Package ‘SEPA’
April 26, 2017

Type Package
Title SEPA
Version 1.6.0
Date 2015-04-17
Author Zhicheng Ji, Hongkai Ji
Maintainer Zhicheng Ji <zji4@jhu.edu>
Description Given single-cell RNA-seq data and true experiment time of cells or pseudo-time cell ordering, SEPA provides convenient functions for users to assign genes into different gene expression patterns such as constant, monotone increasing and increasing then decreasing. SEPA then performs GO enrichment analysis to analysis the functional roles of genes with same or similar patterns.
License GPL(>=2)
Imports ggplot2, shiny, topGO, segmented, reshape2, org.Hs.eg.db, org.Mm.eg.db
VignetteBuilder knitr
Suggests knitr
Depends R(>= 2.10.0)
biocViews GeneExpression, Visualization, GUI, GO
NeedsCompilation no

R topics documented:

HSMMdata ... 2
patternGOanalysis .. 2
patternsummary ... 3
pseudotime ... 4
pseudotimepattern .. 4
pseudotimevisualize ... 5
SEPA ... 6
SEPAui ... 6
truetime ... 7
truetimepattern ... 7
truetimevisualize ... 8
windowGOanalysis .. 9
windowGOvisualize ... 10

Index 11
HSMMdata

Single-cell RNA-seq data for HSMM (Human Skeletal Muscle Myoblast)

Description

The R object is a log2 transformed expression matrix (HSMMdata) with 518 genes and 271 cells. This dataset is a subset of original gene expression profiles, which is available in the HSMMSingleCell package.

Format

A matrix

Source

References

patternGOanalysis

Description

Performs GO analysis on genes for each pattern

Usage

patternGOanalysis(pattern, type = NULL, termnum = 20, identifier = "ENSEMBL", species = "Human")

Arguments

- pattern: The direct output of truetimepattern or pseudotimepattern function.
- type: Character value of specific pattern to perform the GO analysis. If NULL GO analysis will be performed for all patterns.
- termnum: Number of top GO terms to be displayed.
- identifier: The identifier of the genes. It should be one of the following: "Entrez", "GenBank", "Alias", "Ensembl", "Gene", "Symbol", "GeneName" and "UniGene"
- species: The species of the genes. Currently only "Human" and "Mouse" are supported
Details
This function is basically a wrap up of functions in the topGO package. It takes as input the output of truetimepattern or pseudotimepattern function. For each pattern, the GO enrichment analysis is performed where input genes are genes with specific patterns and background genes are all genes in the expression profile. Users should correctly select identifier and species, otherwise the function may breakdown.

Value
A list where each element is a data.frame containing the results of GO analysis.

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples
```
library(topGO)
data(HSMMdata)
pattern <- truetimepattern(HSMMdata,truetime,removeconstant=TRUE)
patternGOanalysis(pattern,termnum=20,identifier="ENSMBL",species="Human")
```

Description
Count table for pattern

Usage
```
patternsummary(pattern)
```

Arguments
```
pattern The direct output of truetimepattern or pseudotimepattern function.
```

Details
This function generates a count table of number of genes with each pattern.

Value
A data.frame object. First column: pattern; Second column: number of genes

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples
```
data(HSMMdata)
pattern <- truetimepattern(HSMMdata,truetime,removeconstant=TRUE)
patternsummary(pattern)
```
pseudotimepattern

Description

The dataset contains a data.frame with two columns specifying pseudo-time calculated by Monocle. Note that only cells on the main path are retained. Cells belonging to the contaminated path are excluded. Please check HSMMSingleCell package for details.

Format

A data.frame with two columns

Source

References

pseudotimepattern	pseudotimepattern

Description

Identify Pattern for Pseudo Temporal Cell Ordering

Usage

```r
pseudotimepattern(expr, pseudotime, simplify = T, removeconstant = F, plot = F, gap = 10)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>The matrix of gene expression profile.</td>
</tr>
<tr>
<td>pseudotime</td>
<td>A character data.frame or matrix of pseudo-time. First column: Cell name;</td>
</tr>
<tr>
<td></td>
<td>Second column: pseudo-time.</td>
</tr>
<tr>
<td>simplify</td>
<td>Whether to simplify pattern so that same neighboring patterns will be reduced to one. For example "up_up_constant" will be simplified to "up_constant".</td>
</tr>
<tr>
<td>removeconstant</td>
<td>Whether to remove all constant patterns. For example "up_up_constant" will be simplified to "up_up". This step will be performed before simplify.</td>
</tr>
<tr>
<td>plot</td>
<td>Whether to generate plot for genes with transition points.</td>
</tr>
<tr>
<td>gap</td>
<td>Number of first and last gap cells that will be excluded when considering transition points.</td>
</tr>
</tbody>
</table>
Details
Identify the gene expression patterns for true experiment time. For the expressions of each gene, the function performs t-tests for cells from neighboring time points. The expression pattern for cells from neighboring time points could be increasing, decreasing or constant. All patterns are concatenated using "-" to form the final pattern.

Value
A list. expr: original expression matrix; pseudotime: original pseudotime; pattern: a list containing results of different patterns. For single patterns, it is a named vector where values are the p-values of the t-test of the simple linear regression slope coefficient. The vector is ordered according to the p-values. For transition patterns, a data.frame containing the mean and confidence interval of the transition point. It is ordered according to the transition points; fitexpr: the fitted expression matrix

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples
```r
data(HSMMdata)
pseudotimepattern(HSMMdata,pseudotime)
```

Description
Visualize Gene Expression Pattern for Pseudo Temporal Cell Ordering

Usage
```r
pseudotimevisualize(pattern, gene, showtrue = F)
```

Arguments
- `pattern`: The exact output of the pseudotimepattern function.
- `gene`: A character value or vector of gene names. Should be included in the gene expression matrix.
- `showtrue`: For the heatmap of multiple gene, whether to display true gene expression values or fitted gene expression values.

Details
Visualize gene expression pattern of one or multiple genes for pseudo temporal cell ordering. For one gene, a scatterplot with fitted lines will be generated. For multiple genes, a heatmap with fitted or true expression values will be generated.

Value
A ggplot2 object
SEPAui

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples
data(HSMMdata)
pattern <- pseudotimepattern(HSMMdata,pseudotime)
pseudotimevisualize(pattern,"ENSG00000108821.9")
pseudotimevisualize(pattern,c("ENSG00000108821.9", "ENSG00000187193.8"))

Description
SEPA: Single-Cell Gene Expression Pattern Analysis

SEPA provides useful functions to analyze gene expression patterns and perform GO analysis for single-cell RNA-seq data.

Details
Given single-cell RNA-seq data and true experiment time of cells or pseudo-time cell ordering, SEPA provides convenient functions for users to assign genes into different gene expression patterns such as constant, monotone increasing and increasing then decreasing. SEPA then performs GO enrichment analysis to analyze the functional roles of genes with same or similar patterns. SEPA comes with a user-friendly Graphical User Interface written in shiny.

SEPAui

Description
Launch the SEPA user interface in local machine

Usage
SEPAui()

Details
This function will automatically launch the SEPA user interface in a web browser. It provides a much easier and more convenient way to analyze gene expression patterns and perform GO analysis for single-cell RNA-seq data. The user interface can also be accessed by http://zhiji.shinyapps.io/SEPA. Neither R nor any packages are required in this online version. However, it is highly recommended that the user interface be launched locally for faster running speed.

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>
Examples

```r
## Not run:
SEPAui()

## End(Not run)
```

trueTime

True Experiment Time Points for HSMM Single-cell RNA-seq data

Description

The dataset contains a data.frame with two columns specifying true experiment time points. Note that only cells on the main path are retained. Cells belonging to the contaminated path are excluded. Please check HSMMSingleCell package for details.

Format

A data.frame with two columns

Source

References

trueTimePattern

Identify Pattern for True Experiment Time

Usage

```
trueTimePattern(expr, trueTime, simplify = T, removeConstant = F)
```

Arguments

- `expr` The matrix of gene expression profile.
- `trueTime` A character data.frame or matrix of true experimental time. First column: Cell name; Second column: experiment time.
- `simplify` Whether to simplify pattern so that same neighboring patterns will be reduced to one. For example "up_up_constant" will be simplified to "up_constant".
- `removeConstant` Whether to remove all constant patterns. For example "up_up_constant" will be simplified to "up_up". This step will be performed before simplify.
Details

Identify the gene expression patterns for true experiment time. For the expressions of each gene, the function performs t-tests for cells from neighboring time points. The expression pattern for cells from neighboring time points could be increasing, decreasing or constant. All patterns are concatenated using "-" to form the final pattern.

Value

A named vector or patterns. The names corresponds to gene names.

Author(s)

Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples

data(HSMMdata)
truetimepattern(HSMMdata,truetime)

truetimevisualize

Description

Visualize Gene Expression Pattern for True Experiment Time

Usage

truetimevisualize(expr, truetime, gene, mode = c("mean", "median"))

Arguments

expr The matrix of gene expression profile.
truetime A character data.frame or matrix of true experimental time. First column: Cell name; Second column: experiment time.
gene A vector of gene names to be plotted.
mode A character value specifying mean or median to be displayed

Details

Identify the gene expression patterns for true experiment time. For the expressions of each gene, the function performs t-tests for cells from neighboring time points. The expression pattern for cells from neighboring time points could be increasing, decreasing or constant. All patterns are concatenated using "-" to form the final pattern.

Value

A ggplot2 object.

Author(s)

Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>
windowGOanalysis

Examples

```r
library(topGO)
data(HSMMdata)
pattern <- pseudotimepattern(HSMMdata,pseudotime)
windowGOanalysis(pattern,type="constant_up")
```

Description

Performs GO analysis with moving window for transition patterns

Usage

```r
windowGOanalysis(pattern, type = "constant_up", windowsize = NULL,
movesize = NULL, termnum = 20, identifier = "ENSEMBL",
species = "Human")
```

Arguments

- `pattern`: The direct output of pseudotimepattern function.
- `type`: The type of transition pattern.
- `windowsize`: The number of genes in each group.
- `movesize`: How many genes to move forward each time.
- `termnum`: Number of top GO terms to be displayed.
- `identifier`: The identifier of the genes. It should be one of the following: "Entrez", "GenBank", "Alias", "Ensembl", "Gene", "Symbol", "GeneName" and "UniGene"
- `species`: The species of the genes. Currently only "Human" and "Mouse" are supported

Details

This function is specifically designed for GO analysis of genes with a specific transition pattern. GO analyses are performed iteratively on a group of genes with similar transition points. Users can define the windowsize (the number of genes in each group) and the movesize (how many genes to move forward each time).

Value

A list where each element is a data.frame containing the results of GO analysis. The name of the list specifies the group of genes.

Author(s)

Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples

```r
library(topGO)
data(HSMMdata)
pattern <- pseudotimepattern(HSMMdata,pseudotime)
windowGOanalysis(pattern,type="constant_up")
```
windowGOvisualize

Description
Visualize results of GO analysis with moving window for transition patterns

Usage
```r
windowGOvisualize(GOres, GOTerm = NULL, topterm = 2, mode = "Heatmap")
```

Arguments
- `GOres`: The direct output of windowGOanalysis function.
- `GOTerm`: The name of GO term to be displayed. If NULL, top GO terms will be displayed instead.
- `topterm`: The number of top GO terms to be displayed. This argument only works when GOTerm is NULL.
- `mode`: To plot in heatmap or line graph. Either "Heatmap" or "Line".

Details
This function is specifically designed to visualize the results obtained from windowGOanalysis function. Users can choose to visualize specific GO terms or top GO terms in each time window.

Value
A ggplot2 object.

Author(s)
Zhicheng Ji, Hongkai Ji <zji4@zji4.edu>

Examples
```r
library(topGO)
data(HSMMdata)
pattern <- pseudotimepattern(HSMMdata,pseudotime)
windowGOvisualize(windowGOanalysis(pattern,type="constant_up"))
```
Index

HSMMdata, 2
patternGOanalysis, 2
patternssummary, 3
pseudotime, 4
pseudotimepattern, 4
pseudotimevisualize, 5

SEPA, 6
SEPA-package (SEPA), 6
SEPAui, 6

truetime, 7
truetimepattern, 7
truetimevisualize, 8

windowGOanalysis, 9
windowGOvisualize, 10