Package ‘RTCGA’

March 29, 2017

Title The Cancer Genome Atlas Data Integration
Version 1.4.0
Date 2016-09-29
Author Marcin Kosinski <m.p.kosinski@gmail.com>, Przemyslaw Biecek <przemyslaw.biecek@gmail.com>
Maintainer Marcin Kosinski <m.p.kosinski@gmail.com>

Description The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an beneficial influence on impact on development of science and improvement of patients' treatment. Furthermore, RTCGA package transforms TCGA data to tidy form which is convenient to use.

BugReports https://github.com/RTCGA/RTCGA/issues

URL https://rtcga.github.io/RTCGA

License GPL-2

LazyLoad yes

LazyData yes

Depends R (>= 3.3.0)

Imports XML, assertthat, stringi, rvest, data.table, xml2, dplyr, purrr, survival, survminer, ggplot2, ggthemes, viridis, knitr, scales

Suggests devtools, testthat, pander, Biobase, GenomicRanges, IRanges, S4Vectors, RTCGA.rnaseq, RTCGA.clinical, RTCGA.mutations, RTCGA.RPPA, RTCGA.mRNA, RTCGA.miRNASeq, RTCGA.methylation, RTCGA.CNV, RTCGA.PANCAN12, magrittr, tidyR

Repository Bioconductor

biocViews Software, DataImport, DataRepresentation, Preprocessing, RNASeq
RTCGA-package

VignetteBuilder knitr
NeedsCompilation no
RoxygenNote 5.0.1

R topics documented:

RTCGA-package ... 2
boxplotTCGA .. 3
checkTCGA ... 5
convertTCGA ... 7
datasetsTCGA .. 9
downloadTCGA .. 10
expressionsTCGA ... 12
heatmapTCGA ... 14
infoTCGA .. 16
installTCGA ... 17
kmTCGA .. 18
mutationsTCGA .. 20
pcaTCGA .. 21
readTCGA .. 22
survivalTCGA .. 28
theme_RTCGA .. 30

Index

32

The Cancer Genome Atlas data integration

Description

The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes. The key is to understand genomics to improve cancer care. RTCGA package offers download and integration of the variety and volume of TCGA data using patient barcode key, what enables easier data possession. This may have an beneficial influence on impact on development of science and improvement of patients’ treatment. Furthermore, RTCGA package transforms TCGA data to form which is convenient to use in R statistical package. Those data transformations can be a part of statistical analysis pipeline which can be more reproducible with RTCGA.

Details

For more detailed information visit RTCGA wiki on Github.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
boxplotTCGA

Author(s)

Marcin Kosinski [aut, cre] < m.p.kosinski@gmail.com >
Przemyslaw Biecek [aut] < przemyslaw.biecek@gmail.com >
Witold Chodor [ctb] <witoldchodor@gmail.com>

See Also

RTCGA website http://rtcga.github.io/RTCGA.
Other RTCGA: boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

Not run:
browseVignettes('RTCGA')

End(Not run)

boxplotTCGA

Create Boxplots for TCGA Datasets

Description

Function creates boxplots (geom_boxplot) for TCGA Datasets.

Usage

boxplotTCGA(data, x, y, fill = x, coord.flip = TRUE, facet.names = NULL, ylab = y, xlab = x, legend.title = xlab, legend = "top", ...)

Arguments

data A data.frame from TCGA study containing variables to be plotted.
x A character name of variable containing groups.
y A character name of continous variable to be plotted.
fill A character names of fill variable. By default, the same as x.
coord.flip Whether to flip coordinates.
facet.names A character of length maximum 2 containing names of variables to produce facets. See examples.
ylab The name of y label. Remember about coord.flip.
xlab The name of x label. Remember about coord.flip.
legend.title A character with legend’s title.
legend A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none".
...

Further arguments passed to geom_boxplot.
Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

Other RTCGA: RTCGA-package, checkTCGA, convertTCGA, datasetsTCGA, downlloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

library(RTCGA.rnaseq)
perfrom plot
library(dplyr)
expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq,
extract.cols = "MET|4233") %>%
rename(cohort = dataset,
MET = "MET|4233") %>%
cancer samples
filter(substr(bcr_patient_barcode, 14, 15) == "01") -> ACC_BLCA_BRCA_OV.rnaseq

boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "MET")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "cohort", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), max)", "log1p(MET)")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts")
boxplotTCGA(ACC_BLCA_BRCA_OV.rnaseq, "reorder(cohort,log1p(MET), median)", "log1p(MET)",
xlab = "Cohort Type", ylab = "Logarithm of MET", legend.title = "Cohorts", legend = "bottom")

facet example
library(RTCGA.mutations)
library(dplyr)
mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) %>%
filter(Hugo_Symbol == "TP53") %>%
filter(substr(bcr_patient_barcode, 14, 15) == "01") %>%
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> ACC_BLCA_BRCA_OV.mutations

mutationsTCGA(BRCA.mutations, OV.mutations, ACC.mutations, BLCA.mutations) -> ACC_BLCA_BRCA_OV.mutations_all

ACC_BLCA_BRCA_OV.rnaseq %>%
mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 15)) %>%
filter(bcr_patient_barcode %in%
substr(ACC_BLCA_BRCA_OV.mutations_all$bcr_patient_barcode, 1, 15)) %>%
took patients for which we had any mutation information
so avoided patients without any information about mutations
checkTCGA

Information about datasets from TCGA project

Description
The checkTCGA function lets' to check

- **DataSets**: TCGA datasets' names for current release date and cohort.
- **Dates**: TCGA datasets' dates of release.

Usage

```r
checkTCGA(what, cancerType, date = NULL)
```

Arguments

- **what**: One of **DataSets** or **Dates**.
- **cancerType**: A character of length 1 containing abbreviation (Cohort code - http://gdac.broadinstitute.org/) of types of cancers to check for.
- **date**: A NULL or character specifying from which date informations should be checked. By default (date = NULL) the newest available date is used. All available dates can be checked on http://gdac.broadinstitute.org/runs/ or by using checkTCGA('Dates') function. Required format 'YYYY-MM-DD'.

Details

- If **what='DataSets'** enables to check TCGA datasets' names for current release date and cohort.
- If **what='Dates'** enables to check dates of TCGA datasets' releases.
checkTCGA

Value

- If `what='DataSets'` a data.frame of available datasets’ names (to pass to the `downloadTCGA` function) and sizes.
- If `what='Dates'` a vector of available dates to pass to the `downloadTCGA` function.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

[RTCGA](http://rtcga.github.io/RTCGA/Download.html).

Other RTCGA: `RTCGA-package, boxplotTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA`

Examples

```
# names for current release date and cohort
checkTCGA('DataSets', 'BRCA')
## Not run:
checkTCGA('DataSets', 'OV', tail(checkTCGA('Dates'))[3])
#checkTCGA('DataSets', 'OV', checkTCGA('Dates')[5])  # error

## End(Not run)
# dates of TCGA datasets' releases.
checkTCGA('Dates')

## Not run:
# TCGA datasets' names availability for # current release date and cancer type.
releaseDate <- '2015-08-21'
cancerTypes <- c('OV', 'BRCA')
cancerTypes %>% sapply(function(element){
  grep(x = checkTCGA('DataSets', element, releaseDate)[, 1],
    pattern = 'humanmethylation450', value = TRUE) %>%
  as.vector()
})

## End(Not run)
```
convertTCGA

Convert data from RTCGA family to Bioconductor classes

Description

Functions use [Biobase](http://bioconductor.org/packages/release/bioc/html/Biobase.html) package to transform data from packages from RTCGA data family to Bioconductor classes (RTCGA.rnaseq, RTCGA.RPPA, RTCGA.PANCAN12, mRNA, RTCGA.methylation) to ExpressionSet and RTCGA.CNV to GRanges. For RTCGA.PANCAN12 there is sense to convert expression.cb1, expression.cb2, cnv.cb.

Usage

```r
callTCGA(dataSet, dataType = "expression")
callPANCAN12(dataSet)
```

Arguments

- **dataSet**: A data.frame to be converted to ExpressionSet or GRanges.
- **dataType**: One of expression or CNV (for RTCGA.CNV datasets).

Details

This functionality is motivated by that we were asked to offer the data in Bioconductor-friendly classes because many users already have their data in one of the core infrastructure classes. Data of the same type in compatible containers promotes interoperability and makes it easy to combine and organize.

Bioconductor classes were designed to capitalize on the biological structure of the data. If data have a range-based component it’s natural, for Bioconductor users, to store and access these as a GRanges where they can extract position, strand etc. in the same way. Similarly for ExpressionSet. This class holds expression data along with experiment metadata and comes with built in accessors to extract and manipulate data. The idea is to offer a common API to the data; extracting the start position in a GRanges is always start(). With a data.frame it is different each time (unless select() is implemented) as the column names and organization of data can be different.

AnnotationHub and the soon to come ExperimentHub will host many different types of data. A primary goal moving forward is to offer similar data in a consistent format. For example, CNV data in AnnotationHub is offered as a GRanges and as more CNV are added we will ask that they too are packaged as GRanges. The aim is that streamlined data on the back-end will make for a more intuitive experience on the front-end.

Value

Functions return an ExpressionSet or a GRanges for RTCGA.CNV.

Biobase and GenomicRanges

This function use tools from the fantastic Biobase (and GenomicRanges for CNV) package, so you’ll need to make sure to have it installed.
Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

########
Expression data
########
library(RTCGA.rnaseq)
library(Biobase)
convertTCGA(BRCA.rnaseq) -> BRCA.rnaseq_ExpressionSet
Not run:
library(RTCGA.PANCAN12)
convertPANCAN12(expression.cb1) -> PANCAN12_ExpressionSet
library(RTCGA.RPPA)
convertTCGA(BRCA.RPPA) -> BRCA.RPPA_ExpressionSet
library(RTCGA.methylation)
convertTCGA(BRCA.methylation) -> BRCA.methylation_ExpressionSet
library(RTCGA.mRNA)
convertTCGA(BRCA.mRNA) -> BRCA.mRNA_ExpressionSet

########
CNV
########
library(RTCGA.CNV)
library(GRanges)
convertTCGA(BRCA.CNV, "CNV") -> BRCA.CNV_GRanges

End(Not run)
Description

Snapshots of the clinical, mutations, CNVs, rnaseq, RPPA, mRNA, miRNASeq and methylation datasets from the 2015-11-01 release date (check all dates of release with checkTCGA('Dates')) are included in the RTCGA.data family (factory) that contains 9 packages:

- RTCGA.rnaseq rnaseq
- RTCGA.clinical clinical
- RTCGA.mutations mutations
- RTCGA.CNV CNV
- RTCGA.RPPA RPPA
- RTCGA.mRNA mRNA
- RTCGA.miRNASeq miRNASeq
- RTCGA.methylation methylation
- RTCGA.PANCAN12 (not from TCGA)

Details

For more detailed information visit RTCGA.data website https://rtcga.github.io/RTCGA. One can install all data packages with installTCGA.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski [aut, cre] < m.p.kosinski@gmail.com >
Przemyslaw Biecek [aut] < przemyslaw.biecek@gmail.com >
Witold Chodor [aut] < witoldchodor@gmail.com >

See Also

RTCGA website http://rtcga.github.io/RTCGA.

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA
Examples

installation of packages containing snapshots
of TCGA project's datasets

Not run:
RTCGA GitHub development newest versions
library(RTCGA)
?installTCGA

Bioconductor releases
source('http://bioconductor.org/biocLite.R')
biocLite(RTCGA.clinical)
biocLite(RTCGA.mutations)
biocLite(RTCGA.rnaseq)
biocLite(RTCGA.CNV)
biocLite(RTCGA.RPPA)
biocLite(RTCGA.mRNA)
biocLite(RTCGA.miRNASeq)
biocLite(RTCGA.methylation)

use cases and examples + more data info
browseVignettes('RTCGA')

End(Not run)

downloadTCGA Download TCGA data

Description

Enables to download TCGA data from specified dates of releases of concrete Cohorts of cancer types. Pass a name of required dataset to the dataSet parameter. By default the Merged Clinical dataset is downloaded (value dataSet = "Merge_Clinical.Level_1") from the newest available date of the release.

Usage

downloadTCGA(cancerTypes, dataSet = "Merge_Clinical.Level_1", destDir, date = NULL, untarFile = TRUE, removeTar = TRUE, allDataSets = FALSE)

Arguments

cancerTypes A character vector containing abbreviations (Cohort code) of types of cancers to download from http://gdac.broadinstitute.org/. For easy access from R check details below.

dataSet A part of the name of dataSet to be downloaded from http://gdac.broadinstitute.org/runs/. By default the Merged Clinical dataSet is downloaded (value dataSet = "Merge_Clinical.Level_1"). Available datasets’ names can be checked using checkTCGA function.
downloadTCGA

destDir A character specifying a directory into which dataSetS will be downloaded.

date A NULL or character specifying from which date dataSetS should be downloaded. By default (date = NULL) the newest available date is used. All available dates can be checked on http://gdac.broadinstitute.org/runs/ or by using checkTCGA function. Required format 'YYYY-MM-DD'.

untarFile Logical - should the downloaded file be untarred. Default is TRUE.

removeTar Logical - should the downloaded .tar file be removed after untarring. Default is TRUE.

allDataSets Logical - should download all datasets matching dataSet parameter or only the first one (without FFPE phrase if possible).

Details

All cohort names can be checked using: `sub(x = names(infoTCGA()), '-counts', '')`.

Value

No values. It only downloads files.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

dir.create('hre')

downloadTCGA(cancerTypes = 'ACC', dataSet = 'miR_gene_expression', destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1])

Not run:
downloadTCGA(cancerTypes = c('BRCA', 'OV'), destDir = 'hre', date = tail(checkTCGA('Dates'), 2)[1])

End(Not run)
expressionsTCGA

Gather Expressions for TCGA Datasets

Description

Function gathers expressions over multiple TCGA datasets and extracts expressions for desired genes. See rnaSeq, mRNA, RPPA, miRNASeq, methylation.

Usage

expressionsTCGA(..., extract.cols = NULL, extract.names = TRUE)

Arguments

...
A data.frame or data.frames from TCGA study containing expressions informations.

extract.cols
A character specifying the names of columns to be extracted with bcr_patient_barcode. If NULL (by default) all columns are returned.

extract.names
Logical, whether to extract names of passed data.frames in

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Note

Input data.frames should contain column bcr_patient_barcode if extract.cols is specified.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

```r
## for all examples
library(dplyr)
library(tidyr)
library(ggplot2)

## RNASeq expressions
library(RTCGA.rnaseq)
expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq,
               extract.cols = "VENTX|27287")`
rename(cohort = dataset, 
    VENTX = 'VENTX(27287)'%)%>
filter(substr(bcr_patient_barcode, 14, 15) == "01")%>%cancer samples
ggplot(aes(y = log1p(VENTX),
            x = reorder(cohort, log1p(VENTX), median),
            fill = cohort)) +
geom_boxplot() +
theme_RTCGA() +
scale_fill_brewer(palette = "Dark2")

## mRNA expressions
library(tidyr)
library(RTCGA.mRNA)
expressionsTCGA(BRCA.mRNA, COAD.mRNA, LUSC.mRNA, UCEC.mRNA,
    extract.cols = c("ARHGAP24", "TRAV20"))%>%
rename(cohort = dataset) %>%
select(-bcr_patient_barcode) %>%
gather(key = "mRNA", value = "value", -cohort) %>%
ggplot(aes(y = value,
            x = reorder(cohort, value, mean),
            fill = cohort)) +
geom_boxplot() +
theme_RTCGA() +
scale_fill_brewer(palette = "Set3") +
facet_grid(mRNA~.) +
theme(legend.position = "top")

## RPPA expressions
library(RTCGA.RPPA)
expressionsTCGA(ACC.RPPA, BLCA.RPPA, BRCA.RPPA,
    extract.cols = c("4E-BP1_pS65", "4E-BP1"))%>%
rename(cohort = dataset) %>%
select(-bcr_patient_barcode) %>%
gather(key = "RPPA", value = "value", -cohort) %>%
ggplot(aes(fill = cohort, 
            y = value,
            x = RPPA)) +
geom_boxplot() +
theme_dark(base_size = 15) +
scale_fill_manual(values = c("#eb6420", "#207de5", "#fbca04")) +
coord_flip() +
theme(legend.position = "top") +
geom_jitter(alpha = 0.5, col = "white", size = 0.6, width = 0.7)

## miRNASeq expressions
library(RTCGA.miRNASeq)
# miRNASeq has bcr_patient_barcode in rownames...
mutate(ACC.miRNASeq,
    bcr_patient_barcode = substr(rownames(ACC.miRNASeq), 1, 25)) -> ACC.miRNASeq.bcr
mutate(CESC.miRNASeq,
    bcr_patient_barcode = substr(rownames(CESC.miRNASeq), 1, 25)) -> CESC.miRNASeq.bcr
mutate(CHOL.miRNASeq,
    bcr_patient_barcode = substr(rownames(CHOL.miRNASeq), 1, 25)) -> CHOL.miRNASeq.bcr
mutate(LAML.miRNASeq,
bcr_patient_barcode = substr(rownames(LAML.miRNASeq), 1, 25)) -> LAML.miRNASeq.bcr
mutate(PAAD.miRNASeq,
  bcr_patient_barcode = substr(rownames(PAAD.miRNASeq), 1, 25)) -> PAAD.miRNASeq.bcr
mutate(THYM.miRNASeq,
  bcr_patient_barcode = substr(rownames(THYM.miRNASeq), 1, 25)) -> THYM.miRNASeq.bcr
mutate(LGG.miRNASeq,
  bcr_patient_barcode = substr(rownames(LGG.miRNASeq), 1, 25)) -> LGG.miRNASeq.bcr
mutate(STAD.miRNASeq,
  bcr_patient_barcode = substr(rownames(STAD.miRNASeq), 1, 25)) -> STAD.miRNASeq.bcr

expressionsTCGA(ACC.miRNASeq.bcr, CESC.miRNASeq.bcr, CHOL.miRNASeq.bcr,
  LAML.miRNASeq.bcr, PAAD.miRNASeq.bcr, THYM.miRNASeq.bcr,
  LGG.miRNASeq.bcr, STAD.miRNASeq.bcr,
  extract.cols = c("machine", "hsa-mir-101-1", "miRNA_ID")) %>%
  rename(cohort = dataset) %>%
  filter(miRNA_ID == "read_count") %>%
  select(-bcr_patient_barcode, -miRNA_ID) %>%
  gather(key = "key", value = "value", -cohort, -machine) %>%
  mutate(value = as.numeric(value)) %>%
  ggplot(aes(x = cohort,
            y = log1p(value),
            fill = as.factor(machine))) +
  geom_boxplot() +
  theme_RTCGA(base_size = 13) +
  coord_flip() +
  theme(legend.position = "top") +
  scale_fill_brewer(palette = "Paired") +
  ggtitle("hsa-mir-101-1")

heatmapTCGA

Create Heatmaps for TCGA Datasets

Description

Function creates heatmaps (geom_tile) for TCGA Datasets.

Usage

heatmapTCGA(data, x, y, fill, legend.title = "Expression", legend = "right",
            title = "Heatmap of expression", facet.names = NULL, tile.size = 0.1,
            tile.color = "white", ...)

Arguments

data A data.frame from TCGA study containing variables to be plotted.
x, y A character name of variable containing groups.
fill A character names of fill variable.
legend.title A character with legend’s title.
heatmapTCGA

**legend**
A character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). Default is "top" side position. to remove the legend use legend = "none".

**title**
A character with plot title.

**facet.names**
A character of length maximum 2 containing names of variables to produce facets. See examples.

**tile.size, tile.color**
A size and color passed to geom_tile.

... Further arguments passed to geom_tile.

**Issues**
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

**Note**
heatmapTCGA uses scale_fill_viridis from viridis package which is a port of the new matplotlib color maps (viridis - the default -, magma, plasma and inferno) to R. matplotlib http://matplotlib.org/ is a popular plotting library for python. These color maps are designed in such a way that they will analytically be perfectly perceptually-uniform, both in regular form and also when converted to black-and-white. They are also designed to be perceived by readers with the most common form of color blindness.

**Author(s)**
Marcin Kosinski, <m.p.kosinski@gmail.com>

**See Also**

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

**Examples**

```r
library(RTCGA.rnaseq)
perform plot
library(dplyr)

expressionsTCGA(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq, OV.rnaseq, extract.cols = c("MET|4233", "ZNF500|26048", "ZNF501|115560")) %>%
rename(cohort = dataset, MET = "MET|4233") %>%
cancer samples
filter(substr(bcr_patient_barcode, 14, 15) == "01") %>%
mutate(MET = cut(MET, round(quantile(MET, probs = seq(0,1,0.25)), -2),
include.lowest = TRUE, dig.lab = 5)) -> ACC_BLCA_BRCA_OV.rnaseq
```
infoTCGA

Information about cohorts from TCGA project

Description

Function restores codes and counts for each cohort from TCGA project.

Usage

infoTCGA()
Value
A list with a tabular information from http://gdac.broadinstitute.org/.

Issues
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)
Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also
Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

Examples

infoTCGA()
library(magrittr)
(cohorts <- infoTCGA() %>%
  rownames() %>%
  sub('/quotesingle.Var-counts', '', x=.))

# in knitr chunk -> results='asis'
knitr::kable(infoTCGA())

installTCGA

Install packages from RTCGA family

Description
Function installs data packages from https://github.com/RTCGA/. Packages are listed datasetsTCGA.

Usage
installTCGA(packages = c("RTCGA.clinical", "RTCGA.mutations", "RTCGA.rnaseq", "RTCGA.RPPA", "RTCGA.mRNA", "RTCGA.CNV", "RTCGA.miRNAseq", "RTCGA.PANCAN12", "RTCGA.methylation"), build_vignettes = TRUE, ...)

Arguments

packages A character specifying the names of the data packages to be installed. By default installs all packages.
build_vignettes Should vignettes be build.
... Further arguments passed to install_github.
## Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

### Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

### See Also

- Other RTCGA: `RTCGA-package`, `boxplotTCGA`, `checkTCGA`, `convertTCGA`, `datasetsTCGA`, `downloadTCGA`, `expressionsTCGA`, `heatmapTCGA`, `infoTCGA`, `kmTCGA`, `mutationsTCGA`, `pcaTCGA`, `readTCGA`, `survivalTCGA`, `theme_RTCGA`

### Examples

```r
Not run:
installTCGA()
installTCGA('RTCGA.clinical')

End(Not run)
```

---

**kmTCGA**  
*Plot Kaplan-Meier Estimates of Survival Curves for Survival Data*

### Description

Plots Kaplan-Meier estimates of survival curves for survival data.

### Usage

```r
kmTCGA(x, times = "times", status = "patient.vital_status",
explanatory.names = "1", main = "Survival Curves", risk.table = TRUE,
risk.table.y.text = FALSE, conf.int = TRUE, return.survfit = FALSE,
pval = FALSE, ...)
```

### Arguments

- `x`  
  A `data.frame` containing survival information. See `survivalTCGA`.
- `times`  
  The name of time variable.
- `status`  
  The name of status variable.
- `explanatory.names`  
  Names of explanatory variables to use in survival curves plot.
- `main`  
  Title of the plot.
- `risk.table`  
  Whether to show risk tables.
- `risk.table.y.text`  
  Whether to show long strata names in legend of the risk table.
**kmTCGA**

conf.int  Whether to show confidence intervals.

return.survfit  Should return survfit object additionally to survival plot?

pval  Whether to add p-value of the log-rank test to the plot?

...  Further arguments passed to `ggsurvplot`.

**Issues**

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

**Author(s)**

Marcin Kosinski, <m.p.kosinski@gmail.com>

**See Also**


Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA, theme_RTCGA

**Examples**

```r
Extracting Survival Data
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo

first munge data, then extract survival info
library(dplyr)
BRCA.clinical %>%
 filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>%
 rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>%
 survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo

first extract survival info, then munge data
survivalTCGA(BRCA.clinical, extract.cols = c("patient.drugs.drug.therapy_types.therapy_type") %>%
 filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>%
 rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo

Kaplan-Meier Survival Curves
kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE)

kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "", xlim = c(0, 4000))

kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
```
mutationsTCGA  

Gather Mutations for TCGA Datasets

Description

Function gathers mutations over multiple TCGA datasets and extracts mutations and further informations about them for desired genes. See `mutations`.

Usage

`mutationsTCGA(..., extract.cols = c("Hugo_Symbol", "Variant_Classification", "bcr_patient_barcode"), extract.names = TRUE, unique = TRUE)`

Arguments

... A data.frame or data.frames from TCGA study containing mutations information (`RTCGA.mutations`).

extract.cols A character specifying the names of columns to be extracted with `bcr_patient_barcode`. If NULL all columns are returned.

extract.names Logical, whether to extract names of passed data.frames in ....

unique Should the outputed data be unique. By default it’s TRUE.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Note

Input data.frames should contain column `bcr_patient_barcode` if `extract.cols` is specified.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also


Other RTCGA: `RTCGA-package`, `boxplotTCGA`, `checkTCGA`, `convertTCGA`, `datasetsTCGA`, `downloadTCGA`, `expressionsTCGA`, `heatmapTCGA`, `infoTCGA`, `installTCGA`, `kmTCGA`, `pcaTCGA`, `readTCGA`, `survivalTCGA`, `theme_RTCGA`

Examples

```r
library(RTCGA.mutations)
library(dplyr)
mutationsTCGA(BRCA.mutations, OV.mutations) %>%
 filter(Hugo_Symbol == "TP53") %>%
 filter(substr(bcr_patient_barcode, 14, 15) == "01") %>% # cancer tissue
 mutate(bcr_patient_barcode = substr(bcr_patient_barcode, 1, 12)) -> BRCA_OV.mutations
```
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") %>%
rename(disease = admin.disease_code) -> BRCA_OV.clinical

BRCA_OV.clinical %>%
left_join(BRCA_OV.mutations, by = "bcr_patient_barcode") %>%
mutate(TP53 = ifelse(!is.na(Variant_Classification), "Mut", "WILDorNOINFO")) -> BRCA_OV.clinical_mutations

BRCA_OV.clinical_mutations %>%
select(times, patient.vital_status, disease, TP53) -> BRCA_OV.2plot
kmTCGA(BRCA_OV.2plot, explanatory.names = c("TP53", "disease"),
break.time.by = 400, xlim = c(0, 2000))

---

**pcaTCGA**

*Plot Two Main Components of Principal Component Analysis*

**Description**

Plots Two Main Components of Principal Component Analysis

**Usage**

```r
pcaTCGA(x, group.names, title = "", return.pca = FALSE, scale = TRUE,
center = TRUE, var.scale = 1, obs.scale = 1, ellipse = TRUE,
circle = TRUE, var.axes = FALSE, alpha = 0.8, add.lines = TRUE, ...)
```

**Arguments**

- `x`: A data.frame containing i.e. expressions information. See `expressionsTCGA`.
- `group.names`: Names of group variable to use in labels of the plot.
- `title`: The title of a plot.
- `return.pca`: Should return pca object additioanly to pca plot?
- `scale`: As in `prcomp`.
- `center`: As in `prcomp`.
- `var.scale`: As in `ggbiplot`.
- `obs.scale`: As in `ggbiplot`.
- `ellipse`: As in `ggbiplot`.
- `circle`: As in `ggbiplot`.
- `var.axes`: As in `ggbiplot`.
- `alpha`: As in `ggbiplot`.
- `add.lines`: Should axis lines be added to plot.
- `...`: Further arguments passed to `prcomp`.
readTCGA

Value

If \texttt{return.pca = TRUE} then a list containing a PCA plot (of class \textit{ggplot}) and a \texttt{pca} model, the result of \texttt{prcomp} function. If not, then only PCA plot is returned.

ggbioplot

This function is based on \url{https://github.com/vqv/ggbiplot} which had to be copied to \texttt{RTCGA} because Bioconductor does not support remote dependencies from GitHub.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on \url{https://github.com/RTCGA/RTCGA/issues}.

Author(s)

Marcin Kosinski, \texttt{<m.p.kosinski@gmail.com>}

See Also

RTCGA website \url{http://rtcga.github.io/RTCGA/Visualizations.html}.

Other RTCGA: \texttt{RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, readTCGA, survivalTCGA, theme_RTCGA}

Examples

```r
Not run:
library(dplyr)
RNASeq expressions
library(RTCGA.rnaseq)
expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>%
rename(cohort = dataset) %>%
filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer

pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort")
pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", add.lines = FALSE)
pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", return.pca = TRUE) -> pca.rnaseq
pca.rnaseq$pplot
pca.rnaseq$pca

End(Not run)
```

\texttt{readTCGA} \quad \textit{Read TCGA data to the tidy format}
readTCGA

Description

readTCGA function allows to read unzipped files:

- clinical data: Merge_Clinical.Level_1
- naseq data (genes’ expressions): rnaseqv2__illuminahiseq_rnaseqv2
- genes’ mutations data: Mutation_Packager_Calls.Level
- Reverse phase protein array data (RPPA): protein_normalization__data.Level_3
- Merge transcriptome agilent data (mRNA): Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3
- miRNASeq data: Merge_mirnaseq__illumina_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3
- methylation data: Merge_methylation__humanmethylation27
- isoforms data: Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3

from TCGA project. Those files can be easily downloaded with downloadTCGA function. See examples.

Usage

readTCGA(path, dataType, ...)

Arguments

path
See details and examples.
dataType
...
Further arguments passed to the as.data.frame.

Details

All cohort names can be checked using: sub(x = names(infoTCGA()), '-counts', '')

Parameter path specification:

- If dataType = 'clinical' a path to a cancerType.clin.merged.txt file.
- If dataType = 'mutations' a path to the unzipped folder Mutation_Packager_Calls.Level containing .maf files.
- If dataType = 'rnaseq' a path to the unzipped file rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3
- If dataType = 'RPPA' a path to the unzipped file in folder protein_normalization__data.Level_3.
- If dataType = 'mRNA' a path to the unzipped file cancerType.transcriptome__agilentg4502a_07_3__unc_edu
- If dataType = 'miRNASeq' a path to unzipped files cancerType.mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3 or cancerType.mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3
- If dataType = 'methylation' a path to unzipped files cancerType.methylation__humanmethylation27__jhu
- If dataType = 'isoforms' a path to unzipped files cancerType.rnaseqv2__illuminahiseq_rnaseqv2__unc_edu
readTCGA

Value

An output:

- If `dataType` = 'clinical' a data.frame with clinical data.
- If `dataType` = 'rnaseq' a data.frame with rnaseq data.
- If `dataType` = 'mutations' a data.frame with mutations data.
- If `dataType` = 'RPPA' a data.frame with RPPA data.
- If `dataType` = 'mRNA' a data.frame with mRNA data.
- If `dataType` = 'miRNASeq' a data.frame with miRNASeq data.
- If `dataType` = 'methylation' a data.frame with methylation data.
- If `dataType` = 'isoforms' a data.frame with isoforms data.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>
Witold Chodor, <witoldchodor@gmail.com>

See Also

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, survivalTCGA, theme_RTCGA

Examples

```
Not run:

###############
clinical
###############

dir.create('data')

downloading clinical data
dataset = "clinical" is default parameter so we may omit it
downloadTCGA(cancerTypes = c('BRCA', 'OV'),
 destDir = 'data')

reading datasets
sapply(c('BRCA', 'OV'), function(element){
 folder <- grep(paste0('\.\..', '/', element,'\-FFPE'), '.*Clinical'),
 list.files('data/'), value = TRUE)
 path <- paste0('data/', folder, '/', element, '.clin.merged.txt')
 assign(value = readTCGA(path, 'clinical'),
```
```r
data2 <-

data3 <-

data4 <-

cancerType = "KIRP"
```
downloadTCGA(cancerTypes = cancerType,
    dataSet = "Merge_methylation__humanmethylation27",
    destDir = "data4")

# Shorten path of subdirectory with KIRP methylation data
list.files(path = "data4", full.names = TRUE) %>%
  file.rename(from = ., to = file.path("data4", paste0(cancerType, ".methylation")))

# Remove manifest.txt file
list.files(path = "data4", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE) %>%
  grep("MANIFEST.txt", x = ., value = TRUE) %>%
  file.remove()

# Read KIRP methylation data
path <- list.files(path = "data4", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE)
KIRP.methylation <- readTCGA(path, dataType = "methylation")

##########
##### RPPA
##########

# Directory in which untarred data will be stored
dir.create('data5')

# Download BRCA RPPA data and store it in data5 folder
cancerType = "BRCA"
downloadTCGA(cancerTypes = cancerType,
    dataSet = "protein_normalization__data.Level_3",
    destDir = "data5")

# Shorten path of subdirectory with BRCA RPPA data
list.files(path = "data5", full.names = TRUE) %>%
  file.rename(from = ., to = file.path("data5", paste0(cancerType, ".RPPA")))

# Remove manifest.txt file
list.files(path = "data5", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE) %>%
  grep("MANIFEST.txt", x = ., value = TRUE) %>%
  file.remove()

# Read BRCA RPPA data
path <- list.files(path = "data5", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE)
BRCA.RPPA <- readTCGA(path, dataType = "RPPA")

##########
##### mRNA
##########

# Directory in which untarred data will be stored
dir.create('data6')
# Download UCEC mRNA data and store it in data6 folder
cancerType = "UCEC"
downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_transcriptome__agilentg4502a_07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3",
destDir = "data6")

# Shorten path of subdirectory with UCEC mRNA data
list.files(path = "data6", full.names = TRUE) %>%
  file.rename(from = ., to = file.path("data6", paste0(cancerType, ".mRNA")))

# Remove manifest.txt file
list.files(path = "data6", full.names = TRUE) %>%
  grep("MANIFEST.txt", x = ., value = TRUE) %>%
  file.remove()

# Read UCEC mRNA data
path <- list.files(path = "data6", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE)
UCEC.mRNA <- readTCGA(path, dataType = "mRNA")

# Directory in which untarred data will be stored
dir.create('_quotesingle.Vardata7_quotesingle.Var')

downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_mirnaseq__illuminaga_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3",
destDir = "data7")

downloadTCGA(cancerTypes = cancerType,
dataSet = "Merge_mirnaseq__illuminahiseq_mirnaseq__bcgsc_ca__Level_3__miR_gene_expression__data.Level_3",
destDir = "data7")

# Shorten path of subdirectory with BRCA miRNASeq data
list.files(path = "data7", full.names = TRUE) %>%
sapply(function(path){
  if (grepl(pattern = "illuminaga", path)){
    file.rename(from = grep(pattern = "illuminaga", path, value = TRUE),
               to = file.path("data7", paste0(cancerType, ".miRNASeq.illuminaga")))
  } else if (grepl(pattern = "illuminahiseq", path)){
    file.rename(from = grep(pattern = "illuminahiseq", path, value = TRUE),
               to = file.path("data7", paste0(cancerType, ".miRNASeq.illuminahiseq")))
  }
})

# Remove manifest.txt file
list.files(path = "data7", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE) %>%
grep("MANIFEST.txt", x = ., value = TRUE) %>%
file.remove()

# Read BRCA miRNASeq data
path <- list.files(path = "data7", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE)
path_illuminaga <- grep("illuminaga", path, fixed = TRUE, value = TRUE)
path_illuminahiseq <- grep("illuminahiseq", path, fixed = TRUE, value = TRUE)

BRCA.miRNASeq.illuminaga <- readTCGA(path_illuminaga, dataType = "miRNASeq")
BRCA.miRNASeq.illuminahiseq <- readTCGA(path_illuminahiseq, dataType = "miRNASeq")

BRCA.miRNASeq.illuminaga <- cbind(machine = "Illumina Genome Analyzer", BRCA.miRNASeq.illuminaga)
BRCA.miRNASeq.illuminahiseq <- cbind(machine = "Illumina HiSeq 2000", BRCA.miRNASeq.illuminahiseq)

BRCA.miRNASeq <- rbind(BRCA.miRNASeq.illuminaga, BRCA.miRNASeq.illuminahiseq)

##############
##### isoforms
##############

# Directory in which untarred data will be stored
dir.create("/quotesingle.Vardata8/quotesingle.Var")

# Download ACC isoforms data and store it in data8 folder
cancerType = "ACC"
downloadTCGA(cancerTypes = cancerType, dataSet = "Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_isoforms_normalized__data.Level_3", destDir = "data8")

# Shorten path of subdirectory with ACC isoforms data
list.files(path = "data8", full.names = TRUE) %>%
  file.rename(from = ., to = file.path("data8", paste0(cancerType, ".isoforms")))

# Remove manifest.txt file
list.files(path = "data8", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE) %>%
  grep("MANIFEST.txt", x = ., value = TRUE) %>%
  file.remove()

# Read ACC isoforms data
path <- list.files(path = "data8", full.names = TRUE) %>%
  list.files(path = ., full.names = TRUE)
ACC.isoforms <- readTCGA(path, dataType = "isoforms")

## End(Not run)

survivalTCGA

Extract Survival Information From RTCGA.clinical Datasets

Description

Extracts survival information from clinical datasets from TCGA project.
survivalTCGA

Usage

survivalTCGA(..., extract.cols = NULL, extract.names = FALSE, barcode.name = "patient.bcr_patient_barcode", event.name = "patient.vital_status", days.to.followup.name = "patient.days_to_last_followup", days.to.death.name = "patient.days_to_death")

Arguments

... A data.frame or data.frames from TCGA study containing clinical informations. See clinical.

extract.cols A character specifing the names of extra columns to be extracted with survival information.

extract.names Logical, whether to extract names of passed data.frames in ....

barcode.name A character with the name of bcr_patient_barcode which differs between TCGA releases. By default is the name from the newest release date tail(checkTCGA('Dates'),1).

event.name A character with the name of patient.vital_status which differs between TCGA releases. By default is the name from the newest release date tail(checkTCGA('Dates'),1).

days.to.followup.name A character with the name of patient.days_to_last_followup which differs between TCGA releases. By default is the name from the newest release date tail(checkTCGA('Dates'),1).

days.to.death.name A character with the name of patient.days_to_death which differs between TCGA releases. By default is the name from the newest release date tail(checkTCGA('Dates'),1).

Value

A data.frame containing information about times and censoring for specific bcr_patient_barcode. The name passed in barcode.name is changed to bcr_patient_barcode.

Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Note

Input data.frames should contain columns patient.bcr_patient_barcode, patient.vital_status, patient.days_to_last_followup, patient.days_to_death or theyir previous equivalents. It is recommended to use datasets from clinical.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

Marcin Kosinski, <m.p.kosinski@gmail.com>
### Examples

```r
Extracting Survival Data
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo

first munge data, then extract survival info
library(dplyr)
BRCA.clinical %>%
filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>%
rename(therapy = patient.drugs.drug.therapy_types.therapy_type) %>%
survivalTCGA(extract.cols = c("therapy")) -> BRCA.survInfo.chemo

first extract survival info, then munge data
survivalTCGA(BRCA.clinical,
extract.cols = c("patient.drugs.drug.therapy_types.therapy_type")) %>%
filter(patient.drugs.drug.therapy_types.therapy_type %in% c("chemotherapy", "hormone therapy")) %>%
rename(therapy = patient.drugs.drug.therapy_types.therapy_type) -> BRCA.survInfo.chemo

Kaplan-Meier Survival Curves
kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", pval = TRUE)

kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code", main = "",
xlim = c(0,4000))

kmTCGA(BRCA.survInfo.chemo, explanatory.names = "therapy", xlim = c(0, 3000), conf.int = FALSE)
```

---

**theme_RTCGA**

**RCGA Theme For ggplot2**

### Description

Additional **RTCGA** theme for **ggtheme**, based on **theme_pander**.

### Usage

```r
theme_RTCGA(base_size = 11, base_family = "", ...)
```

### Arguments

- `base_size`  
  base font size

- `base_family`  
  base font family

...  
Further arguments passed to **theme_pander**.
Issues

If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

See Also

Other RTCGA: RTCGA-package, boxplotTCGA, checkTCGA, convertTCGA, datasetsTCGA, downloadTCGA, expressionsTCGA, heatmapTCGA, infoTCGA, installTCGA, kmTCGA, mutationsTCGA, pcaTCGA, readTCGA, survivalTCGA

Examples

```r
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical, extract.cols = "admin.disease_code") -> BRCAOV.survInfo
kmTCGA(BRCAOV.survInfo, explanatory.names = "admin.disease_code",
xlim = c(0,4000))
```
Index

as.data.frame, 23

boxplotTCGA, 3, 3, 6, 8, 9, 11, 12, 15, 17–20, 22, 24, 30, 31

checkTCGA, 3, 4, 5, 8–12, 15, 17–20, 22, 24, 30, 31

clinical, 9, 29

CNV, 9

convertPANCAN12 (convertTCGA), 7
convertTCGA, 3, 4, 6, 7, 9, 11, 12, 15, 17–20, 22, 24, 30, 31

datasetsTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–20, 22, 24, 30, 31

downloadTCGA, 3, 4, 6, 8, 9, 10, 12, 15, 17–20, 22–24, 30, 31

ExpressionSet, 7
expressionsTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–22, 24, 30, 31

geom_boxplot, 3
geom_tile, 14, 15

ggsurvplot, 19

ggtheme, 30

GRanges, 7

heatmapTCGA, 3, 4, 6, 8, 9, 11, 12, 14, 17–20, 22, 24, 30, 31

infoTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 16, 18–20, 22, 24, 30, 31

install_github, 17
installRTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17, 19, 20, 22, 24, 30, 31

kmTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17, 18, 19, 20, 22, 24, 30, 31

methylation, 9, 12

miRNASeq, 9, 12

mRNA, 9, 12

mutations, 9, 20

mutationsTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–19, 20, 22, 24, 30, 31

pcaTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–20, 21, 24, 30, 31

prcomp, 21, 22

readTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–20, 22, 22, 30, 31

rnaseq, 9, 12

RPPA, 9, 12

RTCGA (RTCGA-package), 2

RTCGA-package, 2

scale_fill_viridis, 15

survivalTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–20, 22, 24, 28, 31

theme_pander, 30

theme_RTCGA, 3, 4, 6, 8, 9, 11, 12, 15, 17–20, 22, 24, 30, 30

unique, 20