Package ‘OmicsMarkeR’

April 26, 2017

Title Classification and Feature Selection for ‘Omics’ Datasets

Description Tools for classification and feature selection for ‘omics’ level datasets. It is a tool to provide multiple multivariate classification and feature selection techniques complete with multiple stability metrics and aggregation techniques. It is primarily designed for analysis of metabolomics datasets but potentially extendable to proteomics and transcriptomics applications.

Date 2017-01-05

Version 1.8.0

Author Charles E. Determan Jr. <cdetermanjr@gmail.com>

Maintainer Charles E. Determan Jr. <cdetermanjr@gmail.com>

VignetteBuilder knitr

Depends R (>= 3.2.0)

Imports graphics, stats, utils, plyr (>= 1.8), data.table (>= 1.9.4), caret (>= 6.0-37), DisciMiner (>= 0.1-29), e1071 (>= 1.6-1), randomForest (>= 4.6-10), gbm (>= 2.1), pamr (>= 1.54.1), glmnet (>= 1.9-5), caTools (>= 1.14), foreach (>= 1.4.1), permute (>= 0.7-0), assertive (>= 0.3-0), assertive.base (>= 0.0-1)

Roxygen list(wrap = FALSE)

License GPL-3

LazyData true

URL http://github.com/cdeterman/OmicsMarkeR

biocViews Metabolomics, Classification, FeatureExtraction

Repository Bioconductor

Suggests testthat, BiocStyle, knitr

RoxygenNote 5.0.1

NeedsCompilation no
R topics documented:

aggregation ... 3
bagging.wrapper .. 4
canberra .. 5
canberra_stability .. 6
CLA ... 7
create.corr.matrix ... 7
create.discr.matrix .. 9
create.random.matrix ... 10
denovo.grid .. 12
EE ... 13
EM ... 13
ES ... 14
extract.args .. 15
extract.features ... 15
feature.table .. 16
fit.only.model ... 17
fs.ensembl.stability ... 18
fs.stability .. 20
jaccard ... 23
kuncheva .. 24
modelList .. 25
modelTuner .. 26
modelTuner_loo .. 27
noise.matrix ... 28
ochiai .. 28
optimize.model ... 29
pairwise.model.stability 30
pairwise.stability .. 31
params .. 32
perf.calc ... 33
performance.metrics .. 34
performance.stats .. 35
perm.class .. 35
perm.features ... 37
pof ... 38
predicting ... 39
prediction.metrics ... 40
predictNewClasses .. 40
RPT .. 42
sequester ... 42
sorensen .. 43
spearman ... 44
svm.weights .. 44
svmrfeFeatureRanking 45
svmrfeFeatureRankingForMulticlass 46
training ... 47
tune.instructions ... 48

Index 49
Description

Compiles matrix of ranked features via user defined 'metric'

Usage

aggregation(efs, metric, f = NULL)

Arguments

- **efs**: A matrix of selected features
- **metric**: string indicating the type of aggregation. Available options are "CLA" (Complete Linear), "EM" (Ensemble Mean), "ES" (Ensemble Stability), and "EE" (Ensemble Exponential)
- **f**: The number of features desired. Default f = NULL

Value

agg: Aggregated list of features

Author(s)

Charles Determan Jr

References

See Also

CLA, ES, EM, EE

Examples

test data
ranks <- replicate(5, sample(seq(50), 50))
row.names(ranks) <- paste0("V", seq(50))

aggregation(ranks, "CLA")
Bagging Wrapper for Ensemble Features Selection

Description

Compiles results of ensemble feature selection

Usage

```r
bagging.wrapper(X, Y, method, bags, f, aggregation.metric, k.folds, repeats, res, tuning.grid, optimize, optimize.resample, metric, model.features, allowParallel, verbose, theDots)
```

Arguments

- **X**: A matrix containing numeric values of each feature
- **Y**: A factor vector containing group membership of samples
- **method**: A vector listing models to be fit
- **bags**: Number of bags to be run
- **f**: Number of features desired
- **aggregation.metric**: String indicating the type of ensemble aggregation. Available options are "CLA" (Complete Linear), "EM" (Ensemble Mean), "ES" (Ensemble Stability), and "EE" (Ensemble Exponential)
- **k.folds**: Number of folds generated during cross-validation
- **repeats**: Number of times cross-validation repeated
- **res**: Optional - Resolution of model optimization grid
- **tuning.grid**: Optional list of grids containing parameters to optimize for each algorithm. Default "tuning.grid = NULL" lets function create grid determined by "res"
- **optimize**: Logical argument determining if each model should be optimized. Default "optimize = TRUE"
- **optimize.resample**: Logical argument determining if each resample should be re-optimized. Default "optimize.resample = FALSE" - Only one optimization run, subsequent models use initially determined parameters
- **metric**: Criteria for model optimization. Available options are "Accuracy" (Predication Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve - Receiver Operator Curve)
- **model.features**: Logical argument if should have number of features selected to be determined by the individual model runs. Default "model.features = FALSE"
- **allowParallel**: Logical argument dictating if parallel processing is allowed via foreach package. Default allowParallel = FALSE
- **verbose**: Logical argument if should output progress
- **theDots**: Optional arguments provided for specific models or user defined parameters if "optimize = FALSE"
canberra

Value

.results List with the following elements:

- Methods: Vector of models fit to data
- ensemble.results: List of length = length(method) containing aggregated features
- Number.bags: Number of bagging iterations
- Agg.metric: Aggregation method applied
- Number.features: Number of user-defined features

bestTunes If "optimize.resample = TRUE" then returns list of best parameters for each iteration

Author(s)

Charles Determan Jr

canberra
Canberra Distance

Description

Calculates canberra distance between two vectors. In brief, the higher the canberra distance the greater the 'distance' between the two vectors (i.e. they are less similar).

Usage

canberra(x, y)

Arguments

- x numeric vector of ranks
- y numeric vector of ranks with compatible length to x

Value

Returns the canberra distance for the two vectors

Note

The canberra_stability function is used internally to return the canberra metric.

Author(s)

Charles E. Determan Jr.

References

Examples

```r
# Canberra demo
v1 <- seq(10)
v2 <- sample(v1, 10)
canberra(v1, v2)

canberra_stability(v1, v2)
```

canberra_stability Canberra Stability

Description

Calculates canberra stability between two ranked lists. In brief, the raw canberra distance is scaled to a [0,1] distribution by the maximum canberra metric. Lastly, this value is subtracted from 1 to provide the same interpretation as the other stability metrics whereby 1 is identical and 0 is no stability.

Usage

```r
canberra_stability(x, y)
```

Arguments

- `x`: numeric vector of ranks
- `y`: numeric vector of ranks with compatible length to `x`

Value

Returns the canberra stability for the two vectors

Author(s)

Charles E. Determan Jr.

References

Examples

```r
# Canberra demo
v1 <- seq(10)
v2 <- sample(v1, 10)
canberra(v1, v2)

canberra_stability(v1, v2)
```
CLA

Complete Linear Aggregation

Description

Compiles matrix of ranked features via complete linear aggregation

Usage

CLA(efs, f)

Arguments

- **efs**
 A matrix of selected features
- **f**
 The number of features desired. If rank correlation desired, f = NULL

Value

- **agg**
 Aggregated list of features

Author(s)

Charles Determan Jr

References

See Also

ES, EM, EE

create.corr.matrix

Correlated Multivariate Data Generator

Description

Generates a matrix of dimensions dim(U) with induced correlations. Blocks of variables are randomly assigned and correlations are induced. A noise matrix is applied to the final matrix to perturb 'perfect' correlations.

Usage

create.corr.matrix(U, k = 4, min.block.size = 2, max.block.size = 5)
create.corr.matrix

Arguments

U Numeric matrix
k Correlation Perturbation - The higher k, the more the data is perturbed. Default k = 4
min.block.size minimum number of variables to correlate Default min.block.size = 2
max.block.size maximum number of variables to correlate Default max.block.size = 5

Value

A numeric matrix of dimension dim(U) with correlations induced between variables

Note

Output does not contain classes, may provide externally as classes are irrelevant in this function.

Author(s)

Charles E. Determan Jr.

References

See Also

create.random.matrix,create.discr.matrix

Examples

Create Multivariate Matrices
Random Multivariate Matrix
50 variables, 100 samples, 1 standard devation, 0.2 noise factor
rand.mat <- create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)

corr.mat <- create.corr.matrix(rand.mat)
Induce Discriminatory Variables
create.discr.matrix

10 discriminatory variables (D = 10)
default discrimination level (l = 1.5)
default number of groups (num.groups = 2)
default correlation perturbation (k = 4)

dat.discr <- create.discr.matrix(corr.mat, D=10)

create.discr.matrix Discriminatory Multivariate Data Generator

Description

Generates a matrix of dimensions \(\text{dim}(U) \) with induced correlations. \(D \) variables are randomly selected as discriminatory. If \(\text{num.groups} = 2 \) then discrimination is induced by adding and subtracting values derived from the level of discrimination, \(l \), for the classes respectively. Multi-class datasets have a few further levels of randomization. For each variable, a random number of the groups are selected as discriminating while the remaining groups are not altered. For each discriminatory group, a unique change is provided by randomly assigning addition or subtraction of the discrimination factor. For example, if 3 groups are selected and two groups are assigned as addition and the third subtraction, the second addition is multiplied by its number of replicates. E.g. \((1,1,-1) \rightarrow (1,2,-1)\). These values are randomized and then multiplied by the respective discrimination factor. The resulting values are then added/subtracted from the respective groups. A noise matrix is applied to the final matrix to perturb 'perfect' discrimination.

Usage

create.discr.matrix(V, D = 20, l = 1.5, num.groups = 2, k = 4)

Arguments

V Numeric matrix
D Number of discriminatory variables induced. Default \(D = 20 \)
l Level of discrimination, higher = greater separation. Default \(l = 1.5 \)
num.groups Number of groups in the dataset
k Correlation Perturbation - The higher \(k \), the more the data is perturbed. Default \(k = 4 \)

Value

List of the following elements

discr.mat Matrix of dimension \(\text{dim}(V)+1 \) with discriminatory variables induced and the .classes added to the end of the matrix.
features Vector of features that were induced to be discriminatory.

Author(s)

Charles E. Determan Jr.
References

Examples

Create Multivariate Matrices
Random Multivariate Matrix
50 variables, 100 samples, 1 standard deviation, 0.2 noise factor
rand.mat <- create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)

Induce correlations in a numeric matrix
Default settings
minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
default correlation perturbation (k=4)
see ?create.corr.matrix for citation for methods
corr.mat <- create.corr.matrix(rand.mat)

Induce Discriminatory Variables
10 discriminatory variables (D = 10)
default discrimination level (1 = 1.5)
default number of groups (num.groups=2)
default correlation perturbation (k = 4)
dat.discr <- create.discr.matrix(corr.mat, D=10)

create.random.matrix Random Multivariate Data Generator

Description

Generates a matrix of dimensions nvar by nsamp consisting of random numbers generated from a normal distribution. This normal distribution is then perturbed to more accurately reflect experimentally acquired multivariate data.

Usage

create.random.matrix(nvar, nsamp, st.dev = 1, perturb = 0.2)
create.random.matrix

Arguments

nvar Number of features (i.e. variables)
nsamp Number of samples
st.dev The variation (i.e. standard deviation) that is typical in datasets of interest to the user. Default spread = 1
perturb The amount of perturbation to the normal distribution. Default perturb = 0.2

Value

Matrix of dimension nvar by nsamp

Author(s)

Charles E. Determan Jr.

References

See Also

create.corr.matrix, create.discr.matrix

Examples

Create Multivariate Matrices

Random Multivariate Matrix

50 variables, 100 samples, 1 standard deviation, 0.2 noise factor

rand.mat <- create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)

Induce correlations in a numeric matrix

Default settings
minimum and maximum block sizes (min.block.size = 2, max.block.size = 5)
default correlation perturbation (k=4)
see ?create.corr.matrix for citation for methods

corr.mat <- create.corr.matrix(rand.mat)

Induce Discriminatory Variables

10 discriminatory variables (D = 10)
default discrimination level (l = 1.5)
default number of groups (num.groups=2)
default correlation perturbation (k = 4)

dat.discr <- create.discr.matrix(corr.mat, D=10)

denovo.grid

Denovo Grid Generation

Description

Greates grid for optimizing selected models

Usage

denovo.grid(data, method, res)

Arguments

data
data of method to be tuned

method
vector indicating the models to generate grids. Available options are "plsda"
(Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm"
(Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-
net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)

res
Resolution of model optimization grid.

Value

A list containing dataframes of all combinations of parameters for each model:

Author(s)

Charles Determan Jr

See Also

"expand.grid" for generating grids of specific parameters desired. However, NOTE that you must
still convert the generated grid to a list.

Examples

random test data
set.seed(123)
dat.discr <- create.discr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)),
 D = 10)

df <- data.frame(dat.discr$discr.mat, .classes = dat.discr$classes)
create tuning grid
denovo.grid(df, "gbm", 3)

EE

Ensemble Exponential Aggregation

Description

Compiles matrix of ranked features via ensemble exponential aggregation

Usage

```r
EE(efs, f)
```

Arguments

- **efs**
 A matrix of selected features
- **f**
 The number of features desired. If rank correlation desired, \(f = \text{NULL} \)

Value

- **agg**
 Aggregated list of features

Author(s)

Charles Determan Jr

References

See Also

- CLA, ES, EM.

EM

Ensemble Mean Aggregation

Description

Compiles matrix of ranked features via ensemble mean aggregation

Usage

```r
EM(efs, f)
```
Arguments

- **efs**: A matrix of selected features
- **f**: The number of features desired. If rank correlation desired, f = NULL

Value

- **agg**: Aggregated list of features

Author(s)

Charles Determan Jr

References

See Also

CLA, ES, EE

ES

Ensemble Stability Aggregation

Description

Compiles matrix of ranked features via ensemble stability aggregation

Usage

```
ES(efs, f)
```

Arguments

- **efs**: A matrix of selected features
- **f**: The number of features desired. If rank correlation desired, f = NULL

Value

- **agg**: Aggregated list of features

Author(s)

Charles Determan Jr

References

See Also

CLA, EM, EE
extract.args Argument extractor

Description
Extract arguments from previously fs.stability models

Usage
extract.args(fs.model, method)

Arguments
fs.model Previously fit fs.stability model
method Which model to extract from

Value
args List of model arguments

extract.features Feature Extraction

Description
Extracts features from models that have been previously fit.

Usage
extract.features(x, dat = NULL, grp = NULL, method,
model.features = FALSE, bestTune = NULL, f, comp.catch = NULL)

Arguments
x Previously fitted model
dat Numeric variable data used for fitted models (In appropriate format)
grp Vector of training classes
method String indicating the INDIVIDUAL model being extracted from
model.features Logical argument dictating if features selected determined by models instead of
user determined number of features.
bestTune If model.features = TRUE, must provide the parameter at which to extract
features from the model.
f Number of features to subset
comp.catch An internal check for plsda models. If the optimal model contains only 1 com-
ponent, the ncomp parameter must be set to 2 for the model. However, features
are still extracted only from the first component.

Value
Returns list of the features selected from the fitted model.
feature.table

Feature Consistency Table

Description

Extracts and sorts the features identified for a given method.

Usage

`feature.table(features, method)`

Arguments

- `features`: A `fs.stability` fitted object
- `method`: Algorithm of interest available options are "plsda" (Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)

Value

A data frame containing:

- `features`: Features identified by model
- `consistency`: Number of iterations feature was identified
- `frequency`: Frequency of iterations the feature was identified

Author(s)

Charles Determan Jr

Examples

```
dat.discr <- create.discr.matrix(
  create.corr.matrix(
    create.random.matrix(nvar = 50,
      nsamp = 100,
      st.dev = 1,
      perturb = 0.2)),
    D = 10)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
  groups,
  method = c("plsda", "rf"),
  f = 10,
  k = 3,
  k.folds = 10,
  verbose = 'none')

feature.table(fits, "plsda")
```
fit.only.model Fit Models without Feature Selection

Description

Applies models to high-dimensional data for classification.

Usage

fit.only.model(X, Y, method, p = 0.9, optimize = TRUE, tuning.grid = NULL, k.folds = if (optimize) 10 else NULL, repeats = if (optimize) 3 else NULL, resolution = if (optimize) 3 else NULL, metric = "Accuracy", allowParallel = FALSE, verbose = "none", ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A scaled matrix or dataframe containing numeric values of each feature</td>
</tr>
<tr>
<td>Y</td>
<td>A factor vector containing group membership of samples</td>
</tr>
<tr>
<td>method</td>
<td>A vector listing models to be fit. Available options are "plsda" (Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)</td>
</tr>
<tr>
<td>p</td>
<td>Percent of data to be 'trained'</td>
</tr>
<tr>
<td>optimize</td>
<td>Logical argument determining if each model should be optimized. Default "optimize = TRUE"</td>
</tr>
<tr>
<td>tuning.grid</td>
<td>Optional list of grids containing parameters to optimize for each algorithm. Default "tuning.grid = NULL" lets function create grid determined by "res"</td>
</tr>
<tr>
<td>k.folds</td>
<td>Number of folds generated during cross-validation. Default "k.folds = 10"</td>
</tr>
<tr>
<td>repeats</td>
<td>Number of times cross-validation repeated. Default "repeats = 3"</td>
</tr>
<tr>
<td>resolution</td>
<td>Resolution of model optimization grid. Default "resolution = 3"</td>
</tr>
<tr>
<td>metric</td>
<td>Criteria for model optimization. Available options are "Accuracy" (Prediction Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve - Receiver Operator Curve)</td>
</tr>
<tr>
<td>allowParallel</td>
<td>Logical argument dictating if parallel processing is allowed via foreach package. Default allowParallel = FALSE</td>
</tr>
<tr>
<td>verbose</td>
<td>Logical argument if should output progress</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Vector of models fit to data</td>
</tr>
<tr>
<td>performance</td>
<td>Performance metrics of each model and bootstrap iteration</td>
</tr>
<tr>
<td>specs</td>
<td>List with the following elements:</td>
</tr>
<tr>
<td></td>
<td>• total.samples: Number of samples in original dataset</td>
</tr>
<tr>
<td></td>
<td>• number.features: Number of features in original dataset</td>
</tr>
<tr>
<td></td>
<td>• number.groups: Number of groups</td>
</tr>
<tr>
<td></td>
<td>• group.levels: The specific levels of the groups</td>
</tr>
<tr>
<td></td>
<td>• number.observations.group: Number of observations in each group</td>
</tr>
</tbody>
</table>
Author(s)
Charles Determan Jr

Examples

dat.discr <- create.discr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)),
 D = 10)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fit <- fit.only.model(X = vars,
 Y = groups,
 method = "plsda",
 p = 0.9)

fs.ensembl.stability
Ensemble Classification & Feature Selection

Description
Applies ensembles of models to high-dimensional data to both classify and determine important features for classification. The function bootstraps a user-specified number of times to facilitate stability metrics of features selected thereby providing an important metric for biomarker investigations, namely whether the important variables can be identified if the models are refit on ‘different’ data.

Usage

fs.ensembl.stability(X, Y, method, k = 10, p = 0.9,
 f = ceiling(ncol(X)/10), bags = 40, aggregation.metric = "CLA",
 stability.metric = "jaccard", optimize = TRUE,
 optimize.resample = FALSE, tuning.grid = NULL, k.folds = if (optimize)
 10 else NULL, repeats = if (k.folds == "LOO") NULL else if (optimize) 3 else
 NULL, resolution = if (optimize) 3 else NULL, metric = "Accuracy",
 model.features = FALSE, allowParallel = FALSE, verbose = "none", ...)

Arguments

X A matrix containing numeric values of each feature
Y A factor vector containing group membership of samples
method A vector listing models to be fit. Available options are "plsda" (Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)
k \quad \text{Number of bootstrapped iterations}

p \quad \text{Percent of data to be 'trained'}

f \quad \text{Number of features desired. Default is top 10 "f = ceiling(ncol(variables)/10)". If rank correlation is desired, set "f = NULL"}

bags \quad \text{Number of iterations for ensemble bagging. Default "bags = 40"}

aggregation.metric \quad \text{String indicating which aggregation metric for features selected during bagging. Available options are "CLA" (Complete Linear), "EM" (Ensemble Mean), "ES" (Ensemble Stability), and "EE" (Ensemble Exponential)}

stability.metric \quad \text{String indicating the type of stability metric. Available options are "jaccard" (Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen's Index), "ochiai" (Ochiai's Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva's Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra" (Canberra Distance)}

optimize \quad \text{Logical argument determining if each model should be optimized. Default "optimize = TRUE"}

optimize.resample \quad \text{Logical argument determining if each resample should be re-optimized. Default "optimize.resample = FALSE" - Only one optimization run, subsequent models use initially determined parameters}

tuning.grid \quad \text{Optional list of grids containing parameters to optimize for each algorithm. Default "tuning.grid = NULL" lets function create grid determined by "res"}

k.folds \quad \text{Number of folds generated during cross-validation. May optionally be set to "LOO" for leave-one-out cross-validation. Default "k.folds = 10"}

repeats \quad \text{Number of times cross-validation repeated. Default "repeats = 3"}

resolution \quad \text{Optional - Resolution of model optimization grid. Default "res = 3"}

metric \quad \text{Criteria for model optimization. Available options are "Accuracy" (Predication Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve - Receiver Operator Curve)}

model.features \quad \text{Logical argument if should have number of features selected to be determined by the individual model runs. Default "model.features = FALSE"}

allowParallel \quad \text{Logical argument dictating if parallel processing is allowed via foreach package. Default allowParallel = FALSE}

verbose \quad \text{Character argument specifying how much output progress to print. Options are 'none', 'minimal' or 'full'.}

... \quad \text{Extra arguments that the user would like to apply to the models}

\textbf{Value}

\textbf{Methods} \quad \text{Vector of models fit to data}

\textbf{performance} \quad \text{Performance metrics of each model and bootstrap iteration}

\textbf{RPT} \quad \text{Robustness-Performance Trade-Off as defined in Saey's 2008}

\textbf{features} \quad \text{List concerning features determined via each algorithms feature selection criteria.}

\begin{itemize}
 \item \textbf{metric}: Stability metric applied
\end{itemize}
fs.stability

- features: Matrix of selected features
- stability: Matrix of pairwise comparisons and average stability

stability.models
Function perturbation metric - i.e. how similar are the features selected by each model.

all.tunes
If "optimize.resample = TRUE" then returns list of optimized parameters for each bagging and bootstrap iteration.

final.best.tunes
If "optimize.resample = TRUE" then returns list of optimized parameters for each bootstrap of the bagged models refit to aggregated selected features.

specs
List with the following elements:
- total.samples: Number of samples in original dataset
- number.features: Number of features in original dataset
- number.groups: Number of groups
- group.levels: The specific levels of the groups
- number.observations.group: Number of observations in each group

Author(s)
Charles Determan Jr

References

Examples
```r
## Not run:
fits <- fs.ensembl.stability(vars, groups, method = c("plsda", "rf"), f = 10, k = 3, k.folds = 10, verbose = 'none')
## End(Not run)
```

fs.stability Classification & Feature Selection

Description
Applies models to high-dimensional data to both classify and determine important features for classification. The function bootstraps a user-specified number of times to facilitate stability metrics of features selected thereby providing an important metric for biomarker investigations, namely whether the important variables can be identified if the models are refit on 'different' data.
Usage

fs.stability(X, Y, method, k = 10, p = 0.9, f = NULL,
stability.metric = "jaccard", optimize = TRUE,
optimize.resample = FALSE, tuning.grid = NULL, k.folds = if (optimize)
10 else NULL, repeats = if (k.folds == "LOO") NULL else if (optimize) 3 else
NULL, resolution = if (is.null(tuning.grid) & optimize) 3 else NULL,
metric = "Accuracy", model.features = FALSE, allowParallel = FALSE,
verbose = "none", ...)

Arguments

X
A scaled matrix or dataframe containing numeric values of each feature

Y
A factor vector containing group membership of samples

method
A vector listing models to be fit. Available options are "plsda" (Partial Least
Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting
Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized
Linear Model), and "pam" (Prediction Analysis of Microarrays)

k
Number of bootstrapped interations

p
Percent of data to by 'trained'

f
Number of features desired. If rank correlation is desired, set "f = NULL"

stability.metric
string indicating the type of stability metric. Availabe options are "jaccard"
(Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai"
(Ochiai’s Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s
Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra"
(Canberra Distance)

optimize
Logical argument determining if each model should be optimized. Default
"optimize = TRUE"

optimize.resample
Logical argument determining if each resample should be re-optimized. Default
"optimize.resample = FALSE" - Only one optimization run, subsequent
models use initially determined parameters

tuning.grid
Optional list of grids containing parameters to optimize for each algorithm. Default
"tuning.grid = NULL" lets function create grid determined by "res"

k.folds
Number of folds generated during cross-validation. May optionally be set to
"LOO" for leave-one-out cross-validation. Default "k.folds = 10"

repeats
Number of times cross-validation repeated. Default "repeats = 3"

resolution
Resolution of model optimization grid. Default "resolution = 3"

metric
Criteria for model optimization. Available options are "Accuracy" (Prediction
Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve -
Receiver Operator Curve)

model.features
Logical argument if should have number of features selected to be determined
by the individual model runs. Default "model.features = FALSE"

allowParallel
Logical argument dictating if parallel processing is allowed via foreach package.
Default allowParallel = FALSE

verbose
Character argument specifying how much output progress to print. Options are
'none', 'minimal' or 'full'.

...
Extra arguments that the user would like to apply to the models
Value

Methods Vector of models fit to data
performance Performance metrics of each model and bootstrap iteration
RPT Robustness-Performance Trade-Off as defined in Saes 2008
features List concerning features determined via each algorithms feature selection criteria.

- metric: Stability metric applied
- features: Matrix of selected features
- stability: Matrix of pairwise comparisons and average stability

stability.models
Function perturbation metric - i.e. how similar are the features selected by each model.

original.best.tunes
If "optimize.resample = TRUE" then returns list of optimized parameters for each bootstrap.

final.best.tunes
If "optimize.resample = TRUE" then returns list of optimized parameters for each bootstrap of models refit to selected features.

specs
List with the following elements:

- total.samples: Number of samples in original dataset
- number.features: Number of features in original dataset
- number.groups: Number of groups
- group.levels: The specific levels of the groups
- number.observations.group: Number of observations in each group

Author(s)
Charles Determan Jr

References

Examples

dat.discr <- create.discr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)),
 D = 10)
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes
jaccard

fits <- fs.stability(vars,
 groups,
 method = c("plsda", "rf"),
 f = 10,
 k = 3,
 k.fold = 10,
 verbose = 'none')

jaccard

Description

Calculates jaccard index between two vectors of features. In brief, the closer to 1 the more similar the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length). Also known as the Tanimoto distance metric. Defined as the size of the vectors’ intersection divided by the size of the union of the vectors.

Usage

jaccard(x, y)

Arguments

x vector of feature names
y vector of feature names

Value

Returns the jaccard index for the two vectors. It takes values in [0,1], with 0 meaning no overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

References

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability
Examples

Jaccard demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
jaccard(v1, v2)

kuncheva

Kuncheva’s Index

Description

Calculates Kuncheva’s index between two vectors of features. In brief, the closer to 1 the more similar the vectors. The two vectors must have the same cardinality (i.e. same length).

Usage

kuncheva(x, y, num.features)

Arguments

x Character vector of feature names
y Character vector of feature names
num.features total number of features in the original dataset

Value

Returns the Kuncheva Index for the two vectors. It takes values in [0,1], with 0 meaning no overlap between two sets and 1 meaning two sets are identical.

Note

The returned Kuncheva Index has been scaled from its original [-1,1] range to [0,1] in order to make it compatible with RPT.

Author(s)

Charles E. Determan Jr.

References

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability
Examples

Kuncheva demo
Assuming 50 metabolites were measured
But only 10 were found significant

For demonstration purposes only!!!
some.numbers <- seq(20)

Metabolites identified from one run
v1 <- paste("Metabolite", sample(some.numbers, 10), sep="_")
Metabolites identified from second run
v2 <- paste("Metabolite", sample(some.numbers, 10), sep="_")
kuncheva(v1, v2, 50)

modelList

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a list of currently implemented methods for OmicsMarkeR.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>modelList()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data.frame containing:</td>
</tr>
<tr>
<td>methods</td>
</tr>
<tr>
<td>description</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Determan Jr.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>modelList()</td>
</tr>
</tbody>
</table>
modelTuner (Model Tuner)

Description
Optimizes each model based upon the parameters provided either by the internal `denovo.grid` function or by the user.

Usage

```r
modelTuner(trainData, guide, method, inTrain, outTrain, lev,
            savePredictions = FALSE, allowParallel = FALSE, verbose = "none",
            theDots = NULL)
```

Arguments

- `trainData`: Data used to fit the model
- `guide`: Output from `tune.instructions`. Facilitates the optimization by avoiding redundant model fitting.
- `method`: Vector of strings listing models to be fit
- `inTrain`: Indices for cross-validated training models
- `outTrain`: Indices for cross-validated testing models
- `lev`: Group levels
- `savePredictions`: Logical argument dictating if should save the prediction data. Default `savePredictions = FALSE`
- `allowParallel`: Logical argument dictating if parallel processing is allowed via foreach package
- `verbose`: Character argument specifying how much output progress to print. Options are ‘none’, ‘minimal’ or ‘full’.
- `theDots`: List of additional arguments provided in the initial classification and features selection function

Value

Returns list of fitted models

Author(s)

Charles E. Determan Jr.
modelTuner_loo

Model Tuner for Leave-One-Out Cross-Validation

Description

Optimizes each model via LOO CV based upon the parameters provided either by the internal `denovo.grid` function or by the user.

Usage

```r
modelTuner_loo(trainData, guide, method, inTrain, outTrain, lev,
savePredictions = FALSE, allowParallel = FALSE, verbose = "none",
theDots = NULL)
```

Arguments

- `trainData`: Data used to fit the model
- `guide`: Output from `tune.instructions`. Facilitates the optimization by avoiding redundant model fitting.
- `method`: Vector of strings listing models to be fit
- `inTrain`: Indicies for cross-validated training models
- `outTrain`: Indicies for cross-validated testing models
- `lev`: Group levels
- `savePredictions`: Logical argument dictating if should save the prediction data. Default `savePredictions = FALSE`
- `allowParallel`: Logical argument dictating if parallel processing is allowed via foreach package
- `verbose`: Character argument specifying how much output progress to print. Options are 'none', 'minimal' or 'full'.
- `theDots`: List of additional arguments provided in the initial classification and features selection function

Value

Returns list of fitted models

Author(s)

Charles E. Determan Jr.
noise.matrix

Description

Provides a matrix to perturb randomly generated data to facilitate a more realistic dataset.

Usage

noise.matrix(matrix, k)

Arguments

matrix
A matrix of simulated data with dimensions comparable to 'real' datasets
k
Correlation Perturbation - The higher k, the more the data is perturbed.

Value

Returns a matrix of the same dimensions as matrix that can add to perturb the original simulated data.

Author(s)

Charles E. Determan Jr.

ochiai

Ochiai’s Index

Description

Calculates Ochiai’s index between two vectors of features. In brief, the closer to 1 the more similar the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length). Very similar to the Jaccard Index jaccard but Ochiai is a geometric means of the ratio.

Usage

ochiai(x, y)

Arguments

x
Character vector of feature names
y
Character vector of feature names

Value

Returns the Ochiai Index for the two vectors. It takes values in [0,1], with 0 meaning no overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.
References

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

Examples

Ochiai demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
ochiai(v1, v2)

optimize.model Model Optimization and Metrics

Description

Optimizes each model based upon the parameters provided either by the internal denovo.grid function or by the user.

Usage

optimize.model(trainVars, trainGroup, method, k.folds = 10, repeats = 3,
res = 3, grid = NULL, metric = "Accuracy", allowParallel = FALSE,
verbose = "none", theDots = NULL)

Arguments

trainVars Data used to fit the model
trainGroup Group identifiers for the training data
method A vector of strings listing models to be optimized
k.folds Number of folds generated during cross-validation. Default "k.folds = 10"
repeats Number of times cross-validation repeated. Default "repeats = 3"
res Resolution of model optimization grid. Default "res = 3"
grid Optional list of grids containing parameters to optimize for each algorithm. Default "grid = NULL" lets function create grid determined by "res"
metric Criteria for model optimization. Available options are "Accuracy" (Predication Accuracy), "Kappa" (Kappa Statistic), and "AUC-ROC" (Area Under the Curve - Receiver Operator Curve)
allowParallel Logical argument dictating if parallel processing is allowed via foreach package
pairwise.model.stability

Value

Basiclly a list with the following elements:

- **method**: Vector of strings listing models that were optimized
- **performance**: Performance generated internally to optimize model
- **bestTune**: List of parameters chosen for each model
- **dots**: List of extra arguments initially provided
- **metric**: Criteria that was used for model optimization
- **finalModels**: The fitted models with the 'optimum' parameters
- **performance.metrics**: The performance metrics calculated internally for each resulting prediction
- **tune.metrics**: The results from each tune
- **perfNames**: The names of the performance metrics
- **comp.catch**: If the optimal PLSDA model contains only 1 component, the model must be refit with 2 components. This catches the 1 component parameter so feature selection and further performance analysis can be conducted on the 1 component.

Author(s)

Charles E. Determan Jr.
pairwise.stability

Value

A list is returned containing:

- **comparisons** Matrix of pairwise comparisons
- **overall** The average of all pairwise comparisons

Author(s)

Charles Determan Jr

References

See Also

pairwise.stability

Examples

```r
# pairwise.model.stability demo
# For demonstration purposes only!!!
some.numbers <- seq(20)

# A list containing the metabolite matrices for each algorithm
# As an example, let's say we have the output from two different models
# such as plsda and random forest.
# matrix of Metabolites identified (e.g. 5 trials)
plsda <-
  replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))
rf <-
  replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))
features <- list(plsda=plsda, rf=rf)

# nc may be omitted unless using kuncheva
pairwise.model.stability(features, "kuncheva", nc=20)
```

pairwise.stability *Pairwise Stability Metrics*

Description

Conducts all pairwise comparisons of features selected following bootstrapping. Also known as the data perturbation ensemble approach.

Usage

pairwise.stability(features, stability.metric, nc)
Arguments

features A matrix of selected features
stability.metric string indicating the type of stability metric.
nc Optional argument to be used with ‘kuncheva’ stability. Refers to the number
 of variables in original data. Available options are "jaccard" (Jaccard Index/Tanimoto Distance), "sorensen" (Dice-Sorensen’s Index), "ochiai" (Ochiai’s Index), "pof" (Percent of Overlapping Features), "kuncheva" (Kuncheva’s Stability Measures), "spearman" (Spearman Rank Correlation), and "canberra" (Canberra Distance)

Value

A list is returned containing:

comparisons Matrix of pairwise comparisons
overall The average of all pairwise comparisons

Author(s)

Charles Determan Jr

References

Examples

pairwise.stability demo

For demonstration purposes only!!!
some.numbers <- seq(20)

matrix of Metabolites identified (e.g. 5 trials)
features <-
 replicate(5, paste("Metabolite", sample(some.numbers, 10), sep="_"))

nc may be omitted unless using kuncheva
pairwise.stability(features, "jaccard")
Arguments

method A vector of strings listing the models to be returned

Value

Returns a dataframe of the following components:
method A vector of strings listing models returned
parameter A vector of possible parameters to be optimized
label A vector of the names for each possible parameter
seq A logical indicator if the parameter is sequential in the model (i.e. if model is able to fit all 'lower' parameters simultaneously)

Examples

params("pllda")

perf.calc

Description

Calculates confusion matrix and ROC statistics comparing the results of the fitted models to the observed groups.

Usage

perf.calc(data, lev = NULL, model = NULL)

Arguments

data dataframe of predicted (pred) and observed (obs) groups
lev Group levels
model String indicating which model was initially run

Value

Returns confusion matrix and ROC performance statistics including Accuracy, Kappa, ROC.AUC, Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value

See Also

caret function confusionMatrix
performance.metrics
Performance Metrics of fs.stability or fs.ensembl.stability object

Description
This will provide a concise data.frame of confusion matrix and ROC statistics from the results of fs.stability or fs.ensembl.stability.

Usage

\[
\text{performance.metrics}(\text{fit.model}, \text{digits} = \max(3, \text{getOption(\text{"digits\") - 3}))
\]

Arguments

- **fit.model**: An fs.stability or fs.ensembl.stability object
- **digits**: How many digits to round values

Value

Dataframe of performance statistics by model

Author(s)

Charles E. Determan Jr.

Examples

```r

dat.discr <- create.discr.matrix(
  create.corr.matrix(
    create.random.matrix(nvar = 50,
      nsamp = 100,
      st.dev = 1,
      perturb = 0.2)),
    D = 10)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
  groups,
  method = c("plsda", "rf"),
  f = 10,
  k = 3,
  k.folds = 10,
  verbose = "none")

performance.metrics(fits)
```
performance.stats
Performance Statistics (Internal for perf.calc)

Description
Calculates confusion matrix and ROC statistics comparing the results of the fitted models to the observed groups.

Usage

```
performance.stats(pred, obs)
```

Arguments
- `pred` vector of groups predicted by a fitted classification model
- `obs` vector of groups from the original dataset

Value
Returns confusion matrix and ROC performance statistics including Accuracy, Kappa, ROC.AUC, Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value

See Also
caret function `confusionMatrix`

perm.class
Monte Carlo Permutation of Model Performance

Description
Applies Monte Carlo permutations to user specified models. The user can either use the results from `fs.stability` or provide specified model parameters.

Usage

```
perm.class(fs.model = NULL, X, Y, method, k.folds = 5, metric = "Accuracy", nperm = 10, allowParallel = FALSE, create.plot = FALSE, verbose = TRUE, ...)
```

Arguments
- `fs.model` Object containing results from `fs.stability`
- `X` A scaled matrix or dataframe containing numeric values of each feature
- `Y` A factor vector containing group membership of samples
- `method` A string of the model to be fit. Available options are "plsda" (Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)
perm.class

k.folds How many and what fractions of dataset held-out for prediction (i.e. 3 = 1/3, 10 = 1/10, etc.)

metric Performance metric to assess. Available options are "Accuracy", "Kappa", and "ROC.AUC".

nperm Number of permutations, default nperm = 10

allowParallel Logical argument dictating if parallel processing is allowed via foreach package. Default allowParallel = FALSE

create.plot Logical argument whether to create a distribution plot of permutation results.

verbose Logical argument whether output printed automatically in 'pretty' format. Default create.plot = FALSE

... Extra arguments that the user would like to apply to the models

Value

p.value Resulting p-value of permutation test

Author(s)

Charles Determan Jr.

References

Examples

dat.discr <- create.discr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)),

 D = 10
)
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
 groups,
 method = c("plsda", "rf"),
 f = 10,
 k = 3,
 k.folds = 10,
 verbose = 'none')

perm.class(fits, vars, groups, "rf", k.folds=5,
 metric="Accuracy", nperm=10)
perm.features

Feature Selection via Monte Carlo Permutation

Description

Applies Monte Carlo permutations to user specified models. The user can either use the results from fs.stability or provide specified model parameters.

Usage

perm.features(fs.model = NULL, X, Y, method, sig.level = 0.05, nperm = 10, allowParallel = FALSE, verbose = TRUE, ...)

Arguments

fs.model Object containing results from fs.stability
X A scaled matrix or dataframe containing numeric values of each feature
Y A factor vector containing group membership of samples
method A vector listing models to be fit. Available options are "plsda" (Partial Least Squares Discriminant Analysis), "rf" (Random Forest), "gbm" (Gradient Boosting Machine), "svm" (Support Vector Machines), "glmnet" (Elastic-net Generalized Linear Model), and "pam" (Prediction Analysis of Microarrays)
sig.level Desired significance level for features, default sig.level = .05
nperm Number of permutations, default nperm = 10
allowParallel Logical argument dictating if parallel processing is allowed via foreach package. Default allowParallel = FALSE
verbose Logical argument whether output printed automatically in 'pretty' format.
... Extra arguments that the user would like to apply to the models

Value

sig.level User-specified significance level
num.sig.features Number of significant features
sig.features Dataframe of significant features

Author(s)

Charles Determan Jr.

References

Examples

dat.discr <- create.discr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50, nsamp = 100, st.dev = 1, perturb = 0.2),
 D = 10
)
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars, groups, method = c("plsda", "rf"), f = 10, k = 3, k.folds = 10, verbose = "none")

permute variables/features
perm.features(fits, vars, groups, "rf", sig.level = .05, nperm = 10)

pof

Percentage of Overlapping Features

Description

Calculates percent of overlapping features between two vectors of features. In brief, the closer to 1 the more similar the vectors. The two vectors may have an arbitrary cardinality (i.e. don’t need same length).

Usage

pof(x, y)

Arguments

x Character vector of feature names

y Character vector of feature names

Value

Returns the percent of overlapping features for the two vectors. It takes values in [0,1], with 0 meaning no overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.
References

See Also

kuncheva, sorensen, ochiai, pof, pairwise.stability, pairwise.model.stability

Examples

Percent-Overlapping Features demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
pof(v1, v2)

predicting Model Group Prediction

Description

This function evaluates a single fitted model and returns the predicted group memberships.

Usage

predicting(method, modelFit, orig.data, indicies, newdata, param = NULL)

Arguments

method String of the model to be evaluated
modelFit The fitted model being evaluated
orig.data The orginal data before subsetting training sets. Required to have the 'observed' group membership
indicies The indicies for the training subsets
newdata The testing data to predict group membership
param The parameters being fit to the model (Determined by model optimization).

Value

Returns a list of predicted group membership
prediction.metrics
Prediction Metric Calculations

Description

Performance evaluation of all fitted models. This function concisely provides model performance metrics, including confusion matrix and ROC.

Usage

`prediction.metrics(finalModel, method, raw.data, inTrain, outTrain, features, bestTune, grp.levs, stability.metric)`

Arguments

- `finalModel`: List of fitted models
- `method`: Vector of strings dictating the models that were fit
- `raw.data`: Original dataset prior to any training subset
- `inTrain`: List of training indicies for each feature selection run
- `outTrain`: List of testing data indicies for each feature selection run
- `features`: List of selected features for each model
- `bestTune`: List of parameters that have been optimized for the each respective model
- `grp.levs`: Vector of group levels
- `stability.metric`: A character object specifying the stability metric

Value

Returns a dataframe consisting of each feature selection runs evaluated Accuracy, Kappa, ROC.AUC, Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value.

See Also

`performance.stats`, `perf.calc` caret function `confusionMatrix`

predictNewClasses
Class Prediction

Description

This function evaluates a single fitted model and returns the predicted group memberships of new data.

Usage

`predictNewClasses(modelFit, method, orig.data, newdata, param = NULL)`
predictNewClasses

Arguments

- **modelFit**: The fitted model being evaluated
- **method**: String of the model to be evaluated
- **orig.data**: The original data before subsetting training sets. Required to have the 'observed' group membership
- **newdata**: The testing data to predict group membership
- **param**: Optional alternate parameters being fit to the model

Value

Returns a list of predicted group membership

Examples

```r
dat.discr <- create.discr.matrix(
  create.corr.matrix(
    create.random.matrix(nvar = 50,
      nsamp = 100,
      st.dev = 1,
      perturb = 0.2)),
    D = 10
  )
)

vars <- dat.discr$discr.mat
groups <- dat.discr$classes

fits <- fs.stability(vars,
  groups,
  method = c("plsda", "rf"),
  f = 10,
  k = 3,
  k.folds = 10,
  verbose = 'none')

newdata <- create.discr.matrix(
  create.corr.matrix(
    create.random.matrix(nvar = 50,
      nsamp = 100,
      st.dev = 1,
      perturb = 0.2)),
    D = 10
  )$discr.mat

orig.df <- data.frame(vars, groups)

# see what the PLSDA predicts for the new data
# NOTE, newdata does not require a .classes column
predictNewClasses(fits, "plsda", orig.df, newdata)
```
RPT

Robustness-Performance Trade-Off

Description

A variation on the F-measure (precision and recall) to assess robustness versus classification performance.

Usage

\[\text{RPT}(\text{stability, performance, } \beta) \]

Arguments

- **stability**: Stability metric i.e. result from jaccard, sorensen, etc.
- **performance**: Model performance e.g. accuracy
- **\(\beta \)**: Relative of importance of stability versus performance. Default \(\beta = 1 \) treats stability and performance equally.

Value

Harmonic mean of robustness and classification performance

References

Examples

```r
# RPT demo
RPT(stability=0.85, performance=0.90, \beta=1)
```

sequester

Sequester Additional Parameters

Description

When the user provides additional arguments to either `fs.stability` or `fs.ensembl.stability` this function will extract the parameters to be fit if optimization is not used i.e. `optimize = FALSE`.

Usage

\[\text{sequester}(\text{theDots, method}) \]

Arguments

- **theDots**: List of additional arguments
- **method**: Vector of strings listing models to be fit
Value
Returns a list of the following elements

- **parameters**: The parameters that will be fit to models
- **pnames**: The names of the specific parameters

Description

Calculates Dice-Sorensen’s index between two vectors of features. In brief, the closer to 1 the more similar the vectors. The two vectors may have an arbitrary cardinality (i.e., don’t need same length). Very similar to the Jaccard Index \texttt{jaccard} but Dice-Sorensen is the harmonic mean of the ratio.

Usage

\[
\texttt{sorensen}(x, y)
\]

Arguments

- **x**: vector of feature names
- **y**: vector of feature names

Value

Returns the Dice-Sorensen’s Index for the two vectors. It takes values in \([0,1]\), with 0 meaning no overlap between two sets and 1 meaning two sets are identical.

Author(s)

Charles E. Determan Jr.

References

See Also

\texttt{kuncheva,sorensen,ochiai,pof.pairwise.stability,pairwise.model.stability}

Examples

```r
# Dice-Sorensen demo
v1 <- paste("Metabolite", seq(10), sep="_")
v2 <- sample(v1, 10)
sorensen(v1, v2)
```
spearman

Spearman Rank Correlation Coefficient

Description

Calculates spearman rank correlation between two vectors.

Usage

`spearman(x, y)`

Arguments

- `x`: numeric vector of ranks.
- `y`: numeric vector of ranks with compatible length to `x`.

Value

Returns the spearman rank coefficient for the two vectors.

Examples

```r
# Spearman demo
v1 <- seq(10)
v2 <- sample(v1, 10)
spearman(v1, v2)
```

svm.weights

SVM Multiclass Weights Ranking

Description

This calculates feature weights for multiclass Support Vector Machine (SVM) problems.

Usage

```r
## S3 method for class 'weights'
svm(model)
```

Arguments

- `model`: A fitted SVM model of multiclass.

Value

Vector of feature weights.

References

svmrfeFeatureRanking

SVM Recursive Feature Extraction (Binary)

Description
This conducts feature selection for Support Vector Machines models via recursive feature extraction. This returns a vector of the features in \(x \) ordered by relevance. The first item of the vector has the index of the feature which is more relevant to perform the classification and the last item of the vector has the feature which is less relevant. This function is specific to Binary classification problems.

Usage
```r
svmrfeFeatureRanking(x, y, c, perc.rem = 10)
```

Arguments
- **x**: A matrix where each column represents a feature and each row represents a sample
- **y**: A vector of labels corresponding to each sample’s group membership
- **c**: A numeric value corresponding to the ‘cost’ applied during the svm model fitting. This can be selected by the user if using this function directly or is done internally.
- **perc.rem**: A numeric value indicating the percent of features removed during each iteration. Default \(\text{perc.rem} = 10 \).

Value
Vector of features ranked from most important to least important.

References

See Also
- `svmrfeFeatureRankingForMulticlass`

Examples
```r
dat.discr <- create.dscr.matrix(
    create.corr.matrix(
        create.random.matrix(nvar = 50,
            nsamp = 100,
            st.dev = 1,
            perturb = 0.2)),
        D = 10)

vars <- dat.discr$dscr.mat
groups <- dat.discr$classes
```
binary class feature ranking
svmrfefeatureRanking(x = vars,
y = groups,
c = 0.1,
perc.rem = 10)

svmrfefeatureRankingForMulticlass

Description
This conducts feature selection for Support Vector Machines models via recursive feature extraction. This returns a vector of the features in x ordered by relevance. The first item of the vector has the index of the feature which is more relevant to perform the classification and the last item of the vector has the feature which is less relevant. This function is specific to Binary classification problems.

Usage

```r
svmrfefeatureRankingForMulticlass(x, y, c, perc.rem = 10)
```

Arguments

- **x**: A matrix where each column represents a feature and each row represents a sample.
- **y**: A vector of labels corresponding to each sample’s group membership.
- **c**: A numeric value corresponding to the ‘cost’ applied during the svm model fitting. This can be selected by the user if using this function directly or is done internally.
- **perc.rem**: A numeric value indicating the percent of features removed during each iteration. Default `perc.rem = 10`.

Value
Vector of features ranked from most important to least important.

References

See Also

[svmrfefeatureRanking](#)
Examples

dat.dscr <- create.dscr.matrix(
 create.corr.matrix(
 create.random.matrix(nvar = 50,
 nsamp = 100,
 st.dev = 1,
 perturb = 0.2)),
 D = 10,
 num.groups=4
)

vars <- dat.dscr$discr.mat
groups <- dat.dscr$classes

multiclass
svmrfeFeatureRankingForMulticlass(x = vars,
 y = groups,
 c = 0.1,
 perc.rem = 10)

Training

Model Training

Description

This fits each model with the defined parameters

Usage

training(data, method, tuneValue, obsLevels, theDots = NULL)

Arguments

data Dataframe consisting of both numeric feature values and a single column named `.classes` to denoted group membership.
method String dictating which model to fit
tuneValue List of parameters to be applied to the specific model
obsLevels Observed group levels
theDots List of additional parameters to be applied to the specific model

Value

fit Fitted model with list with the following elements:
 • xNames: Names of the features
 • tuneValue: Parameters applied to the fitted model
 • obsLevels: Observed levels of the groups

Author(s)

Charles Determan Jr
tune.instructions Model Optimization Instructions

Description

Provides directions for which parameters to loop over during tuning. This becomes important when certain models can access 'lower' parameters without running them independently.

Usage

tune.instructions(method, grid)

Arguments

- **method**: Vector of strings indicating which models will be fit
- **grid**: A list of parameters grids to be applied to the models

Value

- **modelInfo**: List of the following components
 - scheme: String dictating which looping scheme to apply
 - loop: Dataframe of parameters to loop through for each model
 - model: Information regarding parameters of specific model
 - constant: Names of the 'loop' dataframe components
 - vary: Indication of parameters that vary and can access recursively

Author(s)

Charles E. Determan Jr.
Index

aggregation, 3
bagging.wrapper, 4
canberra, 5
canberra_stability, 5, 6
CLA, 3, 7, 13, 14
confusionMatrix, 33, 35, 40
create.corr.matrix, 7, 11
create.discriminant.matrix, 8, 9, 11
create.random.matrix, 8, 10
denovo.grid, 12, 26, 27, 29
EE, 3, 7, 13, 14
EM, 3, 7, 13, 14
ES, 3, 7, 13, 14
extract.args, 15
extract.features, 15
feature.table, 16
fit.only.model, 17
fs.ensemble.stability, 18
fs.stability, 20
jaccard, 23, 28, 43
kuncheva, 23, 24, 29, 39, 43
modelList, 25
modelTuner, 26
modelTuner_loo, 27
noise.matrix, 28
ochiai, 23, 24, 28, 29, 39, 43
optimize.model, 29
pairwise.model.stability, 23, 24, 29, 30, 39, 43
pairwise.stability, 23, 24, 29, 31, 31, 39, 43
params, 32
perf.calc, 33, 40
performance.metrics, 34
performance.stats, 35, 40
perm.class, 35
perm.features, 37
pof, 23, 24, 29, 38, 39, 43
predicting, 39
prediction.metrics, 40
predictNewClasses, 40
RPT, 42
sequester, 42
sorensen, 23, 24, 29, 39, 43, 43
spearman, 44
svm.weights, 44
svmrfeFeatureRanking, 45, 46
svmrfeFeatureRankingForMulticlass, 45, 46
training, 47
tune.instructions, 26, 27, 48