Package ‘Polyfit’
March 23, 2017

Type Package
Title Add-on to DESeq to improve p-values and q-values
Version 1.8.0
Date 2014-08-06
Author Conrad Burden
biocViews DifferentialExpression, Sequencing, RNASeq, GeneExpression
Maintainer Conrad Burden <conrad.burden@anu.edu.au>
 Depends DESeq
Suggests BiocStyle
Description Polyfit is an add-on to the packages DESeq which ensures the p-value distribution is uniform over the interval [0, 1] for data satisfying the null hypothesis of no differential expression, and uses an adapted Storey-Tibshiran method to calculate q-values.
License GPL (>= 3)
NeedsCompilation no

R topics documented:

Polyfit-package .. 1
levelPValues .. 3
ptNbinomTest .. 4
twoSidedPValueFromDiscrete 5

Index

Polyfit-package Polyfit add-on to DESeq

Description

implementation the Polyfit add-on to DESeq described in the paper "Improved error estimates for the analysis of differential expression from RNA-seq data"
Details

Package: Polyfit
Type: Package
Version: 0.99.3
Date: 2014-08-06
License: GPL(>=3)

Polyfit is an add-on to the negative-binomial based packages DESeq for two-class detection of differential expression which ensures the p-value distribution is uniform over the interval [0, 1] for data satisfying the null hypothesis of no differential expression. The first component is the function `pfNbinomTest` which replaces the function `nbinomTest` in DESeq. Its purpose is to smooth point singularities, particularly one at \(p = 1 \), in the p-value distribution caused by calculating calculating p-values from a discrete distribution. The output from this function should then be passed to the second component, the function `link{levelPValues}`. Its purpose is to apply a variant of the Storey-Tibshirani procedure to shift the p-values so that those corresponding to the null hypothesis have a uniform distribution, and to calculate corresponding q-values (or 'adjusted p-values') for controlling errors via the false discovery rate.

Author(s)

Conrad Burden

Maintainer: conrad.burden@anu.edu.au

References

Examples

```r
# Example using DESeq
cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds )
nbTPolyfit <- pfNbinomTest( cds, "A", "B" )

1P <- levelPValues(nbTPolyfit$pval)
pvalTab <- cbind(origPval=nbTPolyfit$pval, correctedPval=1P$pValueCorr, qval=1P$qValueCorr)
cat("n Original and corrected P-values from DESeq \n")
head(pvalTab)
```
levelPValues

Description

Function to level out a P-value spectrum generated by the Polyfit extension of DESeq by fitting
a quadratic function to the right hand portion of the spectrum, produce ‘corrected’ p-values and
q-values using an adapted version of the Storey-Tibshirani procedure

Usage

levelPValues(oldPvals, plot = FALSE)

Arguments

oldPvals an array of p-values produced by the Polyfit replacement of the DESeq function
 pfNbinomTest() or the Polyfit replacement of the edgeR function pfExactTest()
plot TRUE to plot original and corrected pvalue spectra; FALSE not to plot

Details

levelPValues should only be used with P-values generated by the Polyfit function pfNbinomTest,
and not with P-values generated by nbinomTest.

Value

List containing

pi0estimate an estimate of the proportion of genes not differentially expressed
lambdaOptimal the point in the p-value spectrum past which a quadratic is fitted
pValueCorr p-values calculated from the levelled spectrum
qValueCorr q-values calculated from the levelled spectrum
qValueCorrBH q-values calculated from pValueCorr using Benjamini-Hochberg

Author(s)

Conrad Burden

References

Examples

cds <- makeExampleCountDataSet()
cds <- estimateSizeFactors(cds)
cds <- estimateDispersions(cds)
nbTPolyfit <- pfNbinomTest(cds, "A", "B")
lp <- levelPValues(nbTPolyfit$pval, plot=TRUE)
pvalTab <- cbind(origPval=nbTPolyfit$pval, correctedPval=lp$pValueCorr)
cat("\n Original and corrected P-values from DESeq \n")
head(pvalTab)
The Polyfit extension to the DESeq functions \textit{nbinomTest()} and \textit{nbinomTestForMatrices()}

\textbf{Description}

Polyfit extensions to the DESeq functions \textit{nbinomTest} and \textit{nbinomTestForMatrices} which test for differences between the base means of two conditions (i.e., for differential expression in the case of RNA-Seq).

\textbf{Usage}

\begin{verbatim}
pfNbinomTest(cds, condA, condB, pvals_only = FALSE, eps = NULL)
pfNbinomTestForMatrices(countsA, countsB, sizeFactorsA, sizeFactorsB, dispsA, dispsB)
\end{verbatim}

\textbf{Arguments}

- \texttt{cds} a CountDataSet with size factors and raw variance functions
- \texttt{condA} one of the conditions in \texttt{`cds'}
- \texttt{condB} another one of the conditions in \texttt{`cds'}
- \texttt{pvals_only} return only a vector of (unadjusted) p values instead of the data frame described below
- \texttt{eps} This argument is no longer used. Do not use it
- \texttt{countsA} A matrix of counts, where each column is a replicate
- \texttt{countsB} Another matrix of counts, where each column is a replicate
- \texttt{sizeFactorsA} Size factors for the columns of the matrix \texttt{`countsA'}
- \texttt{sizeFactorsB} Size factors for the columns of the matrix \texttt{`countsB'}
- \texttt{dispsA} The dispersions for \texttt{`countsA'}, a vector with one value per gene
- \texttt{dispsB} The same for \texttt{`countsB'}

\textbf{Details}

These functions have the same behaviour as the DESeq functions \textit{nbinomTest} and \textit{nbinomTestForMatrices}, except that the ‘flagpole’ in the P-value histogram, particularly at \(p = 1 \) is redistributed using the function \textit{twoSidedPValueFromDiscrete}.

\textbf{Value}

\texttt{pfNbinomTest} gives a data frame with the following columns:

- \texttt{id} The ID of the observable, taken from the row names of the counts slots.
- \texttt{baseMean} The base mean (i.e., mean of the counts divided by the size factors) for the counts for both conditions
- \texttt{baseMeanA} The base mean (i.e., mean of the counts divided by the size factors) for the counts for condition A
- \texttt{baseMeanB} The base mean for condition B
- \texttt{foldChange} The ratio meanB/meanA
twoSidedPValueFromDiscrete

Two sided P-value from discrete distribution

description

Function to calculate a 2-sided p-value of an observation \(xobs \) for a finite discrete distribution

\[
Prob(X = xobs) = probs[xobs + 1]
\]

over the range \(xobs \) in \((0, 1, ..., xmax)\) by “squaring off” the distribution to a continuous distribution

usage

twoSidedPValueFromDiscrete(probs, xobs)
Arguments

probs an array containing the probabilities that X takes the values 0, 1, ..., x_{max}

xobs a single observed value of X

Details

Note that the returned 2-sided p-value contains a random component, i.e. a given set of input parameters returns a different result each run.

Value

A real valued randomised p-value between 0 and 1. If x_{obs} is generated with randomly with probability $\text{probs}[x_{\text{obs}} + 1]$ the returned value will be uniformly distributed on the interval [0, 1].

Author(s)

Conrad Burden

Examples

```r
pr <- dbinom(0:5, size=5, prob=0.4)
xSample <- rbinom(10000, size=5, prob=0.4)
pvalues <- c()
for(x in xSample){
  pvalues <- c(pvalues, twoSidedPValueFromDiscrete(pr, x))
}
hist(pvalues)
```
Index

*Topic \textasciitilde kwd1
 twoSidedPValueFromDiscrete, 5

*Topic \textasciitilde kwd2
 twoSidedPValueFromDiscrete, 5

*Topic package
 Polyfit-package, 1

levelPValues, 3

nbinomTest, 2–4
nbinomTestForMatrices, 4

pfNbinomTest, 2, 3, 4
pfNbinomTestForMatrices (pfNbinomTest), 4

Polyfit (Polyfit-package), 1
Polyfit-package, 1

twoSidedPValueFromDiscrete, 4, 5