Package ‘RankProd’

November 21, 2016

Version 3.0.0
Date 2016-09-16
Title Rank Product method for identifying differentially expressed
genes with application in meta-analysis
Author Francesco Del Carratore
<francesco.delcarratore@postgrad.manchester.ac.uk>,
Andris Janckevics <andris.jankevics@gmail.com>
Fangxin Hong <fxhong@jimmy.harvard.edu>,
Ben Wittner <wittner.Ben@mgh.harvard.edu>,
Rainer Breitling <r.breitling@bio.gla.ac.uk>,
and Florian Battke <battke@informatik.uni-tuebingen.de>
Maintainer Francesco Del Carratore
<francescodc87@gmail.com>
Depends R (>= 3.2.1), stats, methods, Rmpfr, gmp
Imports graphics
Description Non-parametric method for identifying differentially
expressed (up- or down- regulated) genes based on the
estimated percentage of false predictions (pfp). The method can
combine data sets from different origins (meta-analysis)
to increase the power of the identification.
License file LICENSE
License_restricts_use yes
biocViews DifferentialExpression, StatisticalMethod, Software,
ResearchField, Metabolomics, Lipidomics, Proteomics,
SystemsBiology, GeneExpression, Microarray, GeneSignaling
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>2</td>
</tr>
<tr>
<td>arab</td>
<td>3</td>
</tr>
<tr>
<td>golub</td>
<td>3</td>
</tr>
<tr>
<td>lymphoma</td>
<td>4</td>
</tr>
<tr>
<td>plotRP</td>
<td>5</td>
</tr>
<tr>
<td>RankProducts</td>
<td>6</td>
</tr>
</tbody>
</table>
Description

A dataset of LC-MS features, obtained from twenty apples. The last ten apples are spiked with known compounds. This set provides a test case for biomarker selection methods: the task is to retrieve the true biomarker variables. The raw LC-MS data have been converted to CDF format and processed with XCMS to obtain the basepeaks.

Usage

```r
data(Apples)
```

Value

The format is a list of four elements:

- `mz`: the m/z values of the features (rounded)
- `rt`: the retention times of the features
- `apples.data`: a matrix containing the intensities in the individual samples
- `apples.data.vsn`: a matrix containing the intensities after variance stabilization and normalization performed with the vsn package
- `Biom`: the indices of the "true" biomarkers
- `apples.cl`: numeric vector encoding which samples are part of the spiked class (code 1) and which ones are controls (code 0)

Author(s)

Francesco Del Carratore

References

Examples

data(Apples)
show features identified in all apples
plot(rt, mz,
 xlab = "Retention time (s)", ylab = "m/z",
 main = "Spiked apples - subset")

arab

Genomic Response to Brassinosteroid in Arabidopsis

Description

These data are from Affy ATH1 array experiments of genomic response to brassinosteroid in Arabidopsis conducted by two laboratories. The data set contains 500 random selected genes and 10 samples, 6 from lab 1 and 4 from lab 2. Data were pre-processed by RMA

Usage

data(arab)

Value

<table>
<thead>
<tr>
<th>arab</th>
<th>matrix of gene expression levels of 500 genes from 10 samples, rows correspond to genes and columns to mRNA samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>arab.cl</td>
<td>numeric vector encoding the treatment classes, 5 brassinosteroid-treated cases (code 1) and 5 control cases (code 0)</td>
</tr>
<tr>
<td>arab.gnames</td>
<td>character vector containing the AffyID of the 500 genes for the expression matrix arab</td>
</tr>
<tr>
<td>arab.origin</td>
<td>numeric vector encoding the origin of the samples, 6 samples from lab 1 (code 1) and 4 samples from lab 2 (code 2)</td>
</tr>
</tbody>
</table>

References

Microarray data from AtGenExpress (http://arabidopsis.org/info/expression/ATGenExpress.jsp)

golub

A subset of the Gene expression dataset from Golub et al. (1999)

Description

Gene expression data (500 genes and 38 tumor mRNA samples) from the leukemia microarray study of Golub et al. (1999). The original dataset contains 3051 genes

Usage

data(golub)
lymphoma

Value

golub matrix of gene expression levels for the 38 tumor mRNA samples. Rows correspond to genes and columns to mRNA samples.
golub.cl numeric vector encoding the tumor classes, 27 acute lymphoblastic leukemia (ALL) cases (code 0) and 11 acute myeloid leukemia (AML) cases (code 1).
golub.gnames a matrix containing the names of the 500 genes for the expression matrix golub. The three columns correspond to the gene index, ID, and Name, respectively.

Source

References

lymphoma Subset of the Intensity data for 8 cDNA slides with CLL and DLBL samples from the Alizadeh et al. paper in Nature 2000

Description

8 cDNA chips from Alizadeh lymphoma paper

Usage

data(lymphoma)

Format

lymphoma is an exprSet containing the data of 8 chips from the lymphoma dataset by Alizadeh et al. (see references). Each chip represents two samples: on color channel 1 (CH1, Cy3, green) the common reference sample, and on color channel 2 (CH2, Cy5, red) the various disease samples. See pData(lymphoma). The 9216x16 matrix exprs(lymphoma) contains the background-subtracted spot intensities (CH1I-CH1B and CH2I-CH2B, respectively).

Details

The chip intensity files were downloaded from the Stanford microarray database. Starting from the link below, this was done by following the links Published Data -> Alizadeh AA, et al. (2000) Nature 403(6769):503-11 -> Data in SMD -> Display Data, and selecting the following 8 slides:
lc7b019
lc7b047
lc7b048
lc7b056
lc7b057
Then, the script `makedata.R` from the `scripts` subdirectory of this package was run to generate the R data object.

Value

- **lym.exp**: 8 cDNA chips from Alizadeh lymphoma paper
- **lynx**: Is a time series with numbers of annual numbers of lynx trapping in Canada from 1821-1934. Taken from Brockwell & Davis (1991), this appears to be the series considered by Campbell & Walker (1977)

Source

http://genome-www5.stanford.edu/MicroArray/SMD

References

plotRP

Graphical Display of the Rank Product/Sum analysis

Description

Plot a graph of the estimated pfp vs the number of identified genes

Usage

`plotRP(x, cutoff=NULL)`

Arguments

- **x**: the value returned by function `RP`, `RPadvance`, `RSadvance`, `RP.products` or `RP.advance`
- **cutoff**: The pfp threshold value used to select genes

Value

A graphical display of the estimated pfp vs number of identified genes, which is also the gene rank of its original rank product/sum across all comparison. If cutoff is specified, a horizontal line will be plotted on the graphic to indicate the position of the cutoff point, and all genes identified will be marked in red.

Two plots will be displayed, one for the identification of up-regulated genes in class 2, one for the identification of down-regulated genes in class 2
Author(s)
Fangxin Hong, <fhong@salk.edu>
Francesco Del Carratore, <francesco.delcarratore@postgrad.manchester.ac.uk>

See Also
topGene RP RPadvance RSadvance

Examples

```r
# Load the data of Golub et al. (1999). data(golub)
# contains a 3051x38 gene expression matrix called golub, a vector of length called golub.cl
# that consists of the 38 class labels,
# and a matrix called golub.gnames whose third column contains the gene names.
data(golub)

# use a subset of data as example, apply the rank product method
subset <- c(1:4, 28:30)
# Setting rand=123, to make the results reproducible,
# identify genes that are up-regulated in class 2 (class label = 1)
RP.out <- RP(golub[, subset], golub.cl[subset], rand = 123)

# plot the results
plotRP(RP.out, cutoff = 0.05)
```

RankProducts

Rank Product/Rank Sum Analysis

Description
The function performs the Rank Product (or Rank Sum) method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis.

Usage

```r
RankProducts(data, cl, logged = TRUE, na.rm = TRUE, gene.names = NULL, plot = FALSE, rand = NULL, calculateProduct = TRUE, MinNumOfValidPairs = NA, RandomPairs = NA, huge = FALSE, fast = TRUE, tail.time = 0.05)
```

Arguments

- **data**: the data set that should be analyzed. Every row of this dataset must correspond to a gene.
- **cl**: a vector containing the class labels of the samples. In the two class unpaired case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group). For one class data, the label for each sample should be 1.
- **logged**: if "TRUE" data have been previously log transformed. Otherwise it should be set as "FALSE"
RankProducts

- **na.rm**
 if "FALSE", the NA value will not be used in computing rank. If "TRUE" (default), the missing values will be replaced by the genewise median of the non-missing values. Gene with a number of missing values greater than "MinNumOfValidPairs" are still not considered in the analysis.

- **gene.names**
 if "NULL", no gene name will be attached to the outputs, otherwise it contains the vector of gene names.

- **plot**
 if "TRUE", plot the estimated pfp vs the rank of each gene.

- **rand**
 if specified, the random number generator will be put in a reproducible state.

- **calculateProduct**
 if calculateProduct="TRUE" (default) the rank product method is performed. Otherwise the rank sum method is performed.

- **MinNumOfValidPairs**
 a parameter that indicates the minimum number of NAs accepted per each gene. If it is set to NA (default) the half of the number of replicates is used.

- **RandomPairs**
 number of random pairs generated in the function, if set to NA (default), the odd integer closer to the square of the number of replicates is used.

- **huge**
 if "TRUE" not all the outputs are evaluated in order to save space.

- **fast**
 if "FALSE" the exact p-values for the Rank Sum are evaluated for any size of the dataset. Otherwise (default), if the size of the dataset is too big, only the p-values that can be computed in "tail.time" minutes (starting from the tail) are evaluated with the exact method. The others are estimated with the Gaussian approximation. If calculateProduct="TRUE" this parameter is ignored.

- **tail.time**
 the time (default 0.05 min) dedicated to evaluate the exact p-values for the Rank Sum. If calculateProduct="TRUE" this parameter is ignored.

Value

A summary of the results obtained by the Rank Product (or Rank Sum) method.

- **pfp**
 Estimated percentage of false positive predictions (pfp), both considering up-regulated and down-regulated genes.

- **pval**
 Estimated pvalues per each gene being up- and down-regulated.

- **RPs/RSs**
 The rank-product/rank-sum statistics evaluated per each gene.

- **RPrank/RSrank**
 Rank of the Rank Product (or Rank Sum) of each gene in ascending order.

- **Orirank**
 Ranks obtained when considering each possible pairing. In this version of the package, this is not used to compute Rank Product (or Rank Sum), but it is kept for backward compatibility.

- **AveFC**
 Fold change of average expressions (class1/class2). log fold-change if data has been log transformed, original fold change otherwise.

- **allrank1**
 Fold change of class 1/class 2 under each origin. log fold-change if data has been log transformed, original fold change otherwise.

- **allrank2**
 Fold change of class 2/class 1 under each origin. log fold-change if data has been log transformed, original fold change otherwise.

- **nrep**
 Total number of replicates.

- **groups**
 Vector of labels (as cl).

- **RandomPairs_ranks**
 a matrix containing the ranks evaluated for each RandomPair.
RP

Rank Product Analysis

Description

The function performs the Rank Product method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis. This function has been kept only to guarantee backward compatibility, in fact the same results can be obtained by RankProducts.

Usage

RP(data, cl, num.perm = 100, logged = TRUE, na.rm = TRUE, gene.names = NULL, plot = FALSE, rand = NULL, huge = FALSE)
RP

Arguments

data the function performs the Rank Product (or Rank Sum) method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis

c1 a vector containing the class labels of the samples. In the two class unpaired case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group). For one class data, the label for each sample should be 1

num.perm in this version of the package, this parameter is not used any more, but it is kept for backward compatibility

logged if "TRUE" data have been previously log transformed. Otherwise it should be set as "FALSE"

na.rm if "FALSE", the NA value will not be used in computing rank. If "TRUE" (default), the missing values will be replaced by the genewise median of the non-missing values. Gene with a number of missing values greater than 50% are still not considered in the analysis

gene.names if "NULL", no gene name will be attached to the outputs, otherwise it contains the vector of gene names

plot if "TRUE", plot the estimated pfp vs the rank of each gene

rand if specified, the random number generator will be put in a reproducible state

huge if "TRUE" not all the outputs are evaluated in order to save space

Value

A summary of the results obtained by the Rank Product method.

pfp estimated percentage of false positive predictions (pfp), both considering upregulated and downregulated genes

pval estimated pvalues per each gene being up- and down-regulated

RPs the Rank Product statistics evaluated per each gene

RPrank rank of the Rank Product of each gene in ascending order

Orirank ranks obtained when considering each possible pairing. In this version of the package, this is not used to compute Rank Product (or Rank Sum), but it is kept for backward compatibility

AveFC fold changes of average expressions (class1/class2). log fold-change if data has been log transformed, original fold change otherwise

allrank1 fold change of class 1/class 2 under each origin. log fold-change if data has been log transformed, original fold change otherwise

allrank2 fold change of class 2/class 1 under each origin. log fold-change if data has been log transformed, original fold change otherwise

nrep total number of replicates

groups vector of labels (as cl)

RandomPairs_ranks a matrix containing the ranks evaluated for each RandomPair
Note

Percentage of false prediction (pfp), in theory, is equivalent of false discovery rate (FDR), and it is possible to be larger than 1.

The function looks for up- and down-regulated genes in two separate steps, thus two pfps and pvalues are computed and used to identify genes that belong to each group.

This function is suitable to deal with data from a single origin, e.g. single experiment. If the data has different origin, e.g. generated at different laboratories, please refer RP.advance.

Author(s)

Francesco Del Carratore, <francesco.delcarratore@postgrad.manchester.ac.uk>
Andris Jankevics, <andris.jankevics@gmail.com>

References

See Also

topGene RSadvance RPadvance plotRP RP.advance RankProducts

Examples

Load the data of Golub et al. (1999). data(golub)
contains a 3051x38 gene expression
matrix called golub, a vector of length called golub.cl
that consists of the 38 class labels,
and a matrix called golub.gnames whose third column
contains the gene names.
data(golub)

#use a subset of data as example, apply the rank
#product method
subset <- c(1:4,28:30)
#Setting rand=123, to make the results reproducible,
RP.out <- RP(golub[,subset],golub.cl[subset],rand=123)

class 2: label =1, class 1: label = 0
pfp for identifying genes that are up-regulated in class 2
pfp for identifying genes that are down-regulated in class 2
head(RP.out$pfp)
RP.advance

Advanced Rank Product/Rank Sum Analysis

Description
The function performs the Rank Product (or Rank Sum) method to identify differentially expressed
genes. It is possible to do either a one-class or two-class analysis. It is also possible to combine
data from different studies (e.g. datasets generated by different laboratories)

Usage
RP.advance(data, cl, origin, logged = TRUE, na.rm = TRUE, gene.names = NULL,
plot = FALSE, rand = NULL, calculateProduct = TRUE, MinNumOfValidPairs = NA,
RandomPairs = NA, huge = FALSE, fast = TRUE, tail.time = 0.05)

Arguments
data
the data set that should be analyzed. Every row of this dataset must correspond
to a gene

cl
a vector containing the class labels of the samples. In the two class unpaired
case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group).
For one class data, the label for each sample should be 1

origin
a vector containing the origin labels of the samples. The label is the same for
samples within one lab and different for samples from different labs.

logged
if "TRUE" data have been previously log transformed. Otherwise it should be
set as "FALSE"

na.rm
if "FALSE", the NA value will not be used in computing rank. If "TRUE" (default), the missing values will be replaced by the genewise median of the
non-missing values. Gene with a number of missing values greater than "Min-
NumOfValidPairs" are still not considered in the analysis

gene.names
if "NULL", no gene name will be attached to the outputs, otherwise it contains
the vector of gene names

plot
if "TRUE", plot the estimated pfp vs the rank of each gene

rand
if specified, the random number generator will be put in a reproducible state

calculateProduct
if calculateProduct="TRUE" (default) the rank product method is performed.
Otherwise the rank sum method is performed

MinNumOfValidPairs
a parameter that indicates the minimum number of NAs accepted per each gene.
If it is set to NA (default) the half of the number of replicates is used

RandomPairs
number of random pairs generated in the function, if set to NA (default), the odd
integer closer to the square of the number of replicates is used

huge
if "FALSE" not all the outputs are evaluated in order to save space

fast
if "FALSE" the exact p-values for the Rank Sum are evaluated for any size of
the dataset. Otherwise (default), if the size of the dataset is too big, only the
p-values that can be computed in "tail.time" minutes (starting from the tail) are
evaluated with the exact method. The others are estimated with the Gaussian
approximation. If calculateProduct="TRUE" this parameter is ignored

tail.time
the time (default 0.05 min) dedicated to evaluate the exact p-values for the Rank
Sum. If calculateProduct="TRUE" this parameter is ignored.
Value

A summary of the results obtained by the Rank Product (or Rank Sum) method.

- **pfp**: estimated percentage of false positive predictions (pfp), both considering upregulated and downregulated genes
- **pval**: estimated p-values per each gene being up- and down-regulated
- **RPs/RSs**: the Rank Product (or Rank Sum) statistics evaluated per each gene
- **RPrank/RSrank**: rank of the Rank Product (or Rank Sum) of each gene in ascending order
- **Orirank**: ranks obtained when considering each possible pairing. In this version of the package, this is not used to compute Rank Product (or Rank Sum), but it is kept for backward compatibility
- **AveFC**: fold changes of average expressions (class1/class2). Log fold-change if data has been log transformed, original fold change otherwise
- **allrank1**: fold change of class 1/class 2 under each origin. Log fold-change if data has been log transformed, original fold change otherwise
- **allrank2**: fold change of class 2/class 1 under each origin. Log fold-change if data has been log transformed, original fold change otherwise
- **nrep**: total number of replicates
- **groups**: vector of labels (as cl)
- **RandomPairs_ranks**: a matrix containing the ranks evaluated for each RandomPair

Author(s)

Francesco Del Carratore, <francesco.delcarratore@postgrad.manchester.ac.uk>
Andris Jankevics, <andris.jankevics@gmail.com>

References

See Also

topGene RP RPAdvance plotRP RankProducts RSAdvance

Examples

```r
# Load the data of Golub et al. (1999). data(golub)
# contains a 3051x38 gene expression
# matrix called golub, a vector of length called golub.cl
# that consists of the 38 class labels,
# and a matrix called golub.gnames whose third column
# contains the gene names.
data(golub)

## For data with single origin
subset <- c(1:4,28:30)
origin <- rep(1,7)
```

identify genes
RP.out <- RP.advance(golub[,subset],golub.cl[subset],
 origin,plot=FALSE,rand=123)

For data from multiple origins

Load the data arab in the package, which contains
the expression of 22,081 genes
of control and treatment group from the experiments
independently conducted at two
laboratories.

data(arab)
arab.origin #1 1 1 1 1 1 2 2 2 2
arab.cl #0 0 0 1 1 0 0 1 1
RP.adv.out <- RP.advance(arab,arab.cl,arab.origin,
 gene.names=arab.gnames,logged=TRUE,rand=123)

attributes(RP.adv.out)
head(RP.adv.out$pfp)
head(RP.adv.out$RPs)
head(RP.adv.out$AveFC)

Suppose we want to check the consistency of the data
sets generated in two different
labs. For example, we would look for genes that were \n# measured to be up-regulated in
class 2 at lab 1, but down-regulated in class 2 at lab 2.\
data(arab)
arab.cl2 <- arab.cl
arab.cl2[arab.cl==0 & arab.origin==2] <- 1
arab.cl2[arab.cl==1 & arab.origin==2] <- 0

arab.cl2
[1] 0 0 0 1 1 1 1 1 0 0

Look for genes differentially expressed
between hypothetical class 1 and 2
arab.sub=arab[1:500,] # using subset for fast computation
arab.gnames.sub=arab.gnames[1:500]
Rsum.adv.out <- RP.advance(arab.sub,arab.cl2,arab.origin,calculateProduct=
 FALSE,logged=TRUE,gene.names=arab.gnames.sub,rand=123)

attributes(Rsum.adv.out)

RPAdvance

Advanced Rank Product Analysis

Description

The function performs the Rank Product method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis. It is also possible to combine data from
different studies (e.g. datasets generated by different laboratories. This function has been kept only to guarantee backward compatibility, in fact the same results can be obtained by RankProducts.

Usage

RPadvance(data, cl, origin, num.perm = 100, logged = TRUE, na.rm = TRUE, gene.names = NULL, plot = FALSE, rand = NULL, huge = FALSE)

Arguments

data the data set that should be analyzed. Every row of this dataset must correspond to a gene
cl a vector containing the class labels of the samples. In the two class unpaired case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group). For one class data, the label for each sample should be 1
origin a vector containing the origin labels of the samples. The label is the same for samples within one lab and different for samples from different labs.
num.perm in this version of the package, this parameter is not used any more, but it is kept for backward compatibility
logged if "TRUE" data have been previously log transformed. Otherwise it should be set as "FALSE"
na.rm if "FALSE", the NA value will not be used in computing rank. If "TRUE" (default), the missing values will be replaced by the genewise median of the non-missing values. Gene with a number of missing values greater than 50% are still not considered in the analysis
gene.names if "NULL", no gene name will be attached to the outputs, otherwise it contains the vector of gene names
plot if "TRUE", plot the estimated pfp vs the rank of each gene
rand if specified, the random number generator will be put in a reproducible state
huge if "TRUE" not all the outputs are evaluated in order to save space

Value

A summary of the results obtained by the Rank Product method.

pfp estimated percentage of false positive predictions (pfp), both considering upregulated and downregulated genes
pval estimated pvalues per each gene being up- and down-regulated
RPs the Rank Product statistics evaluated per each gene
RPrank rank of the Rank Product of each gene in ascending order
Orirank ranks obtained when considering each possible pairing. In this version of the package, this is not used to compute Rank Product (or Rank Sum), but it is kept for backward compatibility
AveFC fold changes of average expressions (class1/class2). log fold-change if data has been log transformed, original fold change otherwise
allrank1 fold change of class 1/class 2 under each origin. log fold-change if data has been log transformed, original fold change otherwise
allrank2 fold change of class 2/class 1 under each origin. log fold-change if data has been log transformed, original fold change otherwise
nrep total number of replicates
groups vector of labels (as cl)
Note

Percentage of false prediction (pfp), in theory, is equivalent of false discovery rate (FDR), and it is possible to be large than 1.

The function looks for up- and down-regulated genes in two separate steps, thus two pfps are computed and used to identify gene that belong to each group. The function is able to replace function RP in the same library. It is a more general version, as it is able to handle data from different origins.

Author(s)

Francesco Del Carratore, <francesco.delcarratore@postgrad.manchester.ac.uk>
Andris Jankevics, <andris.jankevics@gmail.com>

References

See Also
topGene RP RSadvance plotRP RP.advance RankProducts

Examples

Load the data of Golub et al. (1999). data(golub)
contains a 3051x38 gene expression
matrix called golub, a vector of length called golub.cl
that consists of the 38 class labels,
and a matrix called golub.gnames whose third column
contains the gene names.
data(golub)

##For data with single origin
subset <- c(1:4,28:30)
origin <- rep(1,7)
identify genes
RP.out <- RPadvance(golub[,subset],golub.cl[subset],
 origin,plot=FALSE,rand=123)

For data from multiple origins
Load the data arab in the package, which contains
the expression of 22,081 genes
of control and treatment group from the experiments
independently conducted at two
laboratories.
data(arab)
arab.origin #1 1 1 1 1 1 2 2 2 2
arab.cl #0 0 1 1 0 0 1 1
RP.adv.out <- RPadvance(arab,arab.cl,arab.origin,
 num.perm=100,gene.names=arab.gnames,logged=TRUE,rand=123)

attributes(RP.adv.out)
head(RP.adv.out$pfp)
RSadvance

Advanced Rank Sum Analysis

Description

The function performs the Rank Sum method to identify differentially expressed genes. It is possible to do either a one-class or two-class analysis. It is also possible to combine data from different studies (e.g., datasets generated by different laboratories). This function has been kept only to guarantee backward compatibility, in fact the same results can be obtained by RankProducts.

Usage

RSadvance(data, cl, origin, num.perm = 100, logged = TRUE, na.rm = TRUE, gene.names = NULL, plot = FALSE, rand = NULL, huge = FALSE, fast = TRUE, tail.time = 0.05)

Arguments

data the data set that should be analyzed. Every row of this dataset must correspond to a gene
cl a vector containing the class labels of the samples. In the two class unpaired case, the label of a sample is either 0 (e.g., control group) or 1 (e.g., case group). For one class data, the label for each sample should be 1
origin a vector containing the origin labels of the samples. The label is the same for samples within one lab and different for samples from different labs.
num.perm in this version of the package, this parameter is not used any more, but it is kept for backward compatibility
logged if "TRUE" data have been previously log transformed. Otherwise it should be set as "FALSE"
na.rm if "FALSE", the NA value will not be used in computing rank. If "TRUE" (default), the missing values will be replaced by the genewise median of the non-missing values. Gene with a number of missing values greater than 50% are still not considered in the analysis
gene.names if "NULL", no gene name will be attached to the outputs, otherwise it contains the vector of gene names
plot if "TRUE", plot the estimated pfp vs the rank of each gene
rand if specified, the random number generator will be put in a reproducible state
huge if "TRUE" not all the outputs are evaluated in order to save space
fast if "FALSE" the exact p-values for the Rank Sum are evaluated for any size of the dataset. Otherwise (default), if the size of the dataset is too big, only the p-values that can be computed in "tail.time" minutes (starting from the tail) are evaluated with the exact method. The others are estimated with the Gaussian approximation. If calculateProduct="TRUE" this parameter is ignored
tail.time the time (default 0.05 min) dedicated to evaluate the exact p-values for the Rank Sum. If calculateProduct="TRUE" this parameter is ignored
Value

A result of identifying differentially expressed genes between two classes. The identification consists of two parts, the identification of up-regulated and down-regulated genes in class 2 compared to class 1, respectively.

- pfp: Estimated percentage of false positive predictions (pfp) up to the position of each gene under two identification each
- pval: Estimated pvalues for each gene being up- and down-regulated
- RSs: Rank-sum (average rank) of each genes
- RSrank: Rank of the rank sum of each gene in ascending order
- Orirank: Ranks in each possible pairing, in this version of the function this is not used to compute rank sum. It is here only for backward compatibility
- AveFC: Fold change of average expression under class 1 over that under class 2, if multiple origin, than averaged across all origin. Log-fold change if data is in log scaled, original fold change if data is unlogged
- allrank1: Fold change of class 1/class 2 under each origin. Log-fold change if data is in log scaled
- allrank2: Fold change of class 2/class 1 under each origin. Log-fold change if data is in log scaled
- nrep: Total number of replicates considering all the different origins
- groups: Vector of labels (as cl).

Note

Percentage of false prediction (pfp), in theory, is equivalent of false discovery rate (FDR), and it is possible to be large than 1.

The function looks for up- and down- regulated genes in two separate steps, thus two pfps are computed and used to identify gene that belong to each group.

The function is able to deal with single or multiple-origin studies. It is similar to funcion RP.advance expect a rank sum is computed instead of rank product. This method is more sensitive to individual rank values, while rank product is more robust to outliers (refer RankProd vignette for details)

Author(s)

Francesco Del Carratore, <francesco.delcarratore@postgrad.manchester.ac.uk>
Andris Jankevics, <andris.jankevics@gmail.com>

References

See Also

topGene RP RPAdvance plotRP RP.advance RankProducts
Examples

Suppose we want to check the consistence of the data sets generated in two different labs. For example, we would look for genes that were measured to be up-regulated in class 2 at lab 1, but down-regulated in class 2 at lab 2.

```r
data(arab)
arab.cl2 <- arab.cl

arab.cl2[arab.cl==0 & arab.origin==2] <- 1
arab.cl2[arab.cl==1 & arab.origin==2] <- 0

arab.cl2
## [1] 0 0 1 1 1 1 1 1 0 0
```

Look for genes differentially expressed between hypothetical class 1 and 2

```r
arab.sub=arab[1:500,]  # using subset for fast computation
arab.gnames.sub=arab.gnames[1:500]

Rsum.adv.out <- RSadvance(arab.sub,arab.cl2,arab.origin,
                           num.perm=100,logged=TRUE,
                           gene.names=arab.gnames.sub,rand=123)

attributes(Rsum.adv.out)
```

Description

Identify differentially expressed genes using rank product method

Usage

```r
topGene(x, cutoff=NULL, method="pfp", num.gene=NULL, logged=TRUE, logbase=2, gene.names=NULL)
```

Arguments

- `x` the value returned by function RP, RPadvance, RSadvance, RankProducts or RP.advance
- `cutoff` The pfp threshold value used to select genes
- `method` if cutoff is provided, the method needs to be selected to identify genes. "pfp" uses percentage of false prediction, which is a default setting. "pval" uses p-values which is less stringent than pfp
- `logged` if "TRUE", data has been logged, otherwise set it to "FALSE"
- `logbase` base used when taking log, used to restore the fold change. The default value is 2, this will be ignored if logged=FALSE
- `gene.names` if "NULL", no gene name will be attached to the output table
- `num.gene` number of candidates genes of interests, if cutoff is provided, this will be ignored
topGene

Value

Two tables of identified genes with gene.index: index of gene in the original data set RP/Rsum: Computed rank product/sum for each gene FC:(class1/class2): Expression Fold change of class 1/class 2. pfp: estimated pfp for each gene if the gene is used as cutoff point P.value: estimated p-value for each gene Table 1 list genes that are up-regulated under class 2, Table 1 list genes that are down-regulated under class 2

Author(s)
Fangxin Hong <fhong@salk.edu>

References

See Also
plotRP RP RPadvance RSadvance

Examples

Load the data of Golub et al. (1999). data(golub)
contains a 3051x38 gene expression
matrix called golub, a vector of length called golub.cl
that consists of the 38 class labels,
and a matrix called golub.gnames whose third column
contains the gene names.
data(golub)

#use a subset of data as example, apply the rank
#product method
subset <- c(1:4,28:30)
#Setting rand=123, to make the results reproducible,
#identify genes
RP.out <- RP(golub[,subset],golub.cl[subset],rand=123)

#get two lists of differentially expressed genes
#by setting FDR (false discovery rate) =0.05

table=topGene(RP.out,cutoff=0.05,method="pfp",logged=TRUE,logbase=2,
gene.names=golub.gnames[,3])
table$Table1
table$Table2

#using pvalue<0.05

topGene(RP.out,cutoff=0.05,method="pval",logged=TRUE,logbase=2,
gene.names=golub.gnames[,3])

#by selecting top 10 genes
topGene(RP.out,num.gene=10,gene.names=golub.gnames[,3])
Index

«Topic datasets
 Apples, 2
 arab, 3
 golub, 3
 lymphoma, 4

Apples, 2
apples.cl (Apples), 2
apples.data (Apples), 2
arab, 3

Biom (Apples), 2
exprSet, 4

golub, 3

lym.exp (lymphoma), 4
lymphoma, 4

mz (Apples), 2

plotRP, 5, 8, 10, 12, 15, 17, 19

RankProducts, 6, 8, 10, 12, 14–17
RP, 6, 8, 10, 12, 15, 17, 19
RP.advance, 8, 10, 11, 15, 17
RPAdvance, 6, 8, 10, 12, 13, 17, 19
RSAdvance, 6, 8, 10, 12, 15, 16, 19
rt (Apples), 2

topGene, 6, 8, 10, 12, 15, 17, 18