Package ‘SIMLR’

November 21, 2016

Version 1.0.1
Date 2016-10-20
Title SIMLR: Single-cell Interpretation via Multi-kernel LeaRning
Maintainer Daniele Ramazzotti <daniele.ramazzotti@yahoo.com>
Depends R (>= 3.3),
Imports parallel, Matrix, stats, methods,
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph, scran,
Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical to identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization. SIMLR is capable of separating known subpopulations more accurately in single-cell data sets than do existing dimension reduction methods. Additionally, SIMLR demonstrates high sensitivity and accuracy on high-throughput peripheral blood mononuclear cells (PBMC) data sets generated by the GemCode single-cell technology from 10x Genomics.

Encoding UTF-8
LazyData TRUE
License file LICENSE
URL https://github.com/BatzoglouLabSU/SIMLR
BugReports https://github.com/BatzoglouLabSU/SIMLR
biocViews Clustering, GeneExpression, Sequencing, SingleCell
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation yes
Author Bo Wang [aut],
Daniele Ramazzotti [aut, cre],
Luca De Sano [aut],
Junjie Zhu [ctb],
Emma Pierson [ctb],
Serafim Batzoglou [ctb]
R topics documented:

BuettnerFlorian ... 2
SIMLR ... 2
SIMLR_Feature_Ranking ... 3

Description

test dataset

element dataset to test SIMLR from the work by Buettner, Florian, et al.

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Description

perform the SIMLR clustering algorithm

Usage

SIMLR(X, c, no.dim = NA, k = 10, if.impute = FALSE, normalize = FALSE, cores.ratio = 1)
Arguments

\(X\) an \((m \times n)\) data matrix of gene expression measurements of individual cells or
and object of class SCESet

\(c\) number of clusters to be estimated over \(X\)

\(k\) number of dimensions

\(i\) tuning parameter

\(f\) should I transpose the input data?

\(n\) should I normalize the input data?

\(c\) ratio of the number of cores to be used when computing the multi-kernel

Value

clusters the cells based on SIMLR and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which \(y\) are the resulting clusters:

\(y\) = results of k-means clusterings, \(S\) = similarities ccomputed by SIMLR, \(F\) = results from network
diffusion, \(ydata\) = data referring the the results by k-means, \(alpha\) = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE,
\(LF\) = parameters of the clustering

Examples

```
SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
```

library(scran)
ncells = 50
ngenes = 25
mu <- 2^runif(ngenes, 3, 10)
gene.counts <- matrix(rnbinom(ngenes*ncells, mu=mu, size=2), nrow=ngenes)
rownames(gene.counts) = paste0("X", seq_len(ngenes))
sce = newSCESet(countData=data.frame(gene.counts))
output = SIMLR(X = sce, c = 8, cores.ratio = 0)
```

Description

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the
corresponding similarity matrix computed by SIMLR

Usage

SIMLR_Feature_Ranking(A, X)

Arguments

\(A\) an \((n \times n)\) similarity matrix by SIMLR

\(X\) an \((m \times n)\) data matrix of gene expression measurements of individual cells
**Value**

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

**Examples**

```r
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)
```
Index

BuettnerFlorian, 2
SIMLR, 2
SIMLR_Feature_Ranking, 3