Package ‘PathoStat’

March 23, 2017

Type Package

Title PathoStat Statistical Microbiome Analysis Package

Version 1.0.0

Date 2016-10-11

Author Solaiappan Manimaran <manimarans1975@hotmail.com>, Matthew Bendall <bendall1@gwmail.gwu.edu>, Sandro Valenzuela Díaz <sandro1valenzuelad@gmail.com>, Eduardo Castro <castronallar@gmail.com>, Tyler Faits <tfaits@gmail.com>, W. Evan Johnson <wej@bu.edu>

Maintainer Solaiappan Manimaran <manimarans1975@hotmail.com>

Description The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.

URL https://github.com/mani2012/PathoStat

BugReports https://github.com/mani2012/PathoStat/issues

License GPL (>= 2)

Depends R (>= 3.3.1)

Imports MCMCpack, limma, corpcor, rmarkdown, knitr, pander, matrixStats, reshape2, scales, ggplot2, rentrez, BatchQC, DT, gtools, tidyR, plyr, dplyr, ape, phyloseq, shiny, grDevices, stats, methods, XML, graphics, utils, alluvial, BiocStyle

Collate 'pathoStat.R' 'utils.R' 'taxonomy.R' 'confRegion.R'
'allClasses.R' 'coreOTUModule.R'

Suggests testthat

biocViews Microbiome, Metagenomics, GraphAndNetwork, Microarray, PatternLogic, PrincipalComponent, Sequencing, Software, Visualization, RNASeq

SystemRequirements pandoc (http://pandoc.org/installing.html) for generating reports from markdown files.

VignetteBuilder knitr
coreOTUModule

Server function for Core OTU Module

Description

This function provides the server logic for the Core OTU tab. This function is not called directly; instead, it should be invoked within the Shiny app’s server function using the `callModule` function. See http://shiny.rstudio.com/articles/modules.html for information about this design pattern.

Usage

```r
coreOTUModule(input, output, session, pstat)
```
Arguments

input Shiny server input object created by callModule
output Shiny server output object created by callModule
session Session created by callModule
pstat PathoStat object (third argument to callModule).

Details

The callModule function should be invoked with this function as the first argument. callModule is responsible for creating the namespaced input, output, and session arguments. The second argument to callModule is the ID to be used for the namespace and must match the id argument provided to coreOTUModuleUI. The third argument to callModule should be a PathoStat object from the app's server function, and is passed to this function as the pstat argument.

Value

None

See Also

coreOTUModuleUI for the UI function, callModule to see how to invoke this function, or http://shiny.rstudio.com/articles/modules.html for more information about Shiny modules.

Examples

This function is not called directly; instead, it should be invoked within
the app's server function using the shiny::callModule function.
Not run:
shinyServer(function(input, output, session) {
 shinyInput <- getShinyInput()
pstat <- shinyInput$pstat
callModule(coreOTUModule, "coreOTUModule", pstat)
})
End(Not run)

coreOTUModuleUI UI function for Core OTU Module

Description

This function creates the UI for the Core OTU tab. The tab panel can be included within a tabsetPanel, thus providing a simple way to add or remove this module from the Shiny app. The first argument, id, is the ID to be used for the namespace and must match the id argument provided to coreOTUModule.

Usage

coreOTUModuleUI(id, label = "Core OTUs")
createPathoStat

Arguments

id Namespace for module
label Tab label

Value

A tabPanel that can be included within a tabsetPanel.

See Also

coreOTUModule for the server function, tabPanel for the UI component returned by this function, or http://shiny.rstudio.com/articles/modules.html for more information about Shiny modules.

Examples

shiny::mainPanel(
 shiny::tabsetPanel(
 coreOTUModuleUI("coreOTUModule")
)
)

createPathoStat (Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app)

Description

Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app

Usage

createPathoStat(input_dir = ".", sample_data_file = "sample_data.tsv", pathoreport_file_suffix = "-sam-report.tsv")

Arguments

input_dir Directory where the tsv files from PathoScope are located
sample_data_file Sample Data file with information about samples
pathoreport_file_suffix PathoScope report files suffix

Value

pstat The pathostat object generated from the given tsv files
findRAfromCount

Examples
example_data_dir <- system.file("example/data", package = "PathoStat")
pstat <- createPathoStat(input_dir=example_data_dir,
 sample_data_file="sample_data.tsv")

findRAfromCount(count_otu)

Description
Return the Relative Abundance (RA) data for the given count OTU table.

Usage
findRAfromCount(count_otu)

Arguments
 count_otu Count OTU table

Value
 ra_otu Relative Abundance (RA) OTU table

Examples
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
ra_otu <- findRAfromCount(phyloseq::otu_table(pstat))

findTaxonLevel

Description
Find the taxonomy for the given taxon id.

Usage
findTaxonLevel(tid)

Arguments
 tid Given taxon id

Value
 taxonomy LineageEx

Examples
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
ra_otu <- findRAfromCount(phyloseq::otu_table(pstat))
Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevel <- findTaxonomy(tids[1])
taxonLevels <- findTaxonomy(tids[1:5])
taxmat <- findTaxonMat(ids[1:5], taxonLevels)
```

Description

Find the Taxonomy Information Matrix

Usage

```r
findTaxonMat(names, taxonLevels)
```

Arguments

- `names` Row names of the taxonomy matrix
- `taxonLevels` Taxon Levels of all tids

Value

`taxmat` Taxonomy Information Matrix

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevel <- findTaxonomy(tids[1])
taxonLevels <- findTaxonomy(tids[1:5])
taxmat <- findTaxonMat(ids[1:5], taxonLevels)
```
findTaxonomy

Find the taxonomy for each taxon ids

Arguments

- **tids**
 - Given taxonomy ids

Value

- taxondata Data with the taxonomy information

Examples

```r
element_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(element_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevels <- findTaxonomy(tids[1:5])
```

formatTaxTable

Format taxonomy table for rendering

Description

Format taxonomy table for rendering

Usage

`formatTaxTable(ttable)`

Arguments

- **ttable**
 - Taxonomy table

Value

Formatted table suitable for rendering with `DT::renderDataTable`
getShinyInput
Getter function to get the shinyInput option

Description

Getter function to get the shinyInput option.

Usage

```r
getShinyInput()
```

Value

shinyInput option

Examples

```r
getShinyInput()
```

getShinyInputCombat
Getter function to get the shinyInputCombat option

Description

Getter function to get the shinyInputCombat option.

Usage

```r
getShinyInputCombat()
```

Value

shinyInputCombat option

Examples

```r
getShinyInputCombat()
```
getShinyInputOrig

Getter function to get the shinyInputOrig option

Description

Getter function to get the shinyInputOrig option

Usage

getShinyInputOrig()

Value

shinyInputOrig option

Examples

getShinyInputOrig()

get_core

Select rows of OTU matrix that meet given detection and prevalence thresholds

Description

Select rows of OTU matrix that meet given detection and prevalence thresholds

Usage

get_core(pstat, detection, prevalence)

Arguments

pstat PathoStat object
detection An integer specifying the minimum value considered to be “detected”
prevalence An integer specifying the minimum number of samples that must be detected

Value

Subsetted PathoStat object
get_coremat

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Description

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Usage

get_coremat(pstat)

Arguments

pstat PathoStat object

Value

Data frame containing number of OTUs at varying detection and prevalence thresholds, with rows corresponding to number of samples and columns corresponding to detection thresholds. An additional column called "prev" contains the sample threshold for each row.

get_coremat_lineplot

Create line plot from core OTU matrix

Description

Create line plot from core OTU matrix

Usage

get_coremat_lineplot(coremat)

Arguments

coremat Core OTU matrix (data.frame)

Value

Line plot with number of OTUs on the x-axis and detection threshold on the y-axis. Lines connect data points with the same number of samples.
grepTid

grepTid

Greps the tid from the given identifier string

Description

Greps the tid from the given identifier string

Usage

`grepTid(id)`

Arguments

`id`
Given identifier string

Value

`tid string`

Examples

```r
tid <- grepTid("ti|367928|org|Bifidobacterium_adolescentis_ATCC_15703")
```

loadPathoscopeReports

Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, `ret[['Final.Best.Hit.Read.Numbers']]` on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Description

Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, `ret[['Final.Best.Hit.Read.Numbers']]` on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Usage

`loadPathoscopeReports(reportfiles, nrows = NULL)`

Arguments

`reportfiles`
Paths to report files

`nrows`
Option to read first N rows of PathoScope reports
Value

Returns a list where each element is named according to the PathoID column. For example, `ref["Final.Best.Hit.Read.Numbers"]` on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Examples

```r
input_dir <- system.file("example/data", package = "PathoStat")
reportfiles <- list.files(input_dir, pattern = "*-sam-report.tsv",
  full.names = TRUE)
loadPathoscopeReports(reportfiles)
```

loadPstat

Load the R data(.rda) file with pathostat object

Description

Load the R data(.rda) file with pathostat object

Usage

```r
loadPstat(indir = ".", infileName = "pstat_data.rda")
```

Arguments

- **indir** Input Directory of the .rda file
- **infileName** File name of the .rda file

Value

pstat pathostat object (NULL if it does not exist)

Examples

```r
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
```
log2CPM

Description

Compute log2(counts per mil reads) and library size for each sample

Usage

```r
log2CPM(qCounts, lib.size = NULL)
```

Arguments

- `qCounts`: quantile normalized counts
- `lib.size`: default is `colsums(qCounts)`

Value

list containing log2(quantile counts per mil reads) and library sizes

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
lcpm <- log2CPM(countdat)
```

pathostat

Build PathoStat-class object from its phyloseq component.

Description

Build PathoStat-class object from its phyloseq component.

Usage

```r
pathostat(physeq1)
```

Arguments

- `physeq1`: phyloseq object

Value

- `pstat`: The pathostat object generated from the given phyloseq object

Examples

```r
rich_dense_biom = system.file("extdata", "rich_dense_otu_table.biom", package="phyloseq")
phyob <- phyloseq::import_biom(rich_dense_biom)
pstat_biom <- pathostat(phyob)
```
PathoStat-class

PathoStat class to store PathoStat input data including phyloseq object

Description

Contains all currently-supported BatchQC output data classes:

Details

slots:

- `average_count` a single object of class `otu_tableOrNULL`
- `besthit_count` a single object of class `otu_tableOrNULL`
- `highconf_count` a single object of class `otu_tableOrNULL`
- `lowconf_count` a single object of class `otu_tableOrNULL`

plotConfRegion

Compute the confidence region for the given proportions

Description

Compute the confidence region for the given proportions

Usage

```r
plotConfRegion(p1, p2, size = 100, uselogit = TRUE, n = 10000, seed = 1000)
```

Arguments

- `p1` Read counts for first taxon
- `p2` Read counts for second taxon
- `size` Total read counts in the sample
- `uselogit` Use logit transformation to compute confidence region
- `n` Total number of simulation points to generate
- `seed` Seed to use in random simulation

Value

Confidence region plot

Examples

```r
p1 <- 20
p2 <- 25
size <- 200
plotConfRegion(p1, p2, size, uselogit=FALSE)
```
pstat_data

pathostat object generated from example pathoscope report files

Description

This example data consists of 33 samples from a diet study with 11 subjects taking 3 different diets in random order.

Usage

pstat

Format

pathostat object extension of phyloseq-class experiment-level object:

- otu_table OTU table with 41 taxa and 33 samples
- sample_data Sample Data with 33 samples by 18 sample variables
- tax_table Taxonomy Table with 41 taxa by 9 taxonomic ranks
- sample_data Phylogenetic Tree with 41 tips and 40 internal nodes

Value

pathostat object

readPathoscopeData
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Description

Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data.

Usage

readPathoscopeData(input_dir = ".",
pathoreport_file_suffix = "-sam-report.tsv")

Arguments

- input_dir Directory where the tsv files from PathoScope are located
- pathoreport_file_suffix PathoScope report files suffix

Value

List of final guess relative abundance and count data
runPathoStat

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
readPathoscopeData(input_dir=example_data_dir)
```

Description

Statistical Microbiome Analysis on the pathostat input and generates a html report and produces interactive shiny app plots.

Usage

```r
runPathoStat(pstat = NULL, report_file = "PathoStat_report.html", 
             report_dir = ".", report_option_binary = "111111111", 
             view_report = FALSE, interactive = TRUE)
```

Arguments

- `pstat`: phyloseq extension pathostat object
- `report_file`: Output report file name
- `report_dir`: Output report directory path
- `report_option_binary`: 9 bits Binary String representing the plots to display and hide in the report
- `view_report`: when TRUE, opens the report in a browser
- `interactive`: when TRUE, opens the interactive shinyApp

Value

- `outputfile`: The output file with all the statistical plots

Examples

```r
runPathoStat(interactive = FALSE)
```
savePstat

Save the pathostat object to R data(.rda) file

Description
Save the pathostat object to R data(.rda) file

Usage
savePstat(pstat, outdir = ".", outfileName = "pstat_data.rda")

Arguments
pstat pathostat object
outdir Output Directory of the .rda file
outfileName File name of the .rda file

Value
outfile .rda file

Examples
data(pstat_data)
outfile <- savePstat(pstat)

setShinyInput

Setter function to set the shinyInput option

Description
Setter function to set the shinyInput option

Usage
setShinyInput(x)

Arguments
x shinyInput option

Value
shinyInput option

Examples
setShinyInput(NULL)
setShinyInputCombat Setter function to set the shinyInputCombat option

Description
 Setter function to set the shinyInputCombat option

Usage
 setShinyInputCombat(x)

Arguments
 x shinyInputCombat option

Value
 shinyInputCombat option

Examples
 setShinyInputCombat(NULL)

setShinyInputOrig Setter function to set the shinyInputOrig option

Description
 Setter function to set the shinyInputOrig option

Usage
 setShinyInputOrig(x)

Arguments
 x shinyInputOrig option

Value
 shinyInputOrig option

Examples
 setShinyInputOrig(NULL)
Index

Topic datasets
 - pstat_data, 15

callModule, 2, 3
coreOTUModule, 2, 3, 4
coreOTUModuleUI, 3
createPathoStat, 4

findRAfromCount, 5
findTaxonLevel, 5
findTaxonMat, 6
findTaxonomy, 7
formatTaxTable, 7

get_core, 9
get_coremat, 10
get_coremat_lineplot, 10
getShinyInput, 8
getShinyInputCombat, 8
getShinyInputOrig, 9
grepTid, 11

loadPathoscopeReports, 11
loadPstat, 12
log2CPM, 13

PathoStat, 3
pathostat, 13
PathoStat-class, 14
pathostat1 (PathoStat-class), 14
plotConfRegion, 14
pstat (pstat_data), 15
pstat_data, 15

readPathoscopeData, 15
runPathoStat, 16

savePstat, 17
setShinyInput, 17
setShinyInputCombat, 18
setShinyInputOrig, 18

tabPanel, 4
tabsetPanel, 4