Package ‘SIMLR’

March 29, 2017

Version 1.0.1
Date 2016-10-20
Title SIMLR: Single-cell Interpretation via Multi-kernel LeaRning
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com>
Depends R (>= 3.3),
Imports parallel, Matrix, stats, methods,
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph, scran,
Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical to identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization. SIMLR is capable of separating known subpopulations more accurately in single-cell data sets than do existing dimension reduction methods. Additionally, SIMLR demonstrates high sensitivity and accuracy on high-throughput peripheral blood mononuclear cells (PBMC) data sets generated by the GemCode single-cell technology from 10x Genomics.

Encoding UTF-8
LazyData TRUE
License file LICENSE
URL https://github.com/BatzoglouLabSU/SIMLR
BugReports https://github.com/BatzoglouLabSU/SIMLR
biocViews Clustering, GeneExpression, Sequencing, SingleCell
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation yes
Author Bo Wang [aut],
Daniele Ramazzotti [aut, cre],
Luca De Sano [aut],
Junjie Zhu [ctb],
Emma Pierson [ctb],
Serafim Batzoglou [ctb]
Description
elephant dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage
data(BuettnerFlorian)

Format
gene expression measurements of individual cells

Value
list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source
SIMLR_Feature_Ranking

Arguments

- **X**: an \((m \times n)\) data matrix of gene expression measurements of individual cells or an object of class SCESet.
- **c**: number of clusters to be estimated over \(X\).
- **no.dim**: number of dimensions.
- **k**: tuning parameter.
- **if.impute**: should I transpose the input data?
- **normalize**: should I normalize the input data?
- **cores.ratio**: ratio of the number of cores to be used when computing the multi-kernel.

Value

clusters the cells based on SIMLR and their similarities.

list of 8 elements describing the clusters obtained by SIMLR, of which \(y\) are the resulting clusters:

- \(y\) = results of k-means clusterings,
- \(S\) = similarities computed by SIMLR,
- \(F\) = results from network diffusion,
- \(ydata\) = data referring the the results by k-means,
- \(alphaK\) = clustering coefficients,
- \(execution.time\) = execution time of the present run,
- \(converge\) = iterative convergence values by T-SNE,
- \(LF\) = parameters of the clustering.

Examples

```r
SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
```

library(scran)
ncells = 50
ngen = 25
mu <- 2*runif(ngen, 3, 10)
gene.counts <- matrix(rnbinom(ngen*ncells, mu=mu, size=2), nrow=ngen)
ownames(gene.counts) = paste0("X", seq_len(ngen))
sce = newSCESet(countData=data.frame(gene.counts))
output = SIMLR(X = sce, c = 8, cores.ratio = 0)
```

**SIMLR_Feature_Ranking**

**Description**

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR.

**Usage**

```r
SIMLR_Feature_Ranking(A, X)
```

**Arguments**

- **A**: an \((n \times n)\) similarity matrix by SIMLR.
- **X**: an \((m \times n)\) data matrix of gene expression measurements of individual cells.
SIMLR_Feature_Ranking

Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

SIMLR_Feature_Ranking(A = BuettnerFlorian$results$, X = BuettnerFlorian$in_X)$
Index

BuettnerFlorian, 2
SIMLR, 2
SIMLR_Feature_Ranking, 3