Package ‘PREDA’

November 21, 2016

Version 1.20.0

Title Position RElated Data Anlysis

Author Francesco Ferrari <francesco.ferrari@unimore.it>

Maintainer Francesco Ferrari <francesco.ferrari@unimore.it>

License GPL-2

Depends R (>= 2.9.0), Biobase, lokern (>= 1.0.9), multtest, stats, methods, annotate

Suggests quantsmooth, qvalue, samr, limma, caTools, affy, PREDAsampledata

Enhances Rmpi, rsprng

Description Package for the position related analysis of quantitative functional genomics data.

Collate AllClasses.R AllGenerics.R analysesNames.R
CleanNAAnnotationDataframe.R compareFunctionFromStatisticsForPREDA.R
computeDatasetSignature.R DataForPREDA2dataframe.R
DataForPREDA2GenomicAnnotationsForPREDA.R DataForPREDA2StatisticsForPREDA.R datasetSignatureFromFlags.R
eset2GenomicAnnotations.R GE_computeStatistic.R
GEhighWeakExpressionWorkflow.R genomePlot_improved.R
genomePlot.R GenomicAnnotations2dataframe.R
GenomicAnnotations2GenomicAnnotationsForPREDA.R
GenomicAnnotations2reference_positions.R
GenomicAnnotationsExtract.R GenomicAnnotationsFilter_neg.R
GenomicAnnotationsFilter_pos.R
GenomicAnnotationsForPREDA2dataframe.R
GenomicAnnotationsForPREDA2GenomicAnnotations.R
GenomicAnnotationsForPREDA2PREDAResults.R
GenomicAnnotationsForPREDAFromfile.R
GenomicAnnotationsForPREDAGetExpectedFlags.R
GenomicAnnotationsFromdataframe.R GenomicAnnotationsFromFile.R
GenomicAnnotationsFromLibrary.R
GenomicAnnotationsSortAndCleanNA.R GenomicRegions2dataframe.R
GenomicRegionsAnnotate.R GenomicRegionsChrNumber.R
GenomicRegionsComparison.R GenomicRegionsCreateRegionsIds.R
GenomicRegionsFilter_neg.R GenomicRegionsFilter_pos.R
GenomicRegionsFindOverlap.R GenomicRegionsFromdataframe.R
R topics documented:

GenomicRegionsFromFile.R GenomicRegionsNumber.R
GenomicRegionsSpan.R GenomicRegionsTotalSpan.R
GEsimulationsWorkflow.R getExpectedSmoothFunction.R
getExpectedSmoothFunction_runmean.R getObservedSmoothFunction.R
getObservedSmoothFunction_runmean.R getStatisticByName.R
initialize-methods.R MergeStatisticAnnotations2DataForPREDA.R
PREDADataAndResults2dataframe.R PREDA_main_permRows.R
PREDA_main_permSamples.R PREDA_main.R
PREDA_multTestCorrection.R PREDA_quantsmoothStatPerm.R
PREDA_quantsmoothStat.R PREDAResults2dataframe.R
PREDAResults2GenomicRegions.R
PREDAResults2GenomicRegionsSingle.R
PREDAResults2PREDATAAndResults.R
PREDAResultsGetObservedFlags.R PREDA_smoothStatPerm.R
preprocessingGE.R RMAwithCDFfilter.R simulations.R
SODEGIR_GEstatistics.R SODEGIRpreprocessingGE.R
SortAnnotationDataframe.R StatisticsForPREDA2dataframe.R
StatisticsForPREDAFilterColumns_neg.R
StatisticsForPREDAFilterColumns_pos.R
StatisticsForPREDAfromdataframe.R statisticsForPREDAfromEset.R
StatisticsForPREDAfromfile.R

biocViews Software, CopyNumberVariation, GeneExpression, Genetics

NeedsCompilation no
analysesNames

Get the names of the analyses in the from PREDA objects

Description

Get the names of the analyses in the from StatisticsForPREDA objects, PREDAResults objects and objects from classes extending these classes.

Usage

analysesNames(.Object)
computeDatasetSignature

Arguments

,Object an object of class StatisticsForPREDA, PREDAResults or any other class extending these classes

Value

Character vector of analysesNames

Author(s)

Francesco Ferrari

See Also

"StatisticsForPREDA", "PREDAResults"

Examples

require(PREDAsampledata)
data(SODEGIRGEanalysisResults)
analysesNames(SODEGIRGEanalysisResults)

computeDatasetSignature

Function to compute dataset signature for recurrent significant genomic regions

Description

Function to compute dataset signature for recurrent significant genomic regions

Usage

computeDatasetSignature(.Object, genomicRegionsList=genomicRegionsList,
multTestCorrection="fdr", signature_qval_threshold=0.05,
returnRegions=TRUE, use.referencePositions=TRUE)

computeDatasetSignature(.Object, ...)

Arguments

,.Object Object of class GenomicAnnotationsForPREDA
... See below

,genomicRegionsList: List of genomicRegions objects for which the recurrent
overlapping regions will be evaluated

,mutTestCorrection: Multiple testing correction that will be adopted to correct
the statistic p-values. Possible values are "fdr", for benjamini and Hochberg
multiple testing correction and "qvalue" for p-values correction performed
with qvalue package.

,signature_qval_threshold: Threshold used to select significant regions result-
ing from the dataset signature statistic
returnRegions: Logical, if TRUE (default) the genomic regions constituting the dataset signature are returned, otherwise a PREDAresults object containing dataset signature statistics is returned.

use.referencePositions: Logical, if TRUE the input reference positions used for PREDA analysis will be used to identify significant genomic regions boundaries as well.

Details

The function adopts a binomial test to identify significant recurrence of genomic regions across multiple dataset samples.

Value

A GenomicRegions object (if returnRegions = TRUE) or a PREDAresults object containing dataset signature statistics (if returnRegions = FALSE)

Author(s)

Francesco Ferrari

See Also

GenomicRegions, PREDAresults

Examples

```r
## Not run:
require(PREDAsampledata)
data(SODEGIRCNanalysisResults)
data(GEDataForPREDA)

SODEGIR_CN_GAIN<-PREDAresults2GenomicRegions(
  SODEGIRCNanalysisResults, qval.threshold=0.01,
  smoothStatistic.tail="upper", smoothStatistic.threshold=0.1)

CNgain_signature<-computeDatasetSignature(GEDataForPREDA,
  genomicRegionsList=SODEGIR_CN_GAIN)

## End(Not run)
```

DataForPREDA-class

Class “DataForPREDA” is used to manage all of the data required as input for PREDA analysis

Description

This class is used to manage all of the data required as input for PREDA analysis: it is usually created by merging a GenomicAnnotationsForPREDA and a StatisticsForPREDA classes
DataForPREDA-class

Objects from the Class

Objects can be created by calls of the form `new("DataForPREDA", ids, chr, start, end, strand, chromosomesNumbers, chromosomesLabels, position, optionalAnnotations, optionalAnnotationsHeaders, statistic, analysesNames, testedTail)`.

Slots

- **position**: Object of class "integer"~~
- **ids**: Object of class "character" a character vector of unique identifiers for the genomic features under investigation
- **chr**: Object of class "integer" a numeric vector representing the chromosome where each ids is mapped. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively. User defined options will allow this conversion during GenomicAnnotations objects initialization.
- **start**: Object of class "integer" a numeric vector of start genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).
- **end**: Object of class "integer" a numeric vector of end genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).
- **strand**: Object of class "numeric" a numeric vector of strand genomic position for each genomic feature under investigation: value 1 is used for "plus" (forward) strand and value -1 for "minus" (reverse) strand. User defined options will allow the conversion to this format during GenomicAnnotations objects initialization.
- **chromosomesNumbers**: Object of class "numeric" a numeric vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in increasing order. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively.
- **chromosomesLabels**: Object of class "character" a character vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in the same order as reported in chromosomes-Numbers slot. This slot is actually used just to provide a label for each associated chromosome number, in case that some non numeric chromosome is used (e.g. to preserve the correspondence between chr 23 and the actual chr X in Human)
- **optionalAnnotations**: Object of class "matrix" optional annotations associated to the genomic features can be managed along with genomic positions annotations. E.g. GeneSymbol or EntrezGene ids can be associated to gene realted GenomicAnnotations objects. These additional annotations are not mandatory (the default value for this slot is NULL) The additional annotations must be provided as a matrix of character, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "optionalAnnotationsHeaders" slot.
- **optionalAnnotationsHeaders**: Object of class "character" character vector containing the names associated to optional annotations. Please avoid using spaces in annotations names.
- **statistic**: Object of class "matrix" a numeric matrix containing gene-centered statistics (or statistics on genomic data centered on other genomic features under investigation). The statistics must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.
- **analysesNames**: Object of class "character" a character vector of unique names associated to each column of statistic matrix. This is just a name that will be used to identify each analysis.
- **testedTail**: Object of class "character" a character describing what tail of the statistic distribution will be analyzed during PREDA analysis. Possible values are "upper", "lower" or "both". Anyway we strongly recommend using PREDA analysis only for statistics on genomic data with a symmetric distribution around zero.
DataForPREDA-class

Extends

Methods

DataForPREDA2dataframe signature(.Object = "DataForPREDA"): extract data and annotations as a dataframe with probes as rownames

DataForPREDA2GenomicAnnotationsForPREDA signature(.Object = "DataForPREDA"): extract a GenomicAnnotationsForPREDA object from a data DataForPREDA object

DataForPREDA2StatisticsForPREDA signature(.Object = "DataForPREDA"): extract a StatisticsForPREDA object from a data DataForPREDA object

GenomicAnnotationsFilter_neg signature(.Object = "DataForPREDA"): filter annotations to remove selected chromosomes

GenomicAnnotationsFilter_pos signature(.Object = "DataForPREDA"): filter annotations to keep selected chromosomes

GenomicAnnotationsSortAndCleanNA signature(.Object = "DataForPREDA"): sort annotations according to selected chromosomes and to remove genes containing any NA annotation field

initialize signature(.Object = "DataForPREDA"): initialize method for DataForPREDA objects

StatisticsForPREDAFilterColumns_neg signature(.Object = "DataForPREDA"): filter statistics to remove selected analyses

StatisticsForPREDAFilterColumns_pos signature(.Object = "DataForPREDA"): filter statistics to keep selected analyses

Note

This class is better described in the package vignette

Author(s)

Francesco Ferrari

See Also

"GenomicAnnotations","GenomicAnnotationsForPREDA","StatisticsForPREDA", DataForPREDA2dataframe, DataForPREDA2GenomicAnnotationsForPREDA, DataForPREDA2StatisticsForPREDA, GenomicAnnotationsFilter_neg, GenomicAnnotationsFilter_pos, GenomicAnnotationsSortAndCleanNA, StatisticsForPREDAFilterColumns_neg, StatisticsForPREDAFilterColumns_pos

Examples

showClass("DataForPREDA")
DataForPREDA2dataframe

extract data and annotations as a dataframe

Description
extract data and annotations as a dataframe with probeids as rownames

Usage
DataForPREDA2dataframe(.Object)

Arguments
/Object An object of class DataForPREDA

Details
extract data and annotations as a dataframe with probeids as rownames

Value
a dataframe with probeids as rownames

DataForPREDA2GenomicAnnotationsForPREDA

extract a GenomicAnnotationsForPREDA object from a data DataForPREDA object

Description
extract a GenomicAnnotationsForPREDA object from a data DataForPREDA object

Usage
DataForPREDA2GenomicAnnotationsForPREDA(.Object)

Arguments
/Object an object of class DataForPREDA

Details
extract a GenomicAnnotationsForPREDA object from a data DataForPREDA object

Value
a GenomicAnnotationsForPREDA object
DataForPREDA2StatisticsForPREDA

extract a StatisticsForPREDA object from a data DataForPREDA object

Description

extract a StatisticsForPREDA object from a data DataForPREDA object

Usage

DataForPREDA2StatisticsForPREDA(.Object)

Arguments

:Object a data DataForPREDA object

Details

extract a StatisticsForPREDA object from a data DataForPREDA object

Value

a StatisticsForPREDA object

DataForPREDAMedianCenter

Function to scale median value of DataForPREDA statistics to zero

Description

Function to scale median value of DataForPREDA statistics to zero

Usage

DataForPREDAMedianCenter(.Object, ...)

Arguments

:Object a DataForPREDA object

...

Details

Scale median value of DataForPREDA statistics to zero

Value

a DataForPREDA object
eset2GenomicAnnotations

Function building a GenomicAnnotations object on an ExpressionSet object

Description

Function building a GenomicAnnotations object on an ExpressionSet object

Usage

eset2GenomicAnnotations(.Object, retain.chrs, # optionalAnnotations)
eset2GenomicAnnotations(.Object, ...)

Arguments

/Object/ ExpressionSet object. The associated annotation library will be used to build a GenomicAnnotations object.
/.../ See below
/retain.chrs/: Numeric vector, containing the list of chromosomes selected for the output GenomicAnnotations object. E.g. set retain.chrs=1:22 to limit the GenomicAnnotations object to chromosomes from 1 to 22. This might be useful to limit GenomicAnnotations objects to autosomic chromosomes.
(optionalAnnotations): Character vector to select additional annotations fields to be included into the GenomicAnnotations object.

Value

An object of class "GenomicAnnotations"

Author(s)

Francesco Ferrari

See Also

"GenomicAnnotations"

Examples

Not run:
require("PREDAsampleddata")
data(gaExpressionSetRCC)

GEGenomicAnnotations<-eset2GenomicAnnotations(gaExpressionSetRCC, retain.chrs=1:22)

End(Not run)
genomePlot

draw a genome plot

Description

draw a genome plot with user defined genomic regions

Usage

genomePlot(.Object, genomicRegions=NULL, draw.blocks=TRUE, # parallel.plot=TRUE, grouping=NULL, custom.labels=NULL, # scale.positions=NULL, qval.threshold=0.05, # use.referencePositions=FALSE, smoothStatistic.tail=NULL, # smoothStatistic.threshold=NULL, region.colors=NULL, # limitChrs=NULL)

genomePlot(.Object, ...)

Arguments

.Object Object of class GenomicAnnotationsForPREDA, or any other class extending this one.

See below

.genomicRegions: A list of GenomicRegions object containing the genomic regions to be highlighted in the plot.

draw.blocks: If TRUE genomic regions are plotted as blocks. Otherwise they are plotted as coloured ticks. Currently only draw.blocks=TRUE is implemented.

parallel.plot: Logical, if TRUE multiple copies of each chromosome are drawn.

In particular a number of copies equal to length(grouping), if grouping is not null, or a number of copies equal to the number of GenomicRegions objects provided as input.

grouping: Vector specifying how input GenomicRegions objects will be grouped on chromosomes.

custom.labels: A character to specify user defined labels for vertical axis

scale.positions: Parameter to set the scale for chromosomal positions (horizontal axis). Possible values are "Mb" or "Kb"

qval.threshold: If genomicRegions is NULL, and a PREDAResults or PREDADatasetAndResults is provided as input, the function PREDAResults2GenomicRegions is applied with this parameter to extract significant GenomicRegions.

use.referencePositions: If genomicRegions is NULL, and a PREDAResults or PREDADatasetAndResults is provided as input, the function PREDAResults2GenomicRegions is applied with this parameter to extract significant GenomicRegions.

smoothStatistic.tail: If genomicRegions is NULL, and a PREDAResults or PREDADatasetAndResults is provided as input, the function PREDAResults2GenomicRegions is applied with this parameter to extract significant GenomicRegions.
smoothStatistic.threshold: If genomicRegions is NULL, and a PREDAResults or PREDADataAndResults is provided as input, the function PREDAResults2GenomicRegions is applied with this parameter to extract significant GenomicRegions.

region.colors: Character vector specifying the list of colors to be used for drawing each set of GenomicRegions. Must be of length equal to the number of GenomicRegions objects provided as input.

limitChrs: Numeric vector, that can be used to limit the plot to a subset of chromosomes.

Details

See also the PREDA tutorial vignette for more details and sample usage.

Value

A plot of the genome with significant GenomicRegions

Author(s)

Francesco Ferrari

See Also

PREDAResults2GenomicRegions, PREDAResults, PREDADataAndResults, GenomicAnnotationsForPREDA

Examples

See PREDA tutorial vignette for some examples

Describe "GenomicAnnotations" to manage information about genomic features

Description

This class is used to manage information about genomic features under investigation: i.e. genomic genes, SNP or others, with particular focus on the genomic coordinates of each of them. Other additional annotations associated to each element can be stored in a GenomicAnnotations object in the optionalAnnotations slots

Objects from the Class

Objects can be created by calls of the form new("GenomicAnnotations", ids, chr, start, end, strand, chromosomesNumbers, chromosomesLabels, optionalAnnotations, optionalAnnotationsHeaders)
Generics class

Slots

- ids: Object of class "character"
- chr: Object of class "integer"
- start: Object of class "integer"
- end: Object of class "integer"
- strand: Object of class "numeric"
- chromosomesNumbers: Object of class "numeric"
- chromosomesLabels: Object of class "character"
- optionalAnnotations: Object of class "matrix"
- optionalAnnotationsHeaders: Object of class "character"

Methods

- GenomicAnnotations2dataframe signature(.Object = "GenomicAnnotations"): extracts annotations as a dataframe with probeids as rownames
- GenomicAnnotations2GenomicAnnotationsForPREDA signature(.Object = "GenomicAnnotations"): generate a new GenomicAnnotationsForPREDA object from a GenomicAnnotations object
- GenomicAnnotations2reference_positions signature(.Object = "GenomicAnnotations"): extract from the GenomicAnnotations object a vector containing a vector with reference positions
- GenomicAnnotationsExtract signature(.Object = "GenomicAnnotations"): extract optional annotations for a specific region
- GenomicAnnotationsFilter_neg signature(.Object = "GenomicAnnotations"): filter annotations to remove selected chromosomes
- GenomicAnnotationsFilter_pos signature(.Object = "GenomicAnnotations"): filter annotations to keep selected chromosomes
- GenomicAnnotationsSortAndCleanNA signature(.Object = "GenomicAnnotations"): sort annotations according to selected chromosomes and to remove genes containing any NA annotation field
- GenomicRegionsAnnotate signature(.Object1 = "GenomicRegions", .Object2 = "GenomicAnnotations"): extract annotations from a GenomicAnnotations object for a set of regions specified as a GenomicRegions object
- initialize signature(.Object = "GenomicAnnotations"): initialize method for GenomicAnnotations objects

Note

This class is better described in the package vignette

Author(s)

Francesco Ferrari

See Also

GenomicAnnotations2dataframe, GenomicAnnotations2GenomicAnnotationsForPREDA, GenomicAnnotations2reference_positions, GenomicAnnotationsExtract, GenomicAnnotationsFilter_neg, GenomicAnnotationsFilter_pos, GenomicAnnotationsSortAndCleanNA, Genomic
GenomicAnnotations2dataframe

extracts annotations as a dataframe

Description

extracts annotations as a dataframe with probeids as rownames

Usage

GenomicAnnotations2dataframe(.Object)

Arguments

/Object/ A GenomicAnnotations object

Details

extract annotations as a dataframe with probeids as rownames

Value

a dataframe with probeids as rownames

GenomicAnnotations2GenomicAnnotationsForPREDA

generate a GenomicAnnotationsForPREDA object from a GenomicAnnotations object

Description

generate a new GenomicAnnotationsForPREDA object from a GenomicAnnotations object

Usage

GenomicAnnotations2GenomicAnnotationsForPREDA(.Object,
positions=NULL, reference_position_type=NULL)

GenomicAnnotations2GenomicAnnotationsForPREDA(.Object,
...)
GenomicAnnotations2reference_positions

Arguments

.Object An object of class GenomicAnnotations
... See below

positions: Vector to specify reference positions for GenomicAnnotationsForPREDA object if not specified with reference_position_type parameter

reference_position_type: Specify which genomic coordinate must be used as reference position for PREDA analysis. Possible values are "start", "end", "median", "strand.start" or "strand.end".

"strand.start" is strand specific start: i.e. start on positive strand but end on negative strand. "strand.end" is strand specific end.

Value

A GenomicAnnotationsForPREDA object

Author(s)

Francesco Ferrari

See Also

GenomicAnnotationsForPREDA

Examples

Not run:

GEGenomicAnnotations<-GenomicAnnotationsFromLibrary(annotLibrary = "org.Hs.eg.db", retain.chrs=1:22)

GEGenomicAnnotationsForPREDA<-
GenomicAnnotations2GenomicAnnotationsForPREDA(GEGenomicAnnotations, reference_position_type="median")

End(Not run)

GenomicAnnotations2reference_positions

extract reference positions from the GenomicAnnotations

Description

extract from the GenomicAnnotations object a vector containing a vector with reference positions

Usage

GenomicAnnotations2reference_positions(.Object,
reference_position_type=c("start", "end", "median", "strand.start", "strand.end"),
withnames=TRUE)

GenomicAnnotations2reference_positions(.Object, ...)

Arguments

.Object An object of class GenomicAnnotations
... See below

reference_position_type: Specify which genomic coordinate must be used as reference position for PREDA analysis. Possible values are "start", "end", "median", "strand.start" or "strand.end". "strand.start" is strand specific start: i.e. start on positive strand but end on negative strand. "strand.end" is strand specific end.

withnames: Logical, if TRUE the "ids" slot content is used as names for the output vector

Value

A numeric vector with the selected reference positions.

GenomicAnnotationsExtract

extract optional annotations for a specific region

Description

extract optional annotations for a specific region

Usage

GenomicAnnotationsExtract(.Object, chr, start, end,
AnnotationsHeader=NULL, sep.character="; ",
complete.inclusion=FALSE, skipSorting=FALSE,
annotationAsRange=FALSE, getJustFeaturesNumber=FALSE)

GenomicAnnotationsExtract(.Object, ...)

Arguments

/Object An object of class GenomicAnnotations
... See below

chr: Coordinate for the selected genomic region
start: Coordinate for the selected genomic region
end: Coordinate for the selected genomic region

AnnotationsHeader: Character or numeric vector to select the annotations columns to be considered

sep.character: Character used to separate annotated features in the output

complete.inclusion: Logical, if TRUE only annotated features completely included in the region are reported. If FALSE (default), every overlapping feature is considered.

skipSorting: Logical, if TRUE, annotation sorting is skipped before processing output (to save computational time, e.g. in a long loop)

annotationAsRange: If TRUE, then only the first and last annotated element in the region are reported

getJustFeaturesNumber: Logical: if TRUE, just the number of annotated features in the region is returned
GenomicAnnotationsFilter_neg

Details

Extract annotations associated to a specific genomic region from a GenomicAnnotations object. Only annotations from the specified columns are returned.

Value

A character vector is returned

See Also

"GenomicAnnotations"

GenomicAnnotationsFilter_neg

filter annotations to remove selected chromosomes

Description

filter annotations to remove selected chromosomes

Usage

GenomicAnnotationsFilter_neg(.Object, chrToRemove, chrAsLabels=FALSE)

GenomicAnnotationsFilter_neg(.Object, ...)

Arguments

.Object An object of class GenomicAnnotations or classes inheriting from GenomicAnnotations

... See below

chrToRemove: List of chromosomes to be removed from the annotations object.

chrAsLabels: Logical, TRUE if chromosomes are listed as their character labels, instead of using the numeric indexes

GenomicAnnotationsFilter_pos

filter annotations to keep selected chromosomes

Description

filter annotations to keep selected chromosomes

Usage

GenomicAnnotationsFilter_pos(.Object, chrToRetain, chrAsLabels=FALSE)

GenomicAnnotationsFilter_pos(.Object, ...)

Arguments

.Object An object of class GenomicAnnotations or classes inheriting from GenomicAnnotations

... See below

chrToRetain: List of chromosomes to be kept from the annotations object.

chrAsLabels: Logical, TRUE if chromosomes are listed as their character labels, instead of using the numeric indexes
Arguments

,Object An object of class GenomicAnnotations or classes inheriting from GenomicAnnotations

..., See below

chrToRetain: List of chromosomes to be maintained after removing the annotations for all the other chromosomes.

chrAsLabels: Logical, TRUE if chromosomes are listed as their character labels, instead of using the numeric indexes.

GenomicAnnotationsForPREDA-class

Class "GenomicAnnotationsForPREDA" GenomicAnnotations class with additional slot specifying the reference position for PREDA analysis.

Description

This class is equivalent to the GenomicAnnotations class but includes an additional slot specifying the reference position that will be used for PREDA smoothing of data: this is included in the "position" slot. An unique reference position is required for PREDA analysis because this position is used for smoothing data along chromosomal coordinates. This reference position usually is the start, the end, or the median position of each considered genomic feature, nevertheless other user defined positions could be used as well.

Objects from the Class

Objects can be created by calls of the form new("GenomicAnnotationsForPREDA", ids, chr, start, end, strand, chrToRetain, chrAsLabels).

Slots

position: Object of class "integer" a numeric vector of reference genomic positions that will be associated and used for each genomic feature under investigation for smoothing data during PREDA analysis.

d: Object of class "character" a character vector of unique identifiers for the genomic features under investigation

chr: Object of class "integer" a numeric vector representing the chromosome where each ids is mapped. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively. User defined options will allow this conversion during GenomicAnnotations objects initialization.

start: Object of class "integer" a numeric vector of start genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).

end: Object of class "integer" a numeric vector of end genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).

strand: Object of class "numeric" a numeric vector of strand genomic position for each genomic feature under investigation: value 1 is used for "plus" (forward) strand and value -1 for "minus" (reverse) strand. User defined options will allow the conversion to this format during GenomicAnnotations objects initialization.
chromosomesNumbers: Object of class "numeric" a numeric vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in increasing order. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively.

chromosomesLabels: Object of class "character" a character vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in the same order as reported in chromosomesNumbers slot. This slot is actually used just to provide a label for each associated chromosome number, in case that some non numeric chromosome is used (e.g. to preserve the correspondence between chr 23 and the actual chr X in Human)

optionalAnnotations: Object of class "matrix" optional annotations associated to the genomic features can be managed along with genomic positions annotations. E.g. GeneSymbol or EntrezGene ids can be associated to gene related GenomicAnnotations objects. These additional annotations are not mandatory (the default value for this slot is NULL) The additional annotations must be provided as a matrix of character, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "optionalAnnotationsHeaders" slot.

optionalAnnotationsHeaders: Object of class "character" character vector containing the names associated to optional annotations. Please avoid using spaces in annotations names.

Extends

Class "GenomicAnnotations", directly.

Methods

 genomePlot signature(.Object = "GenomicAnnotationsForPREDA"): draw a genome plot
 GenomicAnnotations2dataframe signature(.Object = "GenomicAnnotationsForPREDA"): extract annotations as a dataframe with probeids as rownames
 GenomicAnnotationsFilter_neg signature(.Object = "GenomicAnnotationsForPREDA"): filter annotations to remove selected chromosomes
 GenomicAnnotationsFilter_pos signature(.Object = "GenomicAnnotationsForPREDA"): filter annotations to keep selected chromosomes
 GenomicAnnotationsForPREDA2dataframe signature(.Object = "GenomicAnnotationsForPREDA"): extract annotations as a dataframe with probeids as rownames
 GenomicAnnotationsForPREDA2GenomicAnnotations signature(.Object = "GenomicAnnotationsForPREDA"): extract the GenomicAnnotations object from the GenomicAnnotationsForPREDA object
 GenomicAnnotationsForPREDA2PREDAResults signature(.Object = "GenomicAnnotationsForPREDA"): add PREDA results information to genomic annotations creating a PREDAResults object
 GenomicAnnotationsSortAndCleanNA signature(.Object = "GenomicAnnotationsForPREDA"): sort annotations according to selected chromosomes and to remove genes containing any NA annotation field
 initialize signature(.Object = "GenomicAnnotationsForPREDA"): initialize method for GenomicAnnotationsForPREDA objects

Note

This class is better described in the package vignette
GenomicAnnotationsForPREDA2GenomicAnnotations

Author(s)
Francesco Ferrari

See Also
"GenomicAnnotations", GenomicAnnotationsSortAndCleanNA, GenomicAnnotationsForPREDA2PREDAResults, GenomicAnnotationsForPREDA2dataframe, GenomicAnnotationsFilter_pos, GenomicAnnotationsFilter_neg

Examples
showClass("GenomicAnnotationsForPREDA")

GenomicAnnotationsForPREDA2dataframe
extract annotations as a dataframe

Description
extract annotations as a dataframe with probeids as rownames

Usage
GenomicAnnotationsForPREDA2dataframe(.Object)

Arguments
/Object an object of class GenomicAnnotationsForPREDA

Details
extract annotations from an object of class GenomicAnnotationsForPREDA as a dataframe with probeids as rownames

Value
a dataframe with probeids as rownames

GenomicAnnotationsForPREDA2GenomicAnnotations
extract the GenomicAnnotations object from the GenomicAnnotationsForPREDA object

Description
extract the GenomicAnnotations object from the GenomicAnnotationsForPREDA object

Usage
GenomicAnnotationsForPREDA2GenomicAnnotations(.Object)

Arguments
/Object an object of class GenomicAnnotationsForPREDA
GenomicAnnotationsForPREDA2PREDAResults

add PREDA results information to genomic annotations creating a PREDAResults object

Description

add PREDA results information to genomic annotations creating a PREDAResults object

Usage

GenomicAnnotationsForPREDA2PREDAResults(.Object, analysesNames, testedTail, smoothStatistic, pvalue, qvalue)
GenomicAnnotationsForPREDA2PREDAResults(.Object, ...)

Arguments

 objeto An object of class GenomicAnnotationsForPREDA
 ...

analysesNames: analysesNames as in PREDAResults object
testedTail: testedTail as in PREDAResults object
smoothStatistic: smoothStatistic as in PREDAResults object
pvalue: pvalue as in PREDAResults object
qvalue: qvalue as in PREDAResults object

GenomicAnnotationsForPREDAFromfile

Function to create a GenomicAnnotationsForPREDA object from a txt file

Description

Function to create a GenomicAnnotationsForPREDA object from a txt file

Usage

GenomicAnnotationsForPREDAFromfile(file, ids_column, chr_column, start_column, end_column, strand_column, chromosomesNumbers = NULL, chromosomesLabels = NULL, chromosomesLabelsInput = NULL, MinusStrandString = "-", PlusStrandString = "+", optionalAnnotationsColumns = NULL, reference_position_type = "median", ...)
GenomicAnnotationsForPREDAFromfile

Arguments

file Path to the input txt file containing genomic annotations
ids_column Specify the column from the input txt file with gene (or other genomic features) ids. Can be specified using column index (numeric) or column name (character).
chr_column Specify the column from the input txt file with chromosome annotations fields for each ids. Can be specified using column index (numeric) or column name (character).
start_column Specify the column from the input txt file with genomic start position for each genomic element. Can be specified using column index (numeric) or column name (character).
end_column Specify the column from the input txt file with genomic end position for each genomic element. Can be specified using column index (numeric) or column name (character).
strand_column Specify the column from the input txt file with genomic strand mapping for each genomic element. Can be specified using column index (numeric) or column name (character).
chromosomesNumbers
 Numeric vector to specify the list of numeric values to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)
chromosomesLabels
 Character vector to specify the list of character labels to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)
chromosomesLabelsInput
 Character vector to specify the list of character labels associated to each chromosome in the input file. Particularly useful when non numeric character strings are associated to each chromosome in the input file: e.g. "chr3" for chromosome "3".
MinusStrandString
 Character string used to identify minus strand in the input text file
PlusStrandString
 Character string used to identify plus strand in the input text file
optionalAnnotationsColumns
 Character vector of columns headers or numeric vector of columns indices to specify columns of the input file containing additional annotation fields
reference_position_type
 Character string to specify which genomic coordinate must be used as reference position for PREDA analysis. See also "GenomicAnnotations2GenomicAnnotationsForPREDA"

Value

An object of class "GenomicAnnotationsForPREDA"

Author(s)

Francesco Ferrari
GenomicAnnotationsFromdataframe

Function to create a GenomiAnnotations object from a dataframe

Description

Function to create a GenomiAnnotations object from a dataframe

Usage

```r
GenomicAnnotationsFromdataframe(GenomicAnnotations_dataframe, ids_column, chr_column, start_column, end_column, strand_column, chromosomesNumbers = NULL, chromosomesLabels = NULL, chromosomesLabelsInput = NULL, MinusStrandString = "-", PlusStrandString = "+", optionalAnnotationsColumns = c("Cytoband", "Entrez_gene"), header=TRUE, sep=" ", quote="\"", na.strings = c("NA", "", "---"))
```

Arguments

- **GenomicAnnotations_dataframe**: Dataframe object containing genomic annotations.
- **ids_column**: Specify the column from the input txt file with gene (or other genomic features) ids. Can be specified using column index (numeric) or column name (character).
chr_column Specify the column from the input txt file with chromosome annotations fields for each ids. Can be specified using column index (numeric) or column name (character).

start_column Specify the column from the input txt file with genomic start position for each genomic element. Can be specified using column index (numeric) or column name (character).

dend_column Specify the column from the input txt file with genomic end position for each genomic element. Can be specified using column index (numeric) or column name (character).

strand_column Specify the column from the input txt file with genomic strand mapping for each genomic element. Can be specified using column index (numeric) or column name (character).

chromosomesNumbers Numeric vector to specify the list of numeric values to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)

chromosomesLabels Character vector to specify the list of character labels to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)

chromosomesLabelsInput Character vector to specify the list of character labels associated to each chromosome in the input file. Particularly useful when non numeric character strings are associated to each chromosome in the input file: e.g. "chr3" for chromosome "3".

MinusStrandString Character string used to identify minus strand in the input text file

PlusStrandString Character string used to identify plus strand in the input text file

optionalAnnotationsColumns Character vector of columns headers or numeric vector of columns indices to specify columns of the input file containing additional annotation fields

Value An object of class "GenomicAnnotations"

Author(s) Francesco Ferrari

See Also "GenomicAnnotations"
Function to create a GenomiAnnotations object from a text file

Description

Function to create a GenomiAnnotations object from a text file

Usage

GenomicAnnotationsFromFile(file, ids_column, chr_column, start_column, end_column, strand_column, chromosomesNumbers = NULL, chromosomesLabels = NULL, chromosomesLabelsInput = NULL, MinusStrandString = "-", PlusStrandString = "+", optionalAnnotationsColumns = NULL, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file</td>
<td>Path to the input txt file containing genomic annotations</td>
</tr>
<tr>
<td>ids_column</td>
<td>Specify the column from the input txt file with gene (or other genomic features) ids. Can be specified using column index (numeric) or column name (character).</td>
</tr>
<tr>
<td>chr_column</td>
<td>Specify the column from the input txt file with chromosome annotations fields for each ids. Can be specified using column index (numeric) or column name (character).</td>
</tr>
<tr>
<td>start_column</td>
<td>Specify the column from the input txt file with genomic start position for each genomic element. Can be specified using column index (numeric) or column name (character).</td>
</tr>
<tr>
<td>end_column</td>
<td>Specify the column from the input txt file with genomic end position for each genomic element. Can be specified using column index (numeric) or column name (character).</td>
</tr>
<tr>
<td>strand_column</td>
<td>Specify the column from the input txt file with genomic strand mapping for each genomic element. Can be specified using column index (numeric) or column name (character).</td>
</tr>
<tr>
<td>chromosomesNumbers</td>
<td>Numeric vector to specify the list of numeric values to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)</td>
</tr>
<tr>
<td>chromosomesLabels</td>
<td>Character vector to specify the list of character labels to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)</td>
</tr>
<tr>
<td>chromosomesLabelsInput</td>
<td>Character vector to specify the list of character labels associated to each chromosome in the input file. Particularly useful when non numeric character strings are associated to each chromosome in the input file: e.g. "chr3" for chromosome "3".</td>
</tr>
<tr>
<td>MinusStrandString</td>
<td>Character string used to identify minus strand in the input text file</td>
</tr>
</tbody>
</table>
GenomicAnnotationsFromLibrary

Function extracting a GenomicAnnotations object from a Bioconductor annotation library

Description

Function extracting a GenomicAnnotations object from a Bioconductor annotation library

Value

An object of class "GenomicAnnotations"

Author(s)

Francesco Ferrari

See Also

"GenomicAnnotations"

Examples

Not run:

```r
data(PREDAsampledata)
CNdataPath <- system.file("sampledata", "CopyNumber", package = "PREDAsampledata")
CNannotationFile <- file.path(CNdataPath , "SNPAnnot100k.csv")

CNGenomicsAnnotations<-GenomicAnnotationsForPREDAFromfile(
  file=CNannotationFile,
  ids_column=1,
  chr_column="Chromosome",
  start_column=4,
  end_column=4,
  strand_column="Strand",
  chromosomesLabelsInput=1:22,
  MinusStrandString="-", PlusStrandString="+",
  optionalAnnotationsColumns=c("Cytoband", "Entrez_gene"),
  header=TRUE, sep="", quote="\"", na.strings = c("NA", "", "---"))
```

End(Not run)
 USAGE
GenomicAnnotationsFromLibrary(annotLibrary, probeIDs = NULL,
retain.chrs = NULL, optionalAnnotations = NULL)

 ARGUMENTS
annotLibrary Character string containing the name of the annotations library to be used for building the GenomicAnnotations object
probeIDs Optional: list of reference id from the selected annotLibrary to be used for building the GenomicAnnotations object
retain.chrs Numeric vector, containing the list of chromosomes selected for the output GenomicAnnotations object. E.g. set retain.chrs=1:22 to limit the GenomicAnnotations object to chromosomes from 1 to 22. This might be useful to limit GenomicAnnotations objects to autosomic chromosomes.
optionalAnnotations Character vector to select additional annotations fields to be included into the GenomicAnnotations object.

 VALUE
An object of class "GenomicAnnotations"

 AUTHOR(S)
Francesco Ferrari

 SEE ALSO
"GenomicAnnotations"

 EXAMPLES
Not run:
GEGenomicAnnotations<-GenomicAnnotationsFromLibrary(annotLibrary=
"org.Hs.eg.db", retain.chrs=1:22)

with optional annotations Genesymbols and EntrezGeneIDs
GEGenomicAnnotations<-GenomicAnnotationsFromLibrary(annotLibrary=
"gauglu133plus2.db", retain.chrs=1:22,
optionalAnnotations=c("SYMBOL", "ENTREZID"))

End(Not run)
GenomicAnnotationsSortAndCleanNA

sort annotations according to selected chromosomes and to remove genes containing any NA annotation field

Description

sort annotations according to selected chromosomes and to remove genes containing any NA annotation field

Usage

GenomicAnnotationsSortAndCleanNA(.Object, sorting_position_column="start")
GenomicAnnotationsSortAndCleanNA(.Object, ...)

Arguments

/Object An object of class GenomicAnnotations or any object inheriting from GenomicAnnotations
... See below

sorting_position_column: Annotations slot used to sort data within each chromosome. Possible values include "start", "end" or "position" (the last one for GenomicAnnotationsForPREDA objects)

GenomicRegions-class

Class "GenomicRegions" is used to manage information about genomic regions

Description

This class is used to manage genomic regions information that can be derived from PREDA analysis results or from other sources: e.g. relevant genomic regions from literature reports can be imported into a GenomicRegions object and compared with PREDA analysis results

Objects from the Class

Objects can be created by calls of the form new("GenomicRegions", chr, start, end, chromosomesNumbers, chromosomesLabels, optionalAnnotations, optionalAnnotationsHeaders, ids)

Slots

chr: Object of class "integer" a numeric vector representing the chromosome where each genomic region is located. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively. User defined options will allow this conversion during GenomicAnnotations objects initialization.

start: Object of class "integer" a numeric vector of start genomic position for each genomic region. This vector must have the same length of "chr" slot.
GenomicRegions-class

end: Object of class "integer" a numeric vector of end genomic position for each genomic region. This vector must have the same length of "chr" slot.

chromosomesNumbers: Object of class "numeric" a numeric vector containing the list of chromosomes associated to genomic regions in the GenomicRegions object. Each chromosome is represented just once in increasing order. Please note that chromosomes usually not represented with a number will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively.

chromosomesLabels: Object of class "character" a character vector containing the list of chromosomes associated to genomic regions in the GenomicRegions object. Each chromosome is represented just once in the same order as reported in chromosomesNumbers slot. This slot is actually used just to provide a label for each associated chromosome number, in case that some non numeric chromosome is used (e.g. to preserve the correspondence between chr 23 and the actual chr X in Human)

optionalAnnotations: Object of class "matrix" optional annotations associated to the genomic regions can be managed along with GenomicRegions objects. E.g. the list of GeneSymbol or EntrezGene ids associated to each genomic region can be provided as optional annotation. These additional annotations are not mandatory (the default value for this slot is NULL) The additional annotations must be provided as a matrix of character, with a number of rows equal to the length of "chr", "start" and "end" slots and a number of columns equal to the length of "optionalAnnotationsHeaders" slot.

optionalAnnotationsHeaders: Object of class "character" the list of names associated to optional annotations. Please avoid using spaces in annotations names.

ids: Object of class "character" a character vector of unique identifiers associated to each genomic regions. This is just an optional element of GenomicRegions objects: the default value is NULL.

Methods

GenomicRegions2dataframe signature(.Object = "GenomicRegions"): extract genomic regions information as a dataframe object

GenomicRegionsAnnotate signature(.Object1 = "GenomicRegions", .Object2 = "GenomicAnnotations"): extract annotations from a GenomicAnnotations object for a set of regions specified as a GenomicRegions object

GenomicRegionsChrNumber signature(.Object = "GenomicRegions"): determine the number of chromosomes with genomic regions

GenomicRegionsComparison signature(.Object1 = "GenomicRegions", .Object2 = "GenomicRegions"): compare GenomicRegions objects to identify overlaps

GenomicRegionsCreateRegionsIds signature(.Object = "GenomicRegions"): generate unique ids for GenomicRegions objects

GenomicRegionsFilter_neg signature(.Object = "GenomicRegions"): filter genomic regions to remove selected chromosomes

GenomicRegionsFilter_pos signature(.Object = "GenomicRegions"): filter genomic regions to keep selected chromosomes

GenomicRegionsNumber signature(.Object = "GenomicRegions"): determine the number of genomic regions

GenomicRegionsSpan signature(.Object = "GenomicRegions"): determine the span of each genomic region

GenomicRegionsTotalSpan signature(.Object = "GenomicRegions"): determine the total span of genomic regions
initialize signature(.Object = "GenomicRegions"): initialize method for GenomicRegions objects

Note
This class is better described in the package vignette

Author(s)
Francesco Ferrari

See Also
GenomicAnnotationsSortAndCleanNA, PREDADataAndResults2dataframe

Examples
showClass("GenomicRegions")
GenomicRegionsAnnotate

Examples

```r
## Not run:
require(PREDAsampleddata)
data(GEanalysisResults)

genomic_regions_UP<-PREDAResults2GenomicRegions(GEanalysisResults,
  qval.threshold=0.05, smoothStatistic.tail="upper",
  smoothStatistic.threshold=0.5)
dataframe_UPregions<-GenomicRegions2dataframe(
genomic_regions_UP[[1]])
## End(Not run)
```

GenomicRegionsAnnotate

extract annotations from a GenomicAnnotations object for a set of regions specified as a GenomicRegions object

Description

extract annotations from a GenomicAnnotations object for a set of regions specified as a GenomicRegions object

Usage

```r
# GenomicRegionsAnnotate(.Object1, .Object2,
# AnnotationsHeaders=NULL, sep.character="; ",
# complete.inclusion=FALSE, annotationAsRange=FALSE,
# getJustFeaturesNumber=FALSE)

GenomicRegionsAnnotate(.Object1, .Object2, ...)
```

Arguments

- `.Object1` An object of class GenomicRegions
- `.Object2` An object of class GenomicAnnotations
- `...` See below

AnnotationsHeaders: Names of optional annotations fields from GenomicAnnotations object that are used to annotate the GenomicRegions object. Multiple annotation fields can be used

sep.character: Character sequence used to separate annotation features

complete.inclusion: Logical, if TRUE only annotations features entirely covered by one of the genomic regions are considered. (e.g. a gene completely included in the genomic regions from start to end) If FALSE also partial overlapping annotation features are used
GenomicRegionsComparison

annotationAsRange: Logical, if TRUE only the first and last annotation features associated to each the genomic region are returned

getJustFeaturesNumber: Logical, if TRUE only the numbers of annotation features overlapping the genomic regions are returned. If TRUE, only the first element specified with AnnotationsHeaders parameter is considered.

Details

The annotation features overlapping the input genomic regions are used to add optional annotations field to the GenomicRegions object.

If previous optional annotations fields are present, they are preserved as well in the output object

Value

A GenomicRegions object with optionalAnnotations

GenomicRegionsChrNumber
determine the number of chromosomes with genomic regions

Description

determine the number of chromosomes with genomic regions

Usage

GenomicRegionsChrNumber(.Object)

Arguments

- **.Object** An object of class GenomicRegions

GenomicRegionsComparisoncompare GenomicRegions objects to identify overlaps and differences

Description

compare GenomicRegions objects to identify overlaps and differences

Usage

GenomicRegionsComparison(.Object1, .Object2)

Arguments

- **.Object1** An object of Class GenomicRegions
- **.Object2** An object of Class GenomicRegions
Details

Compare GenomicRegions objects to identify overlaps and differences

Value

A list containing:

- **overlapping.regions**
 GenomicRegions object describing the overlapping regions between input object1 and object2

- **difference.1.2**
 GenomicRegions object describing the regions from input object1 not overlapping regions from object2

- **difference.2.1**
 GenomicRegions object describing the regions from input object2 not overlapping regions from object1

- **GenomicRegions1.number**
 Number of genomic regions in input object1

- **GenomicRegions2.number**
 Number of genomic regions in input object2

- **overlapping.number**
 Number of overlapping genomic regions between input object1 and object2

- **GenomicRegions1.totalspan**
 Total span of genomic regions in input object1

- **GenomicRegions2.totalspan**
 Total span of genomic regions in input object2

- **overlapping.totalspan**
 Total span of overlapping genomic regions between input object1 and object2

- **overlap.VS.GenomicRegions1.ratio**
 Ratio between overlapping regions and regions from input object1

- **overlap.VS.GenomicRegions2.ratio**
 Ratio between overlapping regions and regions from input object2

Author(s)

Francesco Ferrari

See Also

- GenomicRegionsFindOverlap
- GenomicRegionsCreateRegionsIds

GenomicRegionsCreateRegionsIds

generate unique ids for GenomicRegions objects

Description

generate unique ids for GenomicRegions objects

Usage

```
GenomicRegionsCreateRegionsIds(.Object, ...)
```
Arguments

.GenomicRegionsFilter_neg

Arguments

. Object An object of class GenomicRegions

... See below

chrToRemove: List of chromosomes to be removed from the genomic regions object.

chrAsLabels: Logical, TRUE if chromosomes are listed as their character labels, instead of using the numeric indexes

quiet: Logical, if FALSE a message is printed to warn of empty (NULL) result of the filtering selection.

Description

GenomicRegionsFilter_neg

filter genomic regions to remove selected chromosomes

Usage

GenomicRegionsFilter_neg(.Object, chrToRemove, chrAsLabels=FALSE, quiet=FALSE)
GenomicRegionsFilter_neg(.Object, ...)

Arguments

. Object An object of class GenomicRegions

... See below

chrToRetain: List of chromosomes to be kept in the genomic regions object.

chrAsLabels: Logical, TRUE if chromosomes are listed as their character labels, instead of using the numeric indexes

quiet: Logical, if FALSE a message is printed to warn of empty (NULL) result of the filtering selection.

Description

GenomicRegionsFilter_pos

filter genomic regions to keep selected chromosomes

Usage

GenomicRegionsFilter_pos(.Object, chrToRetain, chrAsLabels=FALSE, quiet=FALSE)
GenomicRegionsFilter_pos(.Object, ...)
GenomicRegionsFindOverlap

Function to find overlap between GenomicRegions objects

Description

Function to find overlap between GenomicRegions objects

Usage

GenomicRegionsFindOverlap(GenomicRegions1, GenomicRegions2 = NULL)

Arguments

GenomicRegions1
Either a GenomicRegions object or a list of GenomicRegions objects

GenomicRegions2
Optiona with default value NULL. Either a GenomicRegions object or a list of GenomicRegions objects.

Details

Input genomic regions object are compared to select overlapping genomic regions that are returned as GenomicRegions objects.

If two single GenomicRegions object are provided, just one comparison is performed and one single GenomicRegions object is returned.

If one single list of GenomicRegions objects is provided as input, then the included GenomicRegions objects are compared to select overlapping GenomicRegions across all of the elements.

If two lists of GenomicRegions objects are provided as input, they must have the same number of elements, because element by element comparison will be performed to identify overlapping GenomicRegions across all of the elements.

Value

Either a single GenomicRegions objec or a list of GenomicRegions objecs.

Author(s)

Francesco Ferrari
GenomicRegionsFromdataframe

Function to create a GenomicRegions object from a dataframe

Description

Function to create a GenomicRegions object from a dataframe

Usage

```r
GenomicRegionsFromdataframe(GenomicRegions_dataframe, ids_column=NULL, chr_column, start_column, end_column, chromosomesNumbers=NULL, chromosomesLabels=NULL, chromosomesLabelsInput=NULL)
```

Arguments

- **GenomicRegions_dataframe**
 - Dataframe object containing the annotations for genomic regions
- **ids_column**
 - Specify the column from the input dataframe with (optional) ids for genomic regions. Can be specified using column index (numeric) or column name (character).
- **chr_column**
 - Specify the column from the input dataframe with chromosome annotations fields. Can be specified using column index (numeric) or column name (character).
- **start_column**
 - Specify the column from the input dataframe with genomic start position for each genomic region. Can be specified using column index (numeric) or column name (character).

Examples

```r
## Not run:
require(PREDAsampledata)
data(SODEGIRCNanalysisResults)
data(SODEGIRGEanalysisResults)
SODEGIR_GE_UP <- PREDAResults2GenomicRegions(
  SODEGIRGEanalysisResults, qval.threshold=0.05,
  smoothStatistic.tail="upper", smoothStatistic.threshold=0.5)
SODEGIR_CN_GAIN <- PREDAResults2GenomicRegions(
  SODEGIRCNanalysisResults, qval.threshold=0.01,
  smoothStatistic.tail="upper", smoothStatistic.threshold=0.1)
SODEGIR_AMPLIFIED <- GenomicRegionsFindOverlap(SODEGIR_GE_UP,
  SODEGIR_CN_GAIN)
## End(Not run)
```

See Also

- GenomicRegionsComparison, GenomicRegions
end_column Specify the column from the input dataframe with genomic end position for each genomic region. Can be specified using column index (numeric) or column name (character).

chromosomesNumbers Numeric vector to specify the list of numeric values to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)

chromosomesLabels Character vector to specify the list of character labels to be associated to each chromosome (especially useful for chromosomes not associated to a number such as chr X or Y)

chromosomesLabelsInput Character vector to specify the list of character labels associated to each chromosome in the input. Particularly useful when non numeric character strings are associated to each chromosome in the input file: e.g. "chr3" for chromosome "3".

Value
An object of class "GenomicRegions"

Author(s)
Francesco Ferrari

See Also
"GenomicRegions"

GenomicRegionsFromfile

Function to create a GenomicRegions object from a text file

Description
Function to create a GenomicRegions object from a text file

Usage

```
GenomicRegionsFromfile(file, ids_column=NULL, chr_column, start_column, end_column, chromosomesNumbers=NULL, chromosomesLabels=NULL, chromosomesLabelsInput=NULL, ...)
```

Arguments

- `file` Path to the input txt file containing genomic regions annotations
- `ids_column` Specify the column from the input txt file with (optional) ids for genomic regions. Can be specified using column index (numeric) or column name (character).
- `chr_column` Specify the column from the input txt file with chromosome annotations fields. Can be specified using column index (numeric) or column name (character).
Description

determine the number of genomic regions

Usage

GenomicRegionsNumber(.Object)

Arguments

.Object An object of class GenomicRegions
GenomicRegionsSpan

Description

determine the span of each genomic region

Usage

GenomicRegionsSpan(.Object, ...)

Arguments

- **.Object**

 An object of class GenomicRegions

- ...

GenomicRegionsTotalSpan

Description

determine the total span of genomic regions

Usage

GenomicRegionsTotalSpan(.Object, ...)

Arguments

- **.Object**

 Object of Class GenomicRegions

- ...

getStatisticByName

Description

extract data for individual analyses using the analysis name

Usage

getStatisticByName(.Object, analysisName)

getStatisticByName(.Object, ...)

Arguments

- **Object**: An object of class `StatisticsForPREDA`
- ... See below

analysisName: Character name of the analysis to be returned

`MergeStatisticAnnotations2DataForPREDA`

`Merge a StatisticsForPREDA and a GenomicAnnotationsForPREDA object into a DataForPREDA object.`

Description

This function merges a `StatisticsForPREDA` and a `GenomicAnnotationsForPREDA` object into a `DataForPREDA` object.

Usage

```r
MergeStatisticAnnotations2DataForPREDA(StatisticsForPREDAObject, GenomicAnnotationsForPREDAObject, sortAndCleanNA = FALSE, quiet = FALSE, MedianCenter = FALSE)
```

Arguments

- `StatisticsForPREDAObject`: An object of class `StatisticsForPREDA`
- `GenomicAnnotationsForPREDAObject`: An object of class `GenomicAnnotationsForPREDA`
- `sortAndCleanNA`: Logical, if `TRUE`, genomic annotations are sorted for chromosome and genomic position then ids with NA positional annotations are removed
- `quiet`: Logical, if `TRUE` messages reporting the number of unmatched ids are suppressed.
- `MedianCenter`: Logical, if `TRUE` data are normalized per median sample.

Value

An object of class `DataForPREDA`

Author(s)

Francesco Ferrari
Class "PREDADataAndResults" is used to manage the PREDA analysis output

Description

This class is used to manage the PREDA analysis output along with corresponding input data.

Objects from the Class

Objects can be created by calls of the form `new("PREDADataAndResults", ids, chr, start, end, strand, chromosomesNumbers, chromosomesLabels, position, optionalAnnotations, optionalAnnotationsHeaders, analysesNames, testedTail, smoothStatistic, pvalue, qvalue, statistic)`.

Slots

- `analysesNames`: Object of class "character" a character vector of unique names associated to each column of smoothStatistic, pvalue and qvalue matrices. This is just a name that is used to identify each analysis.
- `testedTail`: Object of class "character" a character describing what tail of the statistic distribution will be analyzed during PREDA analysis. Possible values are "upper", "lower" or "both". Anyway we strongly recommend using PREDA analysis only.
- `smoothStatistic`: Object of class "matrix" a numeric matrix containing smoothed observed statistics as obtained from PREDA analysis. The smoothed statistics must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.
- `pvalue`: Object of class "matrix" a numeric matrix containing unadjusted gene-centered pvalues as obtained from PREDA analysis. The pvalue matrix must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.
- `qvalue`: Object of class "matrix" a numeric matrix containing adjusted gene-centered pvalues as obtained from PREDA analysis: i.e. usually FDR adjusted pvalues, but other multiple testing methods could be adopted as well. The qvalue matrix must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.
- `position`: Object of class "integer" a numeric vector of reference genomic positions that will be associated and used for each genomic feature under investigation for smoothing data during PREDA analysis.
- `ids`: Object of class "character" a character vector of unique identifiers for the genomic features under investigation
- `chr`: Object of class "integer" a numeric vector representing the chromosome where each ids is mapped. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively. User defined options will allow this conversion during GenomicAnnotations objects initialization.
- `start`: Object of class "integer" a numeric vector of start genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).
- `end`: Object of class "integer" a numeric vector of end genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).
strand: Object of class "numeric" a numeric vector of strand genomic position for each genomic feature under investigation: value 1 is used for "plus" (forward) strand and value -1 for "minus" (reverse) strand. User defined options will allow the conversion to this format during GenomicAnnotations objects initialization.

chromosomesNumbers: Object of class "numeric" a numeric vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in increasing order. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively.

chromosomesLabels: Object of class "character" a character vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in the same order as reported in chromosomesNumbers slot. This slot is actually used just to provide a label for each associated chromosome number, in case that some non numeric chromosome is used (e.g. to preserve the correspondence between chr 23 and the actual chr X in Human)

optionalAnnotations: Object of class "matrix" optional annotations associated to the genomic features can be managed along with genomic positions annotations. E.g. GeneSymbol or EntrezGene ids can be associated to gene realted GenomicAnnotations objects. These additional annotations are not mandatory (the default value for this slot is NULL) The additional annotations must be provided as a matrix of character, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of optionalAnnotationsHeaders slot.

optionalAnnotationsHeaders: Object of class "character" character vector containing the names associated to optional annotations. Please avoid using spaces in annotations names.

statistic: Object of class "matrix" a numeric matrix containing gene-centered statistics (or statistics on genomic data centered on other genomic features under investigation). The statistics must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.

Extends

Class "PREDAResults", directly. Class "DataForPREDA", directly. Class "GenomicAnnotationsForPREDA", by class "PREDAResults", distance 2. Class "StatisticsForPREDA", by class "DataForPREDA", distance 2. Class "GenomicAnnotations", by class "PREDAResults", distance 3.

Methods

GenomicAnnotationsSortAndCleanNA signature(.Object = "PREDADatAndResults"): sort annotations according to selected chromosomes and to remove genes containing any NA annotation field

initialize signature(.Object = "PREDADatAndResults"): initialize method for PREDADatAndResults objects

PREDADatAndResults2dataframe signature(.Object = "PREDADatAndResults"): extract data and annotations as a dataframe with probeids as rownames

Note

This class is better described in the package vignette

Author(s)

Francesco Ferrari
See Also

"GenomicAnnotations", "GenomicAnnotationsForPREDA", "StatisticsForPREDA", "DataForPREDA", "PREDAResults", GenomicAnnotationsSortAndCleanNA, PREDADataAndResults2dataframe

Examples

showClass("PREDADataAndResults")

PREDADataAndResults2dataframe

extract data and annotations as a dataframe with probeids as rownames

Description

extract data and annotations as a dataframe with probeids as rownames

Usage

PREDADataAndResults2dataframe(.Object)

Arguments

/Object An object of class PREDADataAndResults

PREDAResults-class

Class "PREDAResults" is used to manage the PREDA analysis output

Description

this class is used to manage the basic PREDA analysis output including smoothened statistic, pvalues and qvalues.

Objects from the Class

Objects can be created by calls of the form new("PREDAResults", ids, chr, start, end, strand, chromosomesNumbers, chromosomesLabels, position, optionalAnnotations, optionalAnnotationsHeaders, analysesNames, testedTail, smoothStatistic, pvalue, qvalue)

Slots

analysesNames: Object of class "character" a character vector of unique names associated to each column of smoothStatistic, pvalue and qvalue matrices. This is just a name that is used to identify each analysis.

testedTail: Object of class "character" a character describing what tail of the statistic distribution will be analyzed during PREDA analysis. Possible values are "upper", "lower" or "both". Anyway we strongly recommend using PREDA analysis only

smoothStatistic: Object of class "matrix" a numeric matrix containing smoothed observed statistics as obtained from PREDA analysis. The smoothed statistics must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.
pvalue: Object of class "matrix" a numeric matrix containing unadjusted gene-centered pvalues as obtained from PREDA analysis. The pvalue matrix must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.

qvalue: Object of class "matrix" a numeric matrix containing adjusted gene-centered pvalues as obtained from PREDA analysis: i.e. usually FDR adjusted pvalues, but other multiple testing methods could be adopted as well. The qvalue matrix must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.

position: Object of class "integer" a numeric vector of reference genomic positions that will be associated and used for each genomic feature under investigation for smoothing data during PREDA analysis.

cids: Object of class "character" a character vector of unique identifiers for the genomic features under investigation

chr: Object of class "integer" a numeric vector representing the chromosome where each ids is mapped. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively. User defined options will allow this conversion during GenomicAnnotations objects initialization.

start: Object of class "integer" a numeric vector of start genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).

end: Object of class "integer" a numeric vector of end genomic position for each genomic feature under investigation (i.e. gene, transcript, SNP or other elements).

strand: Object of class "numeric" a numeric vector of strand genomic position for each genomic feature under investigation: value 1 is used for "plus" (forward) strand and value -1 for "minus" (reverse) strand. User defined options will allow the conversion to this format during GenomicAnnotations objects initialization.

chromosomesNumbers: Object of class "numeric" a numeric vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in increasing order. Please note that chromosome usually not represented with a number must will be converted to a number as well. e.g. for Human, chromosomes X and Y will be converted to chromosomes 23 and 24 respectively.

chromosomesLabels: Object of class "character" a character vector containing the list of chromosomes for which genomic annotations are provided in the GenomicAnnotations object. Each chromosome is represented just once in the same order as reported in chromosomesNumbers slot. This slot is actually used just to provide a label for each associated chromosome number, in case that some non numeric chromosome is used (e.g. to preserve the correspondence between chr 23 and the actual chr X in Human)

optionalAnnotations: Object of class "matrix" optional annotations associated to the genomic features can be managed along with genomic positions annotations. E.g. GeneSymbol or EntrezGene ids can be associated to gene related GenomicAnnotations objects. These additional annotations are not mandatory (the default value for this slot is NULL) The additional annotations must be provided as a matrix of character, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "optionalAnnotationsHeaders" slot.

optionalAnnotationsHeaders: Object of class "character" character vector containing the names associated to optional annotations. Please avoid using spaces in annotations names.

Extends

Class "GenomicAnnotationsForPREDA", directly. Class "GenomicAnnotations", by class "GenomicAnnotationsForPREDA", distance 2.
Methods

- `GenomicAnnotationsSortAndCleanNA` signature(.Object = "PREDAResults"): sort annotations according to selected chromosomes and to remove genes containing any NA annotation field.
- `initialize` signature(.Object = "PREDAResults"): initialize method for PREDAResults objects.
- `PREDAResults2dataframe` signature(.Object = "PREDAResults"): extract preda results statistics as a data frame object.
- `PREDAResults2GenomicRegions` signature(.Object = "PREDAResults"): identify significant genomic regions from a PREDAResults object.
- `PREDAResults2GenomicRegionsSingle` signature(.Object = "PREDAResults"): identify significant genomic regions from a single analysis in a PREDAResults object.
- `PREDAResults2PREDADataAndResults` signature(.Object = "PREDAResults"): merge PREDAResults and input statistics to create a PREDADataAndResults object.
- `PREDAResultsGetObservedFlags` signature(.Object = "PREDAResults"): extract genomic positions with significant alterations as a matrix of flags from a PREDAResults object.

Note

This class is better described in the package vignette.

Author(s)

Francesco Ferrari

See Also

"GenomicAnnotations", "GenomicAnnotationsForPREDA", GenomicAnnotationsSortAndCleanNA, PREDAResults2dataframe, PREDAResults2GenomicRegions, PREDAResults2GenomicRegionsSingle, PREDAResults2PREDADataAndResults, PREDAResultsGetObservedFlags

Examples

showClass("PREDAResults")

Description

extract preda results statistics as a data frame object

Usage

PREDAResults2dataframe(.Object)

Arguments

- `.Object` An object of class PREDAResults
identify significant genomic regions from a `PREDAResults` object

Description

identify significant genomic regions from a `PREDAResults` object

Usage

```r
# PREDAResults2GenomicRegions(.Object, qval.threshold=0.05,
# use.referencePositions=TRUE, smoothStatistic.tail=NULL,
# smoothStatistic.threshold=NULL)
```

Arguments

- `.Object` Object of class `PREDAResults` or `PREDADataAndResults`
- `...` See below

- `qval.threshold`: q-value threshold used to identify significant genomic regions
- `use.referencePositions`: Logical, if `TRUE` the input reference positions used for PREDA analysis will be used to identify significant genomic regions boundaries as well.
- `smoothStatistic.tail`: Possible values are "upper" or "lower". This parameter specify if only one tail of the smoothed statistic distribution must be considered. If it is `NULL`, both tails are used and `smoothStatistic.threshold` is ignored.
- `smoothStatistic.threshold`: Threshold on `smoothStatistic` values to select significant genomic regions.

Details

A list of genomic regions objects is returned: one GenomicRegions object for each analysis in the input `PREDAResults`.

A NULL element is included in the output list whenever no significant regions are identified.

Value

A list of genomic regions objects

Author(s)

Francesco Ferrari
Examples

```r
## Not run:
require(PREDAsampledata)
data(GEanalysisResults)

genomic_regions_UP<-PREDAResults2GenomicRegions(GEanalysisResults,
qval.threshold=0.05, smoothStatistic.tail="upper",
smoothStatistic.threshold=0.5)

## End(Not run)
```

Description

identify significant genomic regions from a single analysis in a PREDAResults object

Usage

```r
# PREDAResults2GenomicRegionsSingle(.Object,
# qval.threshold=0.05, analysisName=NULL,
# use.referencePositions=TRUE, smoothStatistic.tail=NULL,
# smoothStatistic.threshold=NULL)
PREDAResults2GenomicRegionsSingle(.Object, ...)
```

Arguments

- **.Object**: Object of class PREDAResults or PREDADaataAndResults
- **...**: See below

- **qval.threshold**: q-value threshold used to identify significant genomic regions
- **analysisName**: name of the analysis to be considered
- **use.referencePositions**: Logical, if TRUE the input reference positions used for PREDA analysis will be used to identify significant genomic regions boundaries as well.
- **smoothStatistic.tail**: Possible values are "upper" or "lower". This parameter specify if only one tail of the smoothed statistic distribution must be considered. If it is NULL, both tails are used and smoothStatistic.threshold is ignored.
- **smoothStatistic.threshold**: Threshold on smoothStatistic values to select significant genomic regions.
PREDAResults2PREDADataAndResults

merge PREDAResults and input statistics to create a PREDADataAndResults object

Description
merge PREDAResults and input statistics to create a PREDADataAndResults object

Usage

```r
# PREDAResults2PREDADataAndResults(.Object, statistic)
PREDAResults2PREDADataAndResults(.Object, ...)
```

Arguments

- `.Object` An object of class PREDAResults
- `...` See below

- `statistic`: A matrix containing input statistics

PREDAResultsGetObservedFlags

extract genomic positions with significant alterations as a matrix of flags from a PREDAResults object

Description
extract genomic positions with significant alterations as a matrix of flags from a PREDAResults object

Usage

```r
# PREDAResultsGetObservedFlags(.Object, qval.threshold=0.05, smoothStatistic.tail=NULL, smoothStatistic.threshold=NULL, null.value=0, significant.value=1)
PREDAResultsGetObservedFlags(.Object, ...)
```

Arguments

- `.Object` An object of class PREDAResults or PREDADataAndResults
- `...` See below

- `qval.threshold`: q-value threshold used to identify significant genomic positions
- `smoothStatistic.tail`: Possible values are "upper" or "lower". This parameter specify if only one tail of the smoothed statistic distribution must be considered. If it is NULL, both tails are used and smoothStatistic.threshold is ignored.
smoothStatistic.threshold: Threshold on smoothStatistic values to select significant genomic regions.
null.value: Value (flag) assigned to not significant positions
significant.value: Value (flag) assigned to significant positions

Description

function performing the core of PREDA analysis

Usage

PREDA_main(inputDataForPREDA, outputGenomicAnnotationsForPREDA = NULL, nperms = 10000, verbose = TRUE, parallelComputations = FALSE, multTestCorrection = "fdr", permutePerChromosome = FALSE, blocksize = 10, permuteStatisticSign = FALSE, smoothMethod = "lokern_scaledBandwidth_repeated", force = FALSE, lokern_scaledBandwidthFactor = 2, limit.analysis = NULL)

Arguments

inputDataForPREDA
A Data for PREDA object

outputGenomicAnnotationsForPREDA
A GenomicAnnotationsForPREDA object.
If NULL, GenomicsAnnotations for output data are obtained from inputDataForPREDA

nperms
Number of permutations performed in PREDA analysis.

verbose
Logical, if TRUE some messages are printed concerning the advancement of the analysis.

parallelComputations
Logical, if TRUE Rmpi is used to spawn slave processes, thus using parallel computing to speedup the analysis.

multTestCorrection
Multiple testing correction that will be adopted to correct the statistic p-values.
Possible values are "fdr", for benjamini and Hochberg multiple testing correction and "qvalue" for p-values correction performed with qvalue package.

permutePerChromosome
Logical, if TRUE data permutations are performed separately for each chromosome. In most cases the default value (FALSE) is preferable to avoid biases related to specific chromosomes extreme alterations.

blocksize
A parameter used to tune parallel computations if parallelComputations is TRUE. This is actually the number of permutations performed on each slave process before every communication with master process. This is useful to reduce the number of network communications when slow communications are established among slave processes.
permuteStatisticSign
Logical, if TRUE statistics signs are permuted instead of permuting data along chromosomal position.

smoothMethod
The default smoothing method used in the PREDA_main function is lokern smoothing with scaled bandwidth, using a scaling factor equal to 2. Possible values are "lokern", for standard lokern smoothing, "quantsmooth", "spline" and "runningmean.x", where x is a user-defined value for the number of adjacent data points using for running mean smoothing.

force
Logical, if TRUE force skipping quantsmooth control on number of data points. Single quantsmooth is very slow with a high number of input data, a check stopping computation with more than 2000 data points in one or more chromosomes was introduced. This parameter allows skipping this security check.

lokern_scaledBandwidthFactor
Factor of scaling for lokern estimated bandwidths.

limit.analysis
Vector (numeric or character representing analyses names) to limit the output of preda analysis to a subset of input analyses.

Details
See supplementary material about PREDA method.

Value
If outputGenomicAnnotationsForPREDA is NULL, a PREDADataAndResults object is returned. Otherwise a PREDAResults object is returned instead.

Author(s)
Francesco Ferrari

See Also
Supplementary information about PREDA method.

Examples
See examples in PREDA tutorial

preprocessingGE
Wrapper function for gene expression data preprocessing for differential expression analysis with PREDA.

Description
Wrapper function for gene expression data preprocessing for differential expression analysis with PREDA.
Usage
preprocessingGE(SampleInfoFile = NULL, CELfiles_dir = NULL,
AffyBatchInput = NULL, custom_cdfname, arrayNameColumn = NULL,
sampleNameColumn = NULL, classColumn,
referenceGroupLabel, statisticType, optionalAnnotations = NULL,
retain.chrs = NULL, reference_position_type = "median",
testedTail = "both")

Arguments
SampleInfoFile Path to sample info file
CELfiles_dir Path to directory containing raw CEL data files for Affymetrix arrays
AffyBatchInput Alternatively input raw data can be provided as an AffyBatch object. In this case
sample classes will be inferred from phenodata contained in AffyBatch object.
In particular classColumn parameter will refer to the column in pData(AffyBatchInput)
object.
custom_cdfname Specify the cdf library to be used for data preprocessing
arrayNameColumn Column of sampleinfo file containing the name of raw data (CEL) files
sampleNameColumn Column of sampleinfo file containing the name to be used for samples labels
classColumn Column of sampleinfo file containing the label of sample classes. If input raw
data are provided as an AffyBatch object, this parameter refers instead to the
column in pData(AffyBatchInput) object.
referenceGroupLabel Specify which class label is used for the reference sample used in computing
statistics for differential expression.
statisticType Statistic for differential expression that is computed on input data. Possible
values are "tstatistic", "SAM" (SAM statistical score for differential expression),
"FC" (Fold Change), "FCmedian" (fold change computed on medians)
optionalAnnotations Character vector to select additional annotations fields to be included into the
GenomicAnnotations object.
retain.chrs Numeric vector, containing the list of chromosomes selected for the output Ge-
nomicAnnotations object. E.g. set retain.chrs=1:22 to limit the GenomicAn-
notations object to chromosomes from 1 to 22. This might be useful to limit
GenomicAnnotations objects to autosomic chromosomes.
reference_position_type Specify which genomic coordinate must be used as reference position for PREDA
analysis. Possible values are "start", "end", "median", "strand.start" or "strand.end".
testedTail Specify what tail of the distribution will be tested for significantly extreme val-
ues in PREDA analysis. Possible values are "both", "upper" or "lower".

Details
Preprocess raw (CEL) files for Affymetrix gene expression arrays using user defined CDF libraries
and RMA normalization. Then statistics for differential expression are computed. Then annotations
are retrieved from the corresponding annotation library.

Please note this function is a user-friendly preprocessing function for Affy gene expression microar-
rays. Step by step preprocessing functions can be used with any other platform.
Value

A DataForPREDA object is returned.

Author(s)

Francesco Ferrari

See Also

DataForPREDA

Examples

Not run:

```r
require("PREDAsampledata")
CELfilesPath <- system.file("sampledata", "GeneExpression", 
package = "PREDAsampledata")
infofile <- file.path(CELfilesPath , "sampleinfoGE_PREDA.txt")
sampleinfo<-read.table(infofile, sep="	", header=TRUE)

GEDataForPREDA<-preprocessingGE(SampleInfoFile=infofile,
CELfiles_dir=CELfilesPath,
custom_cdfname="gahgu133plus2",
arrayNameColumn=1,
sampleNameColumn=2,
classColumn="Class",
referenceGroupLabel="normal",
statisticType="tstatistic",
optionalAnnotations=c("SYMBOL", "ENTREZID"),
retain.chrs=1:22)

## End(Not run)
```

SODEGIRpreprocessingGE

Wrapper function for gene expression data preprocessing for SODEGIR analysis

Description

Wrapper function for gene expression data preprocessing for SODEGIR analysis

Usage

SODEGIRpreprocessingGE(SampleInfoFile = NULL, CELfiles_dir = NULL,
AffyBatchInput = NULL, custom_cdfname, arrayNameColumn = NULL,
sampleNameColumn = NULL, classColumn,
referenceGroupLabel, statisticType, optionalAnnotations = NULL,
retain.chrs = NULL, reference_position_type = "median",
testedTail = "both", singleSampleOutput = TRUE,
varianceAll=FALSE)

Arguments

SampleInfoFile Path to sample info file
CELfiles_dir Path to directory containing raw CEL data files for Affymetrix arrays
AffyBatchInput Alternatively input raw data can be provided as an AffyBatch object. In this case
sample classes will be inferred from phenodata contained in AffyBatch object. In particular classColumn parameter will refer to the column in pData(AffyBatchInput) object.
custom_cdfname Specify the cdf library to be used for data preprocessing
arrayNameColumn Column of sampleinfo file containing the name of raw data (CEL) files
sampleNameColumn Column of sampleinfo file containing the name to be used for samples labels
classColumn Column of sampleinfo file containing the label of sample classes. If input raw
data are provided as an AffyBatch object, this parameter refers instead to the column in pData(AffyBatchInput) object.
referenceGroupLabel Specify which class label is used for the reference sample used in computing
statistics for differential expression.
statisticType Statistic for differential expression that is computed on input data. Possible
values are "tstatistic", "SAM" (SAM statistical score for differential expression), "FC" (Fold Change), "FCmedian" (fold change computed on medians)
optionalAnnotations Character vector to select additional annotations fields to be included into the
GenomicAnnotations object.
retain.chrs Numeric vector, containing the list of chromosomes selected for the output GenomicAnnotations object. E.g. set retain.chrs=1:22 to limit the GenomicAnnotations object to chromosomes from 1 to 22. This might be useful to limit GenomicAnnotations objects to autosomic chromosomes.
reference_position_type Specify which genomic coordinate must be used as reference position for PREDA
analysis. Possible values are "start", "end", "median", "strand.start" or "strand.end". "strand.start" is strand specific start: i.e. start on positive strand but end on negative strand. "strand.end" is strand specific end.
testedTail Specify what tail of the distribution will be tested for significantly extreme values in PREDA analysis. Possible values are "both", "upper" or "lower".
singleSampleOutput Logical, if TRUE a statistic comparing each sample with the reference group is computed.
varianceAll This parameter affect the computation only when singleSampleOutput is TRUE. varianceAll is itself a logical parameter. If TRUE, all pathological (e.g. tumor) samples and all normal (reference) samples are used to estimate variance in the comparison of individual pathological samples to the normal reference, as described in the original SODEGIR apper by Bicciato et al. (Nucleic Acids Res. 2009).

The original SODEGIR statistic for Gene Expression was based on the SAM score. Therefore in the current PREDA version the varianceAll=TRUE parameter can be used only for SAM statistic: when singleSampleOutput is TRUE and a different statisticType is used, the variance is actually computed using only the normal (reference) samples.

If FALSE (default value), the computation of statistics for single sample VS reference comparisons only take into account the variance in the reference group of samples.

Details
Preprocess raw (CEL) files for Affymetrix gene expression arrays using user defined CDF libraries and RMA normalization.

Then statistics for differential expression are computed comparing each sample with the reference group.

Then annotations are retrieved from the corresponding annotation library.

Please note this function is a user-friendly preprocessing function for Affy gene expression microarrays. Step by step preprocessing functions can be used with any other platform.

Value
A DataForPREDA object is returned.

Author(s)
Francesco Ferrari

References

See Also
preprocessingGE, DataForPREDA

Examples
```r
## Not run:
require(PREDAsampledata)

CELfilesPath <- system.file("sampledata", "GeneExpression", package = "PREDAsampledata")

infofile <- file.path(CELfilesPath , "sampleinfoGE_PREDA.txt")

SODEGIRGEDataForPREDA<-SODEGIRpreprocessingGE(SampleInfoFile= infofile,
CELfiles_dir=CELfilesPath,
custom_cdfname="gahgu133plus2",
arrayNameColumn=1,
sampleNameColumn=2,
```
SODEGIR_GEstatistics

Wrapper function for gene expression statistics preprocessing for SODEGIR analysis.

Description

Wrapper function for gene expression statistics preprocessing for SODEGIR analysis.

Usage

SODEGIR_GEstatistics(.Object, pData_classColumn=NULL,
referenceGroupLabel=NULL,
statisticType=c("tstatistic", "SAM"),
singleSampleOutput=TRUE, varianceAll=FALSE)

SODEGIR_GEstatistics(.Object, ...)

Arguments

.Object An object of class ExpressionSet containing gene expression input data
...

pData_classColumn: Column of phenoData slot from the ExpressionSet object, containing the label of sample classes
referenceGroupLabel: Specify which class label is used for the reference sample used in computing statistics for differential expression.
statisticType: Statistic for differential expression that is computed on input data. Possible values are "tstatistic", "SAM" (SAM statistical score for differential expression), "FC" (Fold Change), "FCmedian" (fold change computed on medians)
singleSampleOutput: Logical, if TRUE a statistic comparing each sample with the reference group is computed.
varianceAll: This parameter affect the computation only when singleSampleOutput is TRUE. varianceAll is itself a logical parameter. If TRUE, all pathological (e.g. tumor) samples and all normal (reference) samples are used to estimate variance in the comparison of individual pathological samples to the normal reference, as described in the original SODEGIR apper by Bicciato et al. (Nucleic Acids Res. 2009).

The original SODEGIR statistic for Gene Expression was based on the SAM score. Therefore in the current PREDA version the varianceAll=TRUE
parameter can be used only for SAM statistic: when singleSampleOutput is TRUE and a different statisticType is used, the variance is actually computed using only the normal (reference) samples. If FALSE (default value), the computation of statistics for single sample VS reference comparisons only take into account the variance in the reference group of samples.

Details

Using an ExpressionSet object as input, statistics for differential expression are computed comparing each sample with the reference group.

Value

The output is returned as a matrix.

Author(s)

Francesco Ferrari

References

See Also

preprocessingGE, SODEGIRpreprocessingGE, ExpressionSet

StatisticsForPREDA-class

Class "StatisticsForPREDA" is used to manage the datamatrix containing statistics for PREDA analyses

Description

This class is used to manage the datamatrix containing statistics for PREDA analyses: i.e. the gene (or other genomic feature) centered statistics accounting for differential expression (or for the other type of variation under investigation)

Objects from the Class

Objects can be created by calls of the form new("StatisticsForPREDA", ids, statistic, analysesNames, testedTail)
StatsForPREDA-class

Slots

ids: Object of class "character" a character vector of unique identifiers for the genomic features under investigation

statistic: Object of class "matrix" a numeric matrix containing gene-centered statistics (or statistics on genomic data centered on other genomic features under investigation). The statistics must be provided as a matrix of numeric values, with a number of rows equal to the length of "ids" slot and a number of columns equal to the length of "analysesNames" slot.

analysesNames: Object of class "character" a character vector of unique names associated to each column of statistic matrix. This is just a name that will be used to identify each analysis.

testedTail: Object of class "character" a character describing what tail of the statistic distribution will be analyzed during PREDA analysis. Possible values are "upper", "lower" or "both". Anyway we strongly recommend using PREDA analysis only for statistics on genomic data with a symmetric distribution around zero.

Methods

analysesNames signature(.Object = "StatsForPREDA"): get the names of the analyses in the StatsForPREDA object

getStatisticByName signature(.Object = "StatsForPREDA"): extract data for individual analyses using the analysis name

initialize signature(.Object = "StatsForPREDA"): initialize method for StatsForPREDA objects

StatsForPREDA2dataframe signature(.Object = "StatsForPREDA"): extract data as a dataframe with probeids as rownames

StatsForPREDAFilterColumns_neg signature(.Object = "StatsForPREDA"): filter statistics to remove selected analyses

StatsForPREDAFilterColumns_pos signature(.Object = "StatsForPREDA"): filter statistics to keep selected analyses

Note

This class is better described in the package vignette

Author(s)

Francesco Ferrari

See Also

"DataForPREDA", analysesNames, getStatisticByName, StatsForPREDA2dataframe, StatsForPREDAFilterColumns_neg, StatsForPREDAFilterColumns_pos

Examples

showClass("StatsForPREDA")
StatisticsForPREDA2dataframe

extract data as a dataframe with probeids as rownames

Description

extract data as a dataframe with probeids as rownames

Usage

StatisticsForPREDA2dataframe(.Object)

Arguments

.Object An object of class StatisticsForPREDA

StatisticsForPREDAFilterColumns_neg

filter statistics to remove selected analyses

Description

filter statistics to remove selected analyses

Usage

StatisticsForPREDAFilterColumns_neg(.Object, analysesToRemove,
analysesAsNames=FALSE)

StatisticsForPREDAFilterColumns_neg(.Object, ...)

Arguments

.Object An object of class StatisticsForPREDA

... See below

analysesToRemove: Analysis statistics columns to be removed after filtering
analysesAsNames: Logical, if TRUE analyses are listed as their character names. If FALSE they can be listed as numeric indexes.
StatisticsForPREDAFilterColumns_pos

filter statistics to keep selected analyses

Description

filter statistics to keep selected analyses

Usage

StatisticsForPREDAFilterColumns_pos(.Object, analysesToRetain, # analysesAsNames=FALSE)

StatisticsForPREDAFilterColumns_pos(.Object, ...)

Arguments

/Object/ An object of class StatisticsForPREDA
... See below
analysesToRetain: Analysis statistics columns to be retained after filtering
analysesAsNames: Logical, if TRUE analyses are listed as their character names. If FALSE they can be listed as numeric indexes.

StatisticsForPREDAFromdataframe

Function to create a StatisticsForPREDA objet from a dataframe

Description

Function to create a StatisticsForPREDA objet from a dataframe

Usage

StatisticsForPREDAFromdataframe(StatisticsForPREDA_dataframe, ids_column = NULL, statistic_columns = NULL, analysesNames = NULL, testedTail = c("upper", "lower", "both"))

Arguments

StatisticsForPREDA_dataframe Input dataframe containing statistics on genomics data.
ids_column Specify the column from the input dataframe with gene (or other genomic features) ids. Can be specified using column index (numeric) or column name (character).
statistic_columns Specify the column (or columns) from the input dataframe with gsta.enomic data statistics that will be included in the statisticsForPREDA object. Can be specified using column index (numeric) or column name (character). If NULL (default), all columns excluding ids_column will be considered as input statistics
analysesNames: Names (labels) to be associated to each input statistic. If NULL the column names for statistics_columns will be used.

testedTail: Specify what tail of the distribution will be tested for significantly extreme values in PREDA analysis. Possible values are "both", "upper" or "lower".

...: any other parameter for read.table function that could be useful for parsing the input file, such as "sep", "quote", "header", "na.strings" and other parameters.

Details

A dataframe is parsed and a statisticsForPREDA object is built using contained data.

Value

A statisticsForPREDA object

Author(s)

Francesco Ferrari

See Also

StatisticsForPREDA

Examples

Not run:
require(PREDAsampledata)

CNdataPath <- system.file("sampledata", "CopyNumber", package = "PREDAsampledata")

CNdataFile <- file.path(CNdataPath, "CNAG_data_PREDA.txt")

CNannotationFile <- file.path(CNdataPath, "SNPAnnot100k.csv")

CNStatisticsForPREDA <- StatisticsForPREDAFromdataframe(file=CNdataFile, ids_column="AffymetrixSNPsID", testedTail="both", sep="\t", header=TRUE)

End(Not run)
Usage

statisticsForPREDAfromEset(.Object, pData_classColumn=NULL,
statisticType=NULL, logged=TRUE, referenceGroupLabel=NULL,
classVector=NULL, testedTail="both")

statisticsForPREDAfromEset(.Object, ...)

Arguments

.Object Object of class ExpressionSet

... See below

pData_classColumn: Column from pData(.Object) containing the labels for different samples classes.

statisticType: Statistic for differential expression that is computed on input data. Possible values are "tstatistic", "SAM" (SAM statistical score for differential expression), "FC" (Fold Change), "FCmedian" (fold change computed on medians)

logged: Logical value (default TRUE) to specify if the input data are logged (Log2). This parameter will influence the computation of statistics.

testerGroupLabel: Specify which class label is used for the reference sample used in computing statistics for differential expression.

classVector: If pData_classColumn is NULL then a vector specifying the sample classes is required and can be provided with classVector parameter

testerTail: Specify what tail of the distribution will be tested for significantly extreme values in PREDA analysis. Possible values are "both", "upper" or "lower". Default value is "both".

Details

An object of class ExpressionSet is used as input and gene centered statistics for differential expression are computed on the contained data. The computed statistics are used to build a StatisticsForPREDA object

Value

An object of class StatisticsForPREDA

Author(s)

Francesco Ferrari

See Also

"StatisticsForPREDA"

Examples

Not run:

require(PREDAsampledata)
data(gaExpressionSetRCC)
GEstatisticsForPREDA<-statisticsForPREDAfromEset(
 gaExpressionSetRCC, statisticType="tstatistic",
 referenceGroupLabel="normal", classVector=sampleinfo[,"Class"])

End(Not run)

StatisticsForPREDFromfile

Function to create a StatisticsForPREDA objet from a txt file

Description

Function to create a StatisticsForPREDA objet from a txt file

Usage

```
StatisticsForPREDAfromfile(file, ids_column = NULL,
statistic_columns = NULL, analysesNames = NULL, testedTail =
c("upper", "lower", "both"), ...)
```

Arguments

- `file` Path to the input txt file containing statistics on genomics data
- `ids_column` Specify the column from the input txt file with gene (or other genomic features) ids. Can be specified using column index (numeric) or column name (character).
- `statistic_columns` Specify the column (or columns) from the input txt file with genomic data statistics that will be included in the statisticsForPREDA object. Can be specified using column index (numeric) or column name (character).
 - If NULL (default), all columns excluding ids_column will be considered as input statistics
- `analysesNames` Names (labels) to be associated to each input statistic. If NULL the column names for statistic_columns will be used.
- `testedTail` Specify what tail of the distribution will be tested for significantly extreme values in PREDA analysis. Possible values are "both", "upper" or "lower".
- `...` any other parameter for read.table function that could be useful for parsing the input file, such as "sep", "quote", "header", "na.strings" and other parameters.

Details

A txt file is parsed and a statisticsForPREDA object is built using contained data.

Value

A statisticsForPREDA object

Author(s)

Francesco Ferrari
See Also

StatisticsForPRED

Examples

```r
## Not run:
require(PREDAsampledata)

CNdataPath <- system.file("sampledata", "CopyNumber", package = "PREDAsampledata")

CNdataFile <- file.path(CNdataPath, "CNAG_data_PRED.txt")

CNannotationFile <- file.path(CNdataPath, "SNPAnnot100k.csv")

CNStatisticsForPREDA <- StatisticsForPREDAFFromfile(file = CNdataFile, ids_column = "AffymetrixSNPsID", testedTail = "both", sep = "\t", header = TRUE)

## End(Not run)
```
Index

Topic classes

DataForPREDA-class, 5
GenomicAnnotations-class, 12
GenomicAnnotationsForPREDA-class, 18
GenomicRegions-class, 28
PREDADataAndResults-class, 41
PREDAResults-class, 43
StatisticsForPREDA-class, 56
analysesNames, 3, 57
analysesNames,PREDAResults-method (analysesNames), 3
analysesNames,StatisticsForPREDA-method (analysesNames), 3
computeDatasetSignature, 4
computeDatasetSignature,GenomicAnnotationsForPREDA-method (computeDatasetSignature), 4
DataForPREDA, 42, 43, 52, 54, 57
DataForPREDA-class, 5
DataForPREDA2dataframe, 7, 8
DataForPREDA2dataframe,DataForPREDA-method (DataForPREDA2dataframe), 8
DataForPREDA2GenomicAnnotationsForPREDA, 7, 8
DataForPREDA2GenomicAnnotationsForPREDA,DataForPREDA-method (DataForPREDA2GenomicAnnotationsForPREDA), 8
DataForPREDA2StatisticsForPREDA, 7, 9
DataForPREDA2StatisticsForPREDA,DataForPREDA-method (DataForPREDA2StatisticsForPREDA), 9
DataForPREDAMedianCenter, 9
DataForPREDAMedianCenter,DataForPREDA-method (DataForPREDAMedianCenter), 9
eset2GenomicAnnotations, 10
eset2GenomicAnnotations,ExpressionSet-method (eset2GenomicAnnotations), 10
ExpressionSet, 56
genomePlot, 11, 20
genomePlot,GenomicAnnotationsForPREDA-method (genomePlot), 11
GenomicAnnotations, 7, 10, 17, 19, 20, 24, 26, 27, 42–45
GenomicAnnotations-class, 12
GenomicAnnotations2dataframe, 13, 14, 20
GenomicAnnotations2dataframe,GenomicAnnotations-method (GenomicAnnotations2dataframe), 14
GenomicAnnotations2dataframe,GenomicAnnotationsForPREDA, 13, 14, 22
GenomicAnnotations2GenomicAnnotationsForPREDA,GenomicAnnotations-method (GenomicAnnotations2GenomicAnnotationsForPREDA), 14
GenomicAnnotations2reference_positions, 13, 15
GenomicAnnotations2reference_positions,GenomicAnnotations-method (GenomicAnnotations2reference_positions), 15
GenomicAnnotationsExtract, 13, 16
GenomicAnnotationsExtract,GenomicAnnotations-method (GenomicAnnotationsExtract), 16
GenomicAnnotationsFilter_neg, 7, 13, 17, 20
GenomicAnnotationsFilter_neg,DataForPREDA-method (GenomicAnnotationsFilter_neg,DataForPREDA), 17
GenomicAnnotationsFilter_neg,GenomicAnnotations-method (GenomicAnnotationsFilter_neg,GenomicAnnotations), 17
GenomicAnnotationsFilter_neg,GenomicAnnotationsFilter_neg, 17
GenomicAnnotationsFilter_neg,GenomicAnnotationsFilter_neg,GenomicAnnotations-method (GenomicAnnotationsFilter_neg), 17
GenomicAnnotationsFilter_pos, 7, 13, 17, 20
GenomicAnnotationsFilter_pos,DataForPREDA-method (GenomicAnnotationsFilter_pos,DataForPREDA), 17
GenomicAnnotationsFilter_pos,GenomicAnnotations-method (GenomicAnnotationsFilter_pos,GenomicAnnotations), 17
GenomicAnnotationsFilter_pos,GenomicAnnotationsFilter_pos, 17
PREDAResults2PREDADATAAndResults, 45, 48
PREDAResults2PREDADATAAndResults, PREDAResults-method (PREDAResults2PREDADATAAndResults), 48
PREDAResultsGetObservedFlags, 45, 48
PREDAResultsGetObservedFlags, PREDAResults-method (PREDAResultsGetObservedFlags), 48
preprocessingGE, 50, 54, 56
SODEGIR_GEstatistics, 55
SODEGIR_GEstatistics, ExpressionSet-method (SODEGIR_GEstatistics), 55
SODEGIRGpreprocessingGE, 52, 56
StatisticsForPREDA, 4, 7, 42, 43, 60, 61, 63
StatisticsForPREDA-class, 56
StatisticsForPREDA2dataframe, 57, 58
StatisticsForPREDA2dataframe, StatisticsForPREDA-method (StatisticsForPREDA2dataframe), 58
StatisticsForPREDAFilterColumns_neg, 7, 57, 58
StatisticsForPREDAFilterColumns_neg, DataForPREDA-method (StatisticsForPREDAFilterColumns_neg), 58
StatisticsForPREDAFilterColumns_neg, StatisticsForPREDA-method (StatisticsForPREDAFilterColumns_neg), 58
StatisticsForPREDAFilterColumns_pos, 7, 57, 59
StatisticsForPREDAFilterColumns_pos, DataForPREDA-method (StatisticsForPREDAFilterColumns_pos), 59
StatisticsForPREDAFilterColumns_pos, StatisticsForPREDA-method (StatisticsForPREDAFilterColumns_pos), 59
StatisticsForPREDAfromdataframe, 59
statisticsForPREDAfromEset, 60
statisticsForPREDAfromEset, ExpressionSet-method (statisticsForPREDAfromEset), 60
StatisticsForPREDAfromfile, 62