring to the comparison, should be numeric

Author(s)

Claudio Isella, claudio.isella@ircc.it

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_diff <- mulDiff(Affy, mulcom_perm, 0.2, 2)

mulFSG MulCom False Significant Genes

Description

Calculate the False Significant Genes for m and t defined by the user

Usage

mulFSG(Mulcom_P, m, t)

Arguments

Mulcom_P an object of class MULCOM
m m: a numeric value corresponding to log 2 ratio correction for MulCom Test
t t: a numeric value corresponding to t values for MulCom Test

Details

mulFDR evaluate the False Significant genes on the Mulcom_P object according to specific m and t parameters. For each permutation it is calculated the number of positive genes. An estimation of the false called genes is evaluated with the median for each experimental subgroups
mulIndex

mulIndex

Mulcom Index for Monte Carlo Simulation

Description
Random assembly of the groups indices for Monte Carlo Simulation

Usage
mulIndex(index, np, seed)

Arguments
index the vector with the groups of analysis, must be numeric and 0 correspond to the reference.
np number of permutation in the simulation
seed seed for permutations

Details
'mulIndex' generates random index for the function mulPerm. it is not directly called by the user.

Value
A matrix with all indices permutations

Author(s)
Claudio Isella, <claudio.isella@ircc.it>

Examples
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)mulcom_fsg <- mulFSG(mulcom_perm, 0.2, 2)

data(benchVign)
mulcom_scores <- mulIndex(Affy$Groups, 5, 7)
mulInt

generates a consensus matrix from list of genes

Description

generates a consensus matrix from list of genes

Usage

mulInt(...)

Arguments

... the function requires vector files as inputs

Details

mulCAND generates a consensus matrix from list of genes

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm = seq(0, 0.5, 0.1), vt = seq(1, 3, 0.1))

h1_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)
h2_opt <- mulParOpt(mulcom_perm, mulcom_opt, ind = 1, th = 0.05)

int <- mulInt(h1_opt, h2_opt)
```

mulMSE

MulCom Mean Square Error

Description

Computes Mean Square Error for all the experimental points in the datasets in respect to control

Should not be called directly

Usage

mulMSE(vector, index, tmp = vector())
mulOpt

Arguments

vector a numeric vector with data measurements
index a numeric vector with the labels of the samples. 0 are the control samples.
number must be progressive
tmp a vector

Details

mulMSE An internal function that should not be called directly. It calculates within group means square error for the values defined in the x vector according to the index class vector

Value

vector a numeric vector with data measurements
index a numeric vector with the labels of the samples. 0 are the control samples.
number must be progressive
tmp a vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Description

The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Usage

mulOpt(Mulcom_P, vm, vt)

Arguments

Mulcom_P an object of class Mulcom_P
vm a vector of m values to test
vt a vector of t values to test

Details

mulOpt The function systematically performs the calculation of significant genes and corresponding FDR for all the combination of given list of m and t values.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
mulOptPars

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))

mulOptPars MulCom Parameter Optimization

Description

Function to optimize Mulcom parameter for maximim number of genes with a user defined FDR

Usage

mulOptPars(opt, ind, ths)

Arguments

opt an MulCom optimization object
ind index corresponding to the comparison
ths a threshold for the FDR optimization, default is 0.05

Details

mulOptPars MulCom optimization function to identify best parameters

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 7)
#mulcom_opt <- mulOpt(mulcom_perm, seq(0.1, 0.5, 0.1), seq(1, 3, 0.1))
#optThs <- mulOptPars(mulcom_opt, 1, 0.05)

mulOptPlot MulCom optimization Plot

Description

MulCom optimization Plot to identify best configuration parameters

Usage

mulOptPlot(M.Opt, ind, th, smooth = "NO")
Arguments

M.Opt an MulCom optimization object
ind index corresponding to the comparison to plot
th a threshold for the FDR plot
smooth indicates whether the FDR plot will show a significant threshold or will be con-
tinuous.

Details

mulOptPlot MulCom optimization Plot

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3.1))
mulOptPlot(mulcom_opt, 1, 0.05)

mulParOpt MulCom Parameters Optimization

Description

MulCom parameter optimization function to identify best combination of t and m providing maxi-
mum number of genes at a given FDR

Usage

mulParOpt(perm, M.Opt, ind, th, image = "T")

Arguments

perm a object with permutated MulCom Scores
M.Opt an MulCom optimization object
ind index corresponding to the comparison to plot
th a threshold for the FDR plot
image default = "T", indicates is print the MulCom optimization plot
mulPerm

Details

mulParOpt The function mulParOpt is designed to identify the optimal m and t values combination leading to the maximum number of differentially regulated genes satisfying an user define FDR threshold. In case of equal number of genes, the combination of m and t with the lower FDR will be prioritized. In case of both identical number of genes and FDR, the function will chose the highest t. The function optionally will define a graphical output to visually inspect the performance of the test at given m and t parameters for a certain comparison.

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10, 2)
mulcom_opt <- mulOpt(mulcom_perm, vm=seq(0.1, 0.5, 0.1), vt=seq(1, 3, 1))
mulParOpt(mulcom_perm, mulcom_opt, 1, 0.05)

mulPerm MulCom Permutation

Description

Reiterate MulCom Test on permutated data to perform Montecarlo simulation

Usage

mulPerm(eset, index, np, seed, segm = "F")

Arguments

eset An an AffyBatch object, each row of must correspond to a variable and each column to a sample.

index a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.

np a numeric values indicating the number of permutation to perform. It is set as default to 10

seed set the seed of the permutaton, default is 1

segm a default set to F. This paramatheres requires to be setted to avoid segmentation fault of C subroutin in the case of very large datasets.

Details

mulPerm

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
mulPermC

Description

R pipe to C function not called directly by user that reiterate MulCom Test on permutated data to perform Monte Carlo simulation

Usage

```r
mulPermC(eset, index, means, mse, n, m, nump, ngroups, reference)
```

Arguments

- `eset`: An an `AffyBatch` object, each row of must correspond to a variable and each column to a sample.
- `index`: a numeric vector of length ncol(data) with the labels of the samples. 0 are the reference samples.
- `means`: entry for the means output.
- `mse`: entry for the mean square errors output
- `n`: number of rows in obext of class eset
- `m`: number of columns
- `nump`: number of permutation to perform
- `ngroups`: a number corresponding to the number of groups in the analysis.
- `reference`: reference for the comparisons. typically it is 0

Details

mulPerm

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_perm <- mulPerm(Affy, Affy$Groups, 10,2)
```
mulScores

Description

Computes the scores for the MulCom test. The function calculates the numerator and the denominator of the test without the parameters m and t.

Usage

```r
mulScores(eset, index)
```

Arguments

- `eset`: An an `AffyBatch` object, each row of must correspond to a variable and each column to a sample.
- `index`: A numeric vector of length `ncol(data)` with the labels of the samples. 0 are the reference samples.

Details

'mulScore' computes the scores for the MulCom test for multiple point profile. The Mulcom test is designed to compare each experimental mean with the control mean and it is derived from the "Dunnett's test". Dunnett's test controls the Experiment-wise Error Rate and is more powerful than tests designed to compare each mean with each other mean. The test is conducted by computing a modified t-test between each experimental group and the control group.

Value

An Object of class MULCOM from Mulcom package

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

Examples

```r
data(benchVign)
mulcom_scores <- mulScores(Affy, Affy$Groups)
```

mulSSE

Description

Computes sum of square errors for all the experimental points in the datasets Should not be called directly

Usage

```r
mulSSE(vec, index)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vec</td>
<td>a numeric vector with data measurements</td>
</tr>
<tr>
<td>index</td>
<td>a numeric vector with the labels of the samples. 0 are the control samples. number should be progressive</td>
</tr>
</tbody>
</table>

Details

mulSSE An internal function that should not be called directly. It calculates sum of square error in the groups defined in the index class vector.

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vec</td>
<td>a numeric vector with data measurements</td>
</tr>
<tr>
<td>index</td>
<td>a numeric vector with the labels of the samples. 0 are the control samples. number must be progressive</td>
</tr>
</tbody>
</table>

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

samAffySymbols

significant gene list with SAM in Affymetrix

Author(s)

Claudio Isella, <claudio.isella@ircc.it>

samIlmnSymbols

significant gene list with SAM in Illumina

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Description

Function to optimize Sam parameter for maximum number of genes with a user defined FDR

Usage

samOptPars(opt, ths)

Arguments

 opt an Sam optimization object
 ths a threshold for the FDR optimization

Value

a numeric vector

Author(s)

Claudio Isella, <claudio.isella@ircc.it>
Index

*Topic **MulCom**
 Affy, 2
 AffyIlmn, 2
 harmonicMean, 3
 Illumina, 3
 Ilmn, 4
 limmaAffySymbols, 4
 limmaIlmnSymbols, 4
 mulCalc, 5
 mulCAND, 5
 mulcomGeneListIlmn, 7
 mulDELTA, 8
 mulDiff, 8
 mulFSG, 9
 mulIndex, 10
 mulInt, 11
 mulMSE, 11
 mulOpt, 12
 mulOptPars, 13
 mulOptPlot, 13
 mulParOpt, 14
 mulPerm, 15
 mulPermC, 16
 mulScores, 17
 mulSSE, 17
 samAffySymbols, 18
 samIlmnSymbols, 18
 samOptPars, 19

*Topic **classes**
 MULCOM-class, 6
 MULCOM_P-class, 7

Affy, 2
AffyBatch, 6, 15–17
AffyIlmn, 2

class:MULCOM (MULCOM-class), 6
class:MULCOM_P (MULCOM_P-class), 7

harmonicMean, 3
Illumina, 3
Ilmn, 4
limmaAffySymbols, 4
limmaIlmnSymbols, 4