Package ‘SIMLR’

April 26, 2017

Version 1.2.0
Date 2017-04-10
Title Title: SIMLR: Single-cell Interpretation via Multi-kernel LeaRning
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com>
Depends R (>= 3.4),
Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph, scran,
Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical to identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization. SIMLR is capable of separating known subpopulations more accurately in single-cell data sets than do existing dimension reduction methods. Additionally, SIMLR demonstrates high sensitivity and accuracy on high-throughput peripheral blood mononuclear cells (PBMC) data sets generated by the GemCode single-cell technology from 10x Genomics.
Encoding UTF-8
LazyData TRUE
License file LICENSE
URL https://github.com/BatzoglouLabSU/SIMLR
BugReports https://github.com/BatzoglouLabSU/SIMLR
biocViews Clustering, GeneExpression, Sequencing, SingleCell
RoxygenNote 6.0.1
LinkingTo Rcpp
NeedsCompilation yes
VignetteBuilder knitr
Author Bo Wang [aut],
Daniele Ramazzotti [aut, cre],
Luca De Sano [aut],
Description

example dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Description

perform the SIMLR clustering algorithm

Usage

SIMLR(X, c, no.dim = NA, k = 10, if.impute = FALSE, normalize = FALSE, cores.ratio = 1)

Arguments

X
an (m x n) data matrix of gene expression measurements of individual cells or and object of class SCESet
c
number of clusters to be estimated over X
no.dim
number of dimensions
k
tuning parameter
if.impute
should I transpose the input data?
normalize
should I normalize the input data?
cores.ratio
ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities
list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters: y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network diffusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples

SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
library(scran)
ncells = 50
ngenes = 25
mu <- 2^runif(ngenes, 3, 10)
gene.counts <- matrix(rnbinom(ngenes*ncells, mu=mu, size=2), nrow=ngenes)
rownames(gene.counts) = paste0("X", seq_len(ngenes))
rownames(gene.counts) = paste0("X", seq_len(ngenes))
sce = newSCESet(countData=data.frame(gene.counts))
output = SIMLR(X = sce, c = 8, cores.ratio = 0)
SIMLR_Feature_Ranking SIMLR Feature Ranking

Description
perform the SIMLR feature ranking algorithm. This takes as input the original input data and the
 corresponding similarity matrix computed by SIMLR

Usage
SIMLR_Feature_Ranking(A, X)

Arguments
A an (n x n) similarity matrix by SIMLR
X an (m x n) data matrix of gene expression measurements of individual cells

Value
a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)

SIMLR_Large_Scale SIMLR Large Scale

Description
perform the SIMLR clustering algorithm for large scale datasets

Usage
SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE,
 normalize = FALSE)

Arguments
X an (m x n) data matrix of gene expression measurements of individual cells or
 and object of class SCESet
 c number of clusters to be estimated over X
 k tuning parameter
 kk number of principal components to be assessed in the PCA
 if.impute should I transpose the input data?
 normalize should I normalize the input data?
Value
clusters the cells based on SIMLR Large Scale and their similarities
list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters:
y = results of k-means clusterings, S0 = similarities computed by SIMLR, F = results from the large
scale iterative procedure, ydata = data referring the the results by k-means, alphaK = clustering
coefficients, val = distances from the k-nearest neighbour search, ind = indeces from the k-nearest
neighbour search, execution.time = execution time of the present run

Examples
Not run:
SIMLR_Large_Scale(X = ZeiselAmit$in_X, c = ZeiselAmit$n_clust, k = 5, kk = 25)
End(Not run)

ZeiselAmit
test dataset for SIMLR large scale

Description
example dataset to test SIMLR large scale, reduced version from the work by Zeisel, Amit, et al.

Usage
data(ZeiselAmit)

Format
gene expression measurements of individual cells

Value
list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells,
n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster
assignments for each of the n_clust clusters, seed = seed used to compute the results for the example,
results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information
as a measure of the inferred clusters compared to the true labels

Source
Zeisel, Amit, et al. "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-
Index

BuettnerFlorian, 2
SIMLR, 3
SIMLR_Feature_Ranking, 4
SIMLR_Large_Scale, 4
ZeiselAmit, 5