Package ‘NanoStringDiff’

January 30, 2017

Type Package
Title Differential Expression Analysis of NanoString nCounter Data
Version 1.4.0
Date 2015-08-3
Imports matrixStats, methods
Depends Biobase
Suggests testthat, BiocStyle
Author hong wang <hong.wang@uky.edu>, chi wang <chi.wang@uky.edu>
Maintainer hong wang <hong.wang@uky.edu>
Description This Package utilizes a generalized linear model (GLM) of the negative binomial family to characterize count data and allows for multi-factor design. NanoStrongDiff incorporate size factors, calculated from positive controls and housekeeping controls, and background level, obtained from negative controls, in the model framework so that all the normalization information provided by NanoString nCounter Analyzer is fully utilized.
License GPL
biocViews DifferentialExpression, Normalization
NeedsCompilation no

R topics documented:

NanoStringDiff-package .. 2
estNormalizationFactors 2
glm.LRT .. 3
housekeepingControl 4
housekeepingFactor ... 5
NanoStringData ... 6
NanoStringSet-class ... 6
negativeControl .. 8
negativeFactor .. 9
positiveControl ... 10
positiveFactor .. 11

Index 12
NanoStringDiff-package

NanoStringDiff package for differential expression analysis of NanoString nCounter data

Description

NanoStringDiff is an R package for differential expression analysis of NanoString nCounter data, and the main function for differential analysis is glm.LRT. See the examples at glm.LRT for basic analysis steps. NanoStringDiff utilizes a generalized linear model (GLM) of the negative binomial family to characterize count data and allows for multi-factor design.

Author(s)

hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

estNormalizationFactors

estimate normalization factors, include positive size factors, background noise, housekeeping size factors.

Description

This function estimates positive size factors, background noise and housekeeping size factors for the input "NanoStringSet" object and return the same object with positiveFactor, negativeFactor and housekeepingFactor slots filled or replaced.

Usage

estNormalizationFactors(NanoStringData)

Arguments

NanoStringData An object of "NanoStringSet" class.

Value

The same "NanoStringSet" object with positiveFactor, negativeFactor and housekeepingFactor field filled or replaced.

Author(s)

hong wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

Examples

data(NanoStringData)
NanoStringData=estNormalizationFactors(NanoStringData)
pf=positiveFactor(NanoStringData)
nf=negativeFactor(NanoStringData)
hf=housekeepingFactor(NanoStringData)
glm.LRT

perform gene-wise likelihood ratio test for NanoString Data

Description

The method considers a generalized linear model of the negative binomial family to characterize count data and allows for multi-factor design. The method propose an empirical Bayes shrinkage approach to estimate the dispersion parameter and use likelihood ratio test to obtain p-value.

Usage

```r
glm.LRT(NanoStringData, design.full, Beta=ncol(design.full), contrast=NULL)
```

Arguments

- **NanoStringData**: An object of "NanoStringSet" class.
- **design.full**: numeric matrix giving the design matrix for the generalized linear models under full model. must be of full column rank.
- **Beta**: integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. Values must be columns or column names of design. Defaults to the last coefficient. Ignored if contrast is specified.
- **contrast**: numeric vector or matrix specifying one or more contrasts of the linear model coefficients to be tested equal to zero.

Value

A list table

- **A data frame with each row corresponding to a gene. Rows are sorted according to likelihood ratio test statistics. The columns are: logFC: log fold change between two groups. lr: likelihood ratio test statistics. pvalue: p-value. qvalue: adjust p-value using the procedure of Benjamini and Hochberg.**
- **dispersion**: a vector of dispersion
- **log.dispersion**: a vector of log dispersion: log.dispersion=log(dispersion)
- **design.full**: numeric matrix giving the design matrix under full generalized linear model.
- **design.reduce**: numeric matrix giving the design matrix under reduced generalized linear model.
- **Beta.full**: coefficients under full model.
- **mean.full**: mean value under full model.
- **Beta.reduce**: coefficients under reduced model.
- **mean.reduce**: mean value under reduced model.
- **m0**: hyper-parameter: mean value of the prior distribution of log dispersion
- **sigma**: hyper-parameter: standard deviation of the prior distribution of log dispersion

Author(s)

hong wang<hong.wang@uky.edu> chi wang <chi.wang@uky.edu>
Examples

data(NanoStringData)
NanoStringData=estNormalizationFactors(NanoStringData)
group=pData(NanoStringData)
design.full=model.matrix(~0+factor(group$group))
contrast=c(1,-1)
result=glm.LRT(NanoStringData,design.full,
 Beta=ncol(design.full),contrast=contrast)
head(result$table)

housekeepingControl Accessor functions for the 'housekeepingControl' slot in a NanoStringSet object.

Description

user-defined housekeeping control genes can be used to estimate housekeeping factors to adjust variation caused by different sample input.

Usage

S4 method for signature 'NanoStringSet'
housekeepingControl(object)
S4 replacement method for signature 'NanoStringSet,matrix'
housekeepingControl(object) <- value

Arguments

object A NanoStringSet object.
value A matrix with housekeeping control genes.

Details

NanoString nCounter analyzer also contains probes for a set of species-specific mRNA housekeeping(reference) genes that are not spike-in the system. Nanostring recommends at least three housekeeping genes, but the more that are included, the more accurate the normalization will be. Housekeeping control genes are expected consistent in their expression levels.

Value

A matrix contain housekeeping control genes

Author(s)

Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also

housekeepingFactor
Examples

```r
## obtain housekeeping control genes
housekeepingControl(NanoStringData)

## assign a matrix
n=ncol(exprs(NanoStringData))
r=nrow(housekeepingControl(NanoStringData))
housekeeping=matrix(rpois(r*n,1000),ncol=n)
housekeepingControl(NanoStringData)=housekeeping
```

Description

Housekeeping size factors can be used to adjust the variance caused by different sample input.

Usage

```r
## S4 method for signature 'NanoStringSet'
housekeepingFactor(object)

## S4 replacement method for signature 'NanoStringSet,numeric'
housekeepingFactor(object) <- value
```

Arguments

- `object` A NanoStringSet object.
- `value` A vector of housekeeping size factors.

Details

Housekeeping gene normalization corrects for different in sample input between assays, since reference genes are supposed to have same expression rate between samples. So the read counts from housekeeping genes, after subtracting background noise and adjusting by positive size factors, that are not expected to vary between samples. If there exist difference, which should be caused by sample input variation.

Value

A vector contain housekeeping factors

Author(s)

Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also

housekeepingControl
Examples
```
data(NanoStringData)
## obtain housekeeping factors
housekeepingFactor(NanoStringData)

## assign a vector
n=ncol(exprs(NanoStringData))
housekeepingFactor(NanoStringData)=rep(1,n)
```

Description
The object is created based on Mori Data with normal and tumor groups and 2 samples in each group. The object contain 599 endogenes, 6 positive control, 6 negative control and 4 housekeeping control.

Usage
```
data(NanoStringData)
```

Value
An object of NanoStringSet

Examples
```
data(NanoStringData)
NanoStringData
```

NanoStringSet-class
NanoStringSet object and constructors

Description
The NanoStringSet is a s4 class used to store data from NanoString nCounter analyzer. This class a subclass of ExpressionSet, with six more slots: positiveControl, negativeControl, housekeepingControl, positiveFactor, negativeFactor and housekeepingFactor. The constructor functions `createNanoStringSet` and `createNanoStringSetFromCsv` create a NanoStringSet object from two types of input: seperate matrix or csv files. See the vignette for examples of contruction from these two input types.

Usage
```
createNanoStringSet(endogenous,positiveControl,negativeControl,
                    housekeepingControl,designs)

createNanoStringSetFromCsv(path, header=TRUE, designs)
```
Arguments

- `endogenous` for matrix input: a matrix of non-negative integers of endogenes
- `positiveControl` for matrix input: a matrix of non-negative integers of positive control genes. There must have 6 positive control genes order by concentrations form high to low.
- `negativeControl` for matrix input: a matrix of non-negative integers of negative control genes.
- `housekeepingControl` for matrix input: a matrix of non-negative integers of housekeeping control genes.
- `designs` for data.frame input: phenotype data for NanoString nCounter data with at least one column. Each row is one sample, that is the number of rows must equal number of samples or replicates in the data.
- `path` path to the csv file.
- `header` a logical value indicating whether the file contains the names of the variables as its first line. The default value is TRUE.

Value

A NanoStringSet object.

Methods

- `positiveControl`, `positiveControl<-` : Access and set positive control genes.
- `negativeControl`, `negativeControl<-` : Access and set negative control genes.
- `housekeepingControl`, `housekeepingControl<-` : Access and set housekeeping control genes.
- `positiveFactor`, `positiveFactor<-` : Access and set positive factors.
- `negativeFactor`, `negativeFactor<-` : Access and set negative factors.
- `housekeepingFactor`, `housekeepingFactor<-` : Access and set housekeeping factors.

Author(s)

hong wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also

- positiveControl, negativeControl, housekeepingControl, positiveFactor, negativeFactor, housekeepingFactor

Examples

```r
endogenous=matrix(rpois(100,50),25,4)
positive=matrix(rpois(24,c(128,32,8,2,0.5,0.125)*80),6,4)
negative=matrix(rpois(32,10),8,4)
housekeeping=matrix(rpois(12,100),3,4)
designs=data.frame(group=c(0,0,1,1),gender=c("male","female","female","male"),
age=c(20,40,39,37))
NanoStringData=createNanoStringSet(endogenous,positive,negative,
housekeeping,designs)
NanoStringData
```
negativeControl

Accessor functions for the 'negativeControl' slot in a NanoStringSet object.

Description

Negative control genes are provided by nCounter Analyzer which can be used to estimate background noise for each sample.

Usage

S4 method for signature 'NanoStringSet'
negativeControl(object)
S4 replacement method for signature 'NanoStringSet,matrix'
negativeControl(object) <- value

Arguments

- **object**: A NanoStringSet object.
- **value**: A matrix with negative control genes.

Details

Each code set in the nCounter Analyzer includes several negatives control genes for which no transcript is expected to be present. We use these spike-in negative control genes to estimate background noise for each sample.

Value

A matrix contain negative control genes

Author(s)

Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also

- negativeFactor

Examples

data(NanoStringData)
obtain negative control genes
negativeControl(NanoStringData)

assign a matrix
n=ncol(exprs(NanoStringData))
r=nrow(negativeControl(NanoStringData))
negativeFactor

negative = matrix(rpois(r*n, 10), ncol=n)
negativeControl(NanoStringData) = negative

negativeFactor

Accessor functions for the 'negativeFactor' slot in a NanoStringSet object.

Description

Negative size factors can be used to adjust background noise for each sample.

Usage

S4 method for signature 'NanoStringSet'
negativeFactor(object)
S4 replacement method for signature 'NanoStringSet, numeric'
negativeFactor(object) <- value

Arguments

object A NanoStringSet object.
value A vector of background noise.

Details

Accurate estimation of system background is essential for DE detection analysis. Each code set in the nCounter Analyzer includes several negatives control genes for which no transcript is expected to be present. We use these spike-in negative control genes to estimate background noise for each sample.

Value

A vector contain background noise

Author(s)

Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also

negativeControl

Examples

data(NanoStringData)
obtain negative factors
negativeFactor(NanoStringData)

assign a vector
n = ncol(exprs(NanoStringData))
lambda = rpois(n, 10)
negativeFactor(NanoStringData) = lambda
positiveControl

Acessor functions for the 'positiveControl' slot in a NanoStringSet object.

Description
nCounter Analyzer has positive spike-in RNA hybridization controls for each sample which can be used to estimate the overall efficiency of hybridization and recovery for each sample.

Usage
S4 method for signature 'NanoStringSet'
positiveControl(object)
S4 replacement method for signature 'NanoStringSet,matrix'
positiveControl(object) <- value

Arguments
object
A NanoStringSet object.
value
A matrix with six positive control genes.

Details
Positive control genes are provided by NanoString nCounter technology. For each sample, nCounter provide six positive controls corresponding to six different concentrations in the 30 ul hybridization: 128fM, 32fM, 8fM, 2fM, 0.5fM, and 0.125fM. Six positive control genes must be order by concentrations from high to low.

Value
A matrix contain positive control genes

Author(s)
Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also
positiveFactor

Examples
data(NanoStringData)
obtain positive control genes
positiveControl(NanoStringData)

assign a matrix
n=ncol(exprs(NanoStringData))
x=matrix(c(128,32,8,2,0.5,0.125)*80,nrow=n,ncol=1)
positive=matrix(rpois(6*n,x),ncol=n)
positiveControl(NanoStringData)=positive
positiveFactor

Description
Positive size factors can be used to adjust all platform associated sources of variation.

Usage

```
## S4 method for signature 'NanoStringSet'
positiveFactor(object)
## S4 replacement method for signature 'NanoStringSet,numeric'
positiveFactor(object) <- value
```

Arguments

- `object` A NanoStringSet object.
- `value` A vector of positive size factors.

Details

The observed counts including negative control genes and housekeeping control genes might be affected by some experimental factors like hybridization and binding efficiency. In order to get the true rate of gene expression, these variations must be normalized. Positive size factors can normalize this kind of variation.

Value
A vector contain positive size factors

Author(s)
Hong Wang <hong.wang@uky.edu> chi wang <chi.wang@uky.edu>

See Also
positiveControl

Examples

```
data(NanoStringData)
## obtain positive factors
positiveFactor(NanoStringData)

## assign a vector
n=ncol(exprs(NanoStringData))
positiveFactor(NanoStringData)=rep(1,n)
```
Index

*Topic classes
 NanoStringSet-class, 6
*Topic datasets
 NanoStringData, 6
*Topic models
 glm.LRT, 3
*Topic normalization
 estNormalizationFactors, 2
*Topic package
 NanoStringDiff-package, 2
createNanoStringSet (NanoStringSet-class), 6
createNanoStringSetFromCsv (NanoStringSet-class), 6
estNormalizationFactors, 2
estNormalizationFactors,estNormalizationFactors-method (estNormalizationFactors), 2
glm.LRT, 2, 3
glm.LRT,NanoStringSet-method (glm.LRT), 3

housekeepingControl, 4
housekeepingControl,NanoStringSet-method (housekeepingControl), 4
housekeepingControl<-(housekeepingControl), 4
housekeepingControl<-,NanoStringSet,matrix-method (housekeepingControl), 4
housekeepingFactor, 5
housekeepingFactor,NanoStringSet-method (housekeepingFactor), 5
housekeepingFactor<-(housekeepingFactor), 5
housekeepingFactor<-,NanoStringSet,numeric-method (housekeepingFactor), 5

NanoStringData, 6
NanoStringDiff (NanoStringDiff-package), 2
NanoStringDiff-package, 2
NanoStringSet (NanoStringSet-class), 6
NanoStringSet-class, 6

negativeControl, 8
negativeControl,NanoStringSet-method (negativeControl), 8
negativeControl<-(negativeControl), 8
negativeControl<-,NanoStringSet,matrix-method (negativeControl), 8
negativeFactor, 9
negativeFactor,NanoStringSet-method (negativeFactor), 9
negativeFactor<-(negativeFactor), 9
negativeFactor<-,NanoStringSet,numeric-method (negativeFactor), 9

positiveControl, 10
positiveControl,NanoStringSet-method (positiveControl), 10
positiveControl<-(positiveControl), 10
positiveControl<-,NanoStringSet,matrix-method (positiveControl), 10
positiveFactor, 11
positiveFactor,NanoStringSet-method (positiveFactor), 11
positiveFactor<-(positiveFactor), 11
positiveFactor<-,NanoStringSet,numeric-method (positiveFactor), 11