Package ‘RBM’

April 26, 2017

biocViews Microarray, DifferentialExpression
Version 1.8.0
Date 2014-10-02
Title RBM: a R package for microarray and RNA-Seq data analysis
Author Dongmei Li and Chin-Yuan Liang
Maintainer Dongmei Li <Dongmei_Li@urmc.rochester.edu>
Depends R (>= 3.2.0), limma, marray
Description Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression in Two-Color Microarrays and RNA-Seq data sets.
License GPL (>= 2)
NeedsCompilation no

R topics documented:

RBM-package ... 1
ovarian_cancer_methylation ... 3
RBM_F ... 3
RBM_T ... 5

Index 7

RBM-package

RBM: a package for microarray and RNA-Seq data analysis

Description

Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression or Identifying differentially methylated loci in Two-Color Microarrays and RNA-Seq data sets. Significant features selected through RBM_T or RBM_F functions could be further used as input for pathway analysis or experimental validations.
Details

Package: RBM
Type: Package
Version: 0.99.0
Date: 2014-10-05
Depends: R (>= 3.0.0), limma, marray
License: GPL (>= 2)

Author(s)

Dongmei Li and Chin-Yuan Liang Maintainer: Dongmei Li <dongmeiliur@gmail.com> and Chin-Yuan Liang <liang.tony@gmail.com>

References

See Also

The `RBM_T` and `RBM_F` functions defined in this package. The limma and marray packages.

Examples

```r
normal_data <- matrix(rnorm(200*6), 200, 6)
mydesign <- c(0,0,0,1,1,1)
norm_result <- RBM_T(normal_data,mydesign,50,0.05)

unif_data <- matrix(runif(200*7, 0.10, 0.95), 200, 7)
mydesign2 <- c(0,0,0,1,1,1,1)
unif_result <- RBM_T(unif_data,mydesign2,100,0.05)

normdata_F <- matrix(rnorm(200*9, 0, 2), 200, 9)
mydesign_F <- c(0, 0, 0, 1, 1, 1, 2, 2, 2)
aContrast <- c("X1-X0", "X2-X1", "X2-X0")
normresult_F <- RBM_F(normdata_F, mydesign_F, aContrast, 100, 0.05)

unifdata_F <- matrix(runif(200*18, 0.15, 0.98), 200, 18)
mydesign2_F <- c(rep(0, 6), rep(1, 6), rep(2, 6))
aContrast <- c("X1-X0", "X2-X1", "X2-X0")
unifresult_F <- RBM_F(unifdata_F, mydesign2_F, aContrast, 100, 0.05)
```
ovarian_cancer_methylation

ovarian cancer methylation example from United Kingdom Ovarian Cancer Population Study (UKOPS)

Description

This data set contains DNA methylation level from 1000 DNA methylation loci in 8 randomly selected women with 4 ovarian cancer cases (pre-treatment) and 4 age-matched healthy controls.

Usage

`ovarian_cancer_methylation`

Format

A matrix containing 1000 rows and 8 columns with each row denoting a methylation locus and each column denoting a subject.

Value

The ovarian cancer methylation example data set contains the following information:

<table>
<thead>
<tr>
<th>IlmnID</th>
<th>Name of DNA methylation loci</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>Ovarian cancer patients</td>
</tr>
<tr>
<td>control</td>
<td>Healthy controls</td>
</tr>
</tbody>
</table>

Source

NCBI GEO website with access number GSE19711

References

RBM_F

RBM_F: a R function for microarray and RNA-Seq data analysis for designs with more than two groups

Description

Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression in Two-Color Microarrays and RNA-Seq data sets for designs with more than two groups.

Usage

`RBM_F(aData, vec_trt, aContrast, repetition, alpha)`
Arguments

aData: The input data set with rows and columns denoting features and samples, respectively.
vec_trt: A vector for group notation such as 1s denote treatment group and 0s denote control group.
aContrast: A vector for contrast. For example: if we want to compare group 1 with group 0, group 2 with group 1, and group 2 with group 0, then the contrast vector will be ("X1-X0", "X2-X1", "X2-X0")
repetition: The number of resamplings used in the analysis. You could use 1000 or higher number.
alpha: The significance level.

Details

Combine resampling with empirical Bayes approach for Microarrays and RNA-Seq data analysis.

Value

RBM_F produces a named list with the following components:

ordfit_t: original t statistics.
ordfit_pvalue: original p-values from lmFit and eBayes.
ordfit_beta0: estimated mean for the control group.
ordfit_beta1: estimated mean difference between treatment and control group.
permutation_p: calculated p-values from permutation method based on resampled test statistics.
bootstrap_p: calculated p-values from bootstrap method based on resampled test statistics.

Author(s)

Dongmei Li and Chin-Yuan Liang

References

See Also

The RBM_T function defined in this package. The limma and marray packages.

Examples

normdata_F <- matrix(rnorm(200*9, 0, 2), 200, 9)
mydesign_new <- c(0, 0, 0, 1, 1, 1, 2, 2, 2)
aContrast <- c("X1-X0", "X2-X1", "X2-X0")
normresult_F <- RBM_F(normdata_F, mydesign_new, aContrast, 100, 0.05)

unifdata_F <- matrix(runif(200*18, 0.15, 0.98), 200, 18)
mydesign2_new <- c(rep(0, 6), rep(1, 6), rep(2, 6))
aContrast <- c("X1-X0", "X2-X1", "X2-X0")
unifresult_F <- RBM_F(unifdata_F, mydesign2_new, aContrast, 100, 0.05)
RBM_T

RBM_T: a R function for microarray and RNA-Seq data analysis for two-group comparisons

Description

Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression or Identify differentially methylated loci in Two-Color Microarrays and RNA-Seq data sets.

Usage

```r
RBM_T(aData, vec_trt, repetition, alpha)
```

Arguments

- `aData`: The input data set with rows and columns denoting features and samples, respectively
- `vec_trt`: A vector for group notation such as 1s denote treatment group and 0s denote control group
- `repetition`: The number of resamplings used in the analysis. You could use 1000 or higher number
- `alpha`: The significance level

Details

Combine resampling with empirical Bayes approach for Microarrays and RNA-Seq data analysis.

Value

RBM_T produces a named list with the following components:

- `ordfit_t`: original t statistics
- `ordfit_pvalue`: original p-values from lmFit and eBayes
- `ordfit_beta0`: estimated mean for the control group
- `ordfit_beta1`: estimated mean difference between treatment and control group
- `permutation_p`: calculated p-values from permutation method based on resampled test statistics
- `bootstrap_p`: calculated p-values from bootstrap method based on resampled test statistics

Author(s)

Dongmei Li and Chin-Yuan Liang

References

See Also

The `RBM_F` function defined in this package. The limma and marray packages.
Examples

```r
normal_data <- matrix(rnorm(200*6), 200, 6)
mydesign <- c(0,0,0,1,1,1)
norm_result <- RBM_T(normal_data,mydesign,50,0.05)

unif_data <- matrix(runif(200*7, 0.10, 0.95), 200, 7)
mydesign2 <- c(0,0,0,1,1,1,1)
unif_result <- RBM_T(unif_data,mydesign2,100,0.05)
```
Index

*Topic **Microarray and RNA-Seq**
 RBM_F, 3
 RBM_T, 5

*Topic **Resampling, Empirical Bayes, Microarray, RNA-Seq**
 RBM-package, 1

*Topic **Resampling**
 RBM_F, 3
 RBM_T, 5

*Topic **datasets**
 ovarian_cancer_methylation, 3

ovarian_cancer_methylation, 3

RBM (RBM-package), 1
RBM-package, 1
RBM_F, 2, 3, 5
RBM_T, 2, 4, 5