Package ‘PathoStat’

January 30, 2017

Type Package
Title PathoStat Statistical Microbiome Analysis Package
Version 1.0.0
Date 2016-10-11
Author Solaiappan Manimaran <manimaran_1975@hotmail.com>, Matthew Bendall <bendall@gwmail.gwu.edu>, Sandro Valenzuela Díaz <sandrolvalenzuela@gmail.com>, Eduardo Castro <castronalli@gmail.com>, Tyler Faits <tfaits@gmail.com>, W. Evan Johnson <wej@bu.edu>
Maintainer Solaiappan Manimaran <manimaran_1975@hotmail.com>
Description The purpose of this package is to perform Statistical Microbiome Analysis on metagenomics results from sequencing data samples. In particular, it supports analyses on the PathoScope generated report files. PathoStat provides various functionalities including Relative Abundance charts, Diversity estimates and plots, tests of Differential Abundance, Time Series visualization, and Core OTU analysis.
URL https://github.com/mani2012/PathoStat
BugReports https://github.com/mani2012/PathoStat/issues
License GPL (>= 2)
Depends R (>= 3.3.1)
Imports MCMCpack, limma, corpcor, rmarkdown, knitr, pander, matrixStats, reshape2, scales, ggplot2, rentrez, BatchQC, DT, gtools, tidyr, plyr, dplyr, ape, phyloseq, shiny, grDevices, stats, methods, XML, graphics, utils, alluvial, BiocStyle
Suggests testthat
biocViews Microbiome, Metagenomics, GraphAndNetwork, Microarray, PatternLogic, PrincipalComponent, Sequencing, Software, Visualization, RNASeq
SystemRequirements pandoc (http://pandoc.org/installing.html) for generating reports from markdown files.
VignetteBuilder knitr
coreOTUModule

Server function for Core OTU Module

Description

This function provides the server logic for the Core OTU tab. This function is not called directly; instead, it should be invoked within the Shiny app’s server function using the callModule function. See http://shiny.rstudio.com/articles/modules.html for information about this design pattern.

Usage

coreOTUModule(input, output, session, pstat)
coreOTUModuleUI

UI function for Core OTU Module

Description

This function creates the UI for the Core OTU tab. The tab panel can be included within a tabsetPanel, thus providing a simple way to add or remove this module from the Shiny app. The first argument, id, is the ID to be used for the namespace and must match the id argument provided to `coreOTUModule`.

Usage

```r
coreOTUModuleUI(id, label = "Core OTUs")
```
createPathoStat

Arguments

id
Namespace for module

label
Tab label

Value

A `tabPanel` that can be included within a `tabsetPanel`.

See Also

coreOTUModule for the server function, `tabPanel` for the UI component returned by this function, or http://shiny.rstudio.com/articles/modules.html for more information about Shiny modules.

Examples

```r
shiny::mainPanel(
  shiny::tabsetPanel(
    coreOTUModuleUI("coreOTUModule")
  )
)
```

createPathoStat Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app

Description

Generates a PathoStat object from the PathoScope reports for further analysis using the interactive shiny app

Usage

```r
createPathoStat(input_dir = ".", sample_data_file = "sample_data.tsv",
                 pathoreport_file_suffix = "-sam-report.tsv")
```

Arguments

input_dir
Directory where the tsv files from PathoScope are located

sample_data_file
Sample Data file with information about samples

pathoreport_file_suffix
PathoScope report files suffix

Value

pstat The pathostat object generated from the given tsv files
findRAfromCount

Examples

e.example_data_dir <- system.file("example/data", package = "PathoStat")
pstat <- createPathoStat(input_dir=example_data_dir,
 sample_data_file="sample_data.tsv")

findRAfromCount(count_otu)

Description

Return the Relative Abundance (RA) data for the given count OTU table

Usage

findRAfromCount(count_otu)

Arguments

count_otu Count OTU table

Value

ra_otu Relative Abundance (RA) OTU table

Examples

data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
ra_otu <- findRAfromCount(phyloseq::otu_table(pstat))

findTaxonLevel

Find the taxonomy for the given taxon id

Description

Find the taxonomy for the given taxon id

Usage

findTaxonLevel(tid)

Arguments

tid Given taxon id

Value

taxonomy LineageEx
Examples

e_example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevel <- findTaxonomy(tids[1])

taxmat <- findTaxonomy(ids[1:5], taxonLevels)

findTaxonMat Find the Taxonomy Information Matrix

Description

Find the Taxonomy Information Matrix

Usage

findTaxonMat(names, taxonLevels)

Arguments

names Row names of the taxonomy matrix

taxonLevels Taxon Levels of all tids

Value

taxmat Taxonomy Information Matrix

Examples

e_example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevels <- findTaxonomy(tids[1:5])
taxmat <- findTaxonMat(ids[1:5], taxonLevels)
findTaxonomy

Find the taxonomy for each taxon ids

Description
Find the taxonomy for each taxon ids

Usage
findTaxonomy(tids)

Arguments

<table>
<thead>
<tr>
<th>tids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given taxonomy ids</td>
</tr>
</tbody>
</table>

Value
taxondata Data with the taxonomy information

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
dat <- datlist$data
ids <- rownames(dat)
tids <- unlist(lapply(ids, FUN = grepTid))
taxonLevels <- findTaxonomy(tids[1:5])
```

formatTaxTable

Format taxonomy table for rendering

Description
Format taxonomy table for rendering

Usage
formatTaxTable(ttable)

Arguments

<table>
<thead>
<tr>
<th>ttable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxonomy table</td>
</tr>
</tbody>
</table>

Value
Formatted table suitable for rendering with. DT::renderDataTable
getShinyInput

Description

Getter function to get the shinyInput option

Usage

getShinyInput()

Value

shinyInput option

Examples

getShinyInput()

getShinyInputCombat

Description

Getter function to get the shinyInputCombat option

Usage

getShinyInputCombat()

Value

shinyInputCombat option

Examples

getShinyInputCombat()
getShinyInputOrig

Description

Getter function to get the shinyInputOrig option

Usage

getShinyInputOrig()

Value

shinyInputOrig option

Examples

getShinyInputOrig()

get_core

Description

Select rows of OTU matrix that meet given detection and prevalence thresholds

Usage

get_core(pstat, detection, prevalence)

Arguments

- **pstat**: PathoStat object
- **detection**: An integer specifying the minimum value considered to be "detected"
- **prevalence**: An integer specifying the minimum number of samples that must be detected

Value

Subsetted PathoStat object
get_coremat

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Description

Create core OTU matrix containing number of OTUs detected at varying detection and prevalence thresholds.

Usage

get_coremat(pstat)

Arguments

pstat PathoStat object

Value

Data frame containing number of OTUs at varying detection and prevalence thresholds, with rows corresponding to number of samples and columns corresponding to detection thresholds. An additional column called "prev" contains the sample threshold for each row.

get_coremat_lineplot

Create line plot from core OTU matrix

Description

Create line plot from core OTU matrix

Usage

get_coremat_lineplot(coremat)

Arguments

coremat Core OTU matrix (data.frame)

Value

Line plot with number of OTUs on the x-axis and detection threshold on the y-axis. Lines connect data points with the same number of samples.
grepTid

Greps the tid from the given identifier string

Description
Greps the tid from the given identifier string

Usage
grepTid(id)

Arguments
id Given identifier string

Value
tid string

Examples
tid <- grepTid("ti|367928|org|Bifidobacterium_adolescentis_ATCC_15703")

loadPathoscopeReports
Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, ret[["Final.Best.Hit.Read.Numbers"]]] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Description
Loads all data from a set of PathoID reports. For each column in the PathoID report, construct a matrix where the rows are genomes and the columns are samples. Returns a list where each element is named according to the PathoID column. For example, ret[["Final.Best.Hit.Read.Numbers"]]] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Usage
loadPathoscopeReports(reportfiles, nrows = NULL)

Arguments
reportfiles Paths to report files
nrows Option to read first N rows of PathoScope reports
Value

Returns a list where each element is named according to the PathoID column. For example, ret[["Final.Best.Hit.Read.Numbers"]] on the result of this function will get you the final count matrix. Also includes elements "total_reads" and "total_genomes" from the first line of the PathoID report.

Examples

```r
input_dir <- system.file("example/data", package = "PathoStat")
reportfiles <- list.files(input_dir, pattern = "*-sam-report.tsv",
                         full.names = TRUE)
loadPathoscopeReports(reportfiles)
```

loadPstat

Load the R data(.rda) file with pathostat object

Description

Load the R data(.rda) file with pathostat object

Usage

```r
loadPstat(indir = ".", infileName = "pstat_data.rda")
```

Arguments

- **indir**: Input Directory of the .rda file
- **infileName**: File name of the .rda file

Value

pstat pathostat object (NULL if it does not exist)

Examples

```r
data_dir <- system.file("data", package = "PathoStat")
infileName <- "pstat_data.rda"
pstat <- loadPstat(data_dir, infileName)
```
log2CPM

Description

Compute log2(counts per mil reads) and library size for each sample

Usage

log2CPM(qcounts, lib.size = NULL)

Arguments

- qcounts: quantile normalized counts
- lib.size: default is colsums(qcounts)

Value

list containing log2(quantile counts per mil reads) and library sizes

Examples

```r
eexample_data_dir <- system.file("example/data", package = "PathoStat")
pathoreport_file_suffix <- "-sam-report.tsv"
datlist <- readPathoscopeData(example_data_dir, pathoreport_file_suffix)
countdat <- datlist$countdata
lcpm <- log2CPM(countdat)
```

pathostat

Build PathoStat-class object from its phyloseq component.

Description

Build PathoStat-class object from its phyloseq component.

Usage

pathostat(physeq1)

Arguments

- physeq1: phyloseq object

Value

pstat: The pathostat object generated from the given phyloseq object

Examples

```r
rich_dense_biom = system.file("extdata", "rich_dense_otu_table.biom", package="phyloseq")
phyob <- phyloseq::import_biom(rich_dense_biom)
pstat_biom <- pathostat(phyob)
```
PathoStat-class

PathoStat class to store PathoStat input data including phyloseq object

Description

Contains all currently-supported BatchQC output data classes:

Details

slots:

average_count a single object of class otu_tableOrNULL
besthit_count a single object of class otu_tableOrNULL
highconf_count a single object of class otu_tableOrNULL
lowconf_count a single object of class otu_tableOrNULL

plotConfRegion

Compute the confidence region for the given proportions

Description

Compute the confidence region for the given proportions

Usage

plotConfRegion(p1, p2, size = 100, uselogit = TRUE, n = 10000, seed = 1000)

Arguments

p1 Read counts for first taxon
p2 Read counts for second taxon
size Total read counts in the sample
uselogit Use logit transformation to compute confidence region
n Total number of simulation points to generate
seed Seed to use in random simulation

Value

Confidence region plot

Examples

p1 <- 20
p2 <- 25
size <- 200
plotConfRegion(p1, p2, size, uselogit=FALSE)
Description
This example data consists of 33 samples from a diet study with 11 subjects taking 3 different diets in random order

Usage
pstat

Format
pathostat object extension of phyloseq-class experiment-level object:

- **otu_table** OTU table with 41 taxa and 33 samples
- **sample_data** Sample Data with 33 samples by 18 sample variables
- **tax_table** Taxonomy Table with 41 taxa by 9 taxonomic ranks
- **sample_data** Phylogenetic Tree with 41 tips and 40 internal nodes

Value
pathostat object

readPathoscopeData

Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Description
Reads the data from PathoScope reports and returns a list of final guess relative abundance and count data

Usage
readPathoscopeData(input_dir = ".",

pathoreport_file_suffix = "-sam-report.tsv"

Arguments

- **input_dir** Directory where the tsv files from PathoScope are located
- **pathoreport_file_suffix** PathoScope report files suffix

Value
List of final guess relative abundance and count data
runPathoStat

Examples

```r
example_data_dir <- system.file("example/data", package = "PathoStat")
readPathoscopeData(input_dir=example_data_dir)
```

Description

Statistical Microbiome Analysis on the pathostat input and generates a html report and produces interactive shiny app plots

Usage

```r
runPathoStat(pstat = NULL, report_file = "PathoStat_report.html",
             report_dir = ".", report_option_binary = "111111111",
             view_report = FALSE, interactive = TRUE)
```

Arguments

- `pstat`: phyloseq extension pathostat object
- `report_file`: Output report file name
- `report_dir`: Output report directory path
- `report_option_binary`: 9 bits Binary String representing the plots to display and hide in the report
- `view_report`: when TRUE, opens the report in a browser
- `interactive`: when TRUE, opens the interactive shinyApp

Value

- `outputfile`: The output file with all the statistical plots

Examples

```r
runPathoStat(interactive = FALSE)
```
savePstat

Save the pathostat object to R data(.rda) file

Description
Save the pathostat object to R data(.rda) file

Usage
savePstat(pstat, outdir = ".", outfileName = "pstat_data.rda")

Arguments
- pstat: pathostat object
- outdir: Output Directory of the .rda file
- outfileName: File name of the .rda file

Value
outfile .rda file

Examples
data(pstat_data)
outfile <- savePstat(pstat)

setShinyInput

Setter function to set the shinyInput option

Description
Setter function to set the shinyInput option

Usage
setShinyInput(x)

Arguments
- x: shinyInput option

Value
shinyInput option

Examples
setShinyInput(NULL)
setShinyInputCombat
Setter function to set the shinyInputCombat option

Description

Setter function to set the shinyInputCombat option

Usage

```r
setShinyInputCombat(x)
```

Arguments

- `x`
 shinyInputCombat option

Value

shinyInputCombat option

Examples

```r
setShinyInputCombat(NULL)
```

setShinyInputOrig
Setter function to set the shinyInputOrig option

Description

Setter function to set the shinyInputOrig option

Usage

```r
setShinyInputOrig(x)
```

Arguments

- `x`
 shinyInputOrig option

Value

shinyInputOrig option

Examples

```r
setShinyInputOrig(NULL)
```
Index

*Topic datasets
 pstat_data, 15

callModule, 2, 3
coreOTUModule, 2, 3, 4
coreOTUModuleII, 3, 3
createPathoStat, 4

findRAfromCount, 5
findTaxonLevel, 5
findTaxonMat, 6
findTaxonomy, 7
formatTaxTable, 7

get_core, 9
get_coremat, 10
get_coremat_lineplot, 10
getShinyInput, 8
getShinyInputCombat, 8
getShinyInputOrig, 9
grepTid, 11

loadPathoscopeReports, 11
loadPstat, 12
log2CPM, 13

PathoStat, 3
pathostat, 13
PathoStat-class, 14
pathostat1 (PathoStat-class), 14
plotConfRegion, 14
pstat (pstat_data), 15
pstat_data, 15

readPathoscopeData, 15
runPathoStat, 16

savePstat, 17
setShinyInput, 17
setShinyInputCombat, 18
setShinyInputOrig, 18

tabPanel, 4
tabsetPanel, 4