Package ‘SISPA’

April 15, 2017

Type Package
Title SISPA: Method for Sample Integrated Set Profile Analysis
Version 1.4.0
Date 2016-09-29
Author Bhakti Dwivedi and Jeanne Kowalski
Maintainer Bhakti Dwivedi <bhakti.dwivedi@emory.edu>
Description Sample Integrated Set Profile Analysis (SISPA) is a method designed to define sample groups with similar gene set enrichment profiles.
Depends R (>= 3.2), genefilter, GSVA, changepoint
Imports data.table, plyr, ggplot2
License GPL-2
LazyData true
Collate 'SISPA.R' 'callZSCORE.R' 'callGSVA.R' 'cptSamples.R'
'waterfallplot.R' 'freqplot.R' 'sortData.R' 'filterVars.R'
'expression_data.R' 'variant_data.R'
biocViews GeneSetEnrichment, GenomeWideAssociation
Suggests knitr
VignetteBuilder knitr
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>callGSVA</td>
<td>2</td>
</tr>
<tr>
<td>callZSCORE</td>
<td>3</td>
</tr>
<tr>
<td>cptSamples</td>
<td>3</td>
</tr>
<tr>
<td>expression_data</td>
<td>4</td>
</tr>
<tr>
<td>filterVars</td>
<td>5</td>
</tr>
<tr>
<td>freqplot</td>
<td>5</td>
</tr>
<tr>
<td>SISPA</td>
<td>6</td>
</tr>
<tr>
<td>sortData</td>
<td>7</td>
</tr>
<tr>
<td>variant_data</td>
<td>8</td>
</tr>
<tr>
<td>waterfallplot</td>
<td>8</td>
</tr>
</tbody>
</table>

Index 10
callGSVA

Description

Estimates GSVA enrichment zscores.

Usage

```r
callGSVA(x, y)
```

Arguments

- `x`: A data frame or matrix of gene or probe expression values where rows correspond to genes and columns correspond to samples.
- `y`: A list of genes as data frame or vector.

Details

This function uses "zscore" gene-set enrichment method in the estimation of gene-set enrichment scores per sample.

Value

A gene-set by sample matrix of GSVA enrichment zscores.

See Also

GSVA

Examples

```r
g <- 10  # number of genes
s <- 30  # number of samples
## sample data matrix with values ranging from 1 to 10
rnames <- paste("g", 1:g, sep="")
cnames <- paste("s", 1:s, sep="")
expr <- matrix(sample.int(10, size = g*s, replace = TRUE), nrow=g, ncol=s, dimnames=list(rnames, cnames))
## genes of interest
genesis <- paste("g", 1:g, sep="")
## Estimates GSVA enrichment zscores.
callGSVA(expr, genesis)
```
callZSCORE

Description

Estimates the z-scores for each row in the data matrix.

Usage

```r
callZSCORE(x)
```

Arguments

- `x` A data frame or matrix of gene or probe expression values where rows correspond to genes and columns correspond to samples.

Details

This function compute row z-scores per sample when number of genes is less than 3.

Value

A gene-set by sample matrix of z-scores.

Examples

```r
g <- 2  # number of genes
s <- 60  # number of samples
# sample data matrix with values ranging from 1 to 10
rnames <- paste("g", 1:g, sep="")
cnames <- paste("s", 1:s, sep="")
expr <- matrix(sample.int(10, size = g*s, replace = TRUE), nrow=g, ncol=s, dimnames=list(rnames, cnames))
# Estimates z-scores
callZSCORE(expr)
```

cptSamples

Sample profile identifier analysis

Description

Generate sample profile identifiers from sample z-scores using change point model.

Usage

```r
cptSamples(x, cpt_data, cpt_method, cpt_max)
```
expression_data

Arguments

x A matrix or data frame of sample GSVA enrichment zscores within which you wish to find a changepoint.
cpt_data Identify changepoints for data using variance (cpt.var), mean (cpt.mean) or both (cpt.meanvar). Default is cpt.var.
cpt_method Choice of single or multiple changepoint model. Default is "BinSeg".
cpt_max The maximum number of changepoints to search for using "BinSeg" method. Default is 60.

Details

This function assigns samples identified in the first changepoint with the active profile ("1") while the remaining samples are grouped under inactive profile ("0").

Value

The input data frame with added sample identifiers and estimated changepoints. A plot showing the changepoint locations estimated on the data

See Also

changepoint

Examples

g <- 10 # number of genes
s <- 60 # number of samples
sample data matrix with values ranging from 1 to 10
rnames <- paste("g", 1:g, sep="")
cnames <- paste("s", 1:s, sep="")
expr <- matrix(sample.int(10, size = g*s, replace = TRUE), nrow=g, ncol=s, dimnames=list(rnames, cnames))
genes of interest
genes <- paste("g", 1:g, sep="")
Estimates GSVA enrichment zscores.
gsva_results <- callGSVA(expr, genes)
cptSamples(gsva_results, cpt_data="var", cpt_method="BinSeg", cpt_max=60)

expression_data An example of RNAseq derived gene expression data

Description

This dataset contains the expression values of 8 probes (rows) in 125 samples (columns), as compiled by the CoMMpass study.

Usage

data(expression_data)

Details

This is data to be included in my package
filterVars

A filter function for the data

Value

umeric expression dataset of 8 probes (rows) on 125 samples (column)

Description

Filter rows with zero values

Usage

filterVars(x,y)

Arguments

x : A data frame or matrix where rows represent gene and columns represent samples
y : A vector of a sample column values to apply the filtering on.

Details

This function filter out rows with zero data value for a given sample. Both input arguments (x and y) must be of the same length

Value

The returned value is a list containing an entry for each row filtered out by zero data value

Examples

```
x = matrix(runif(3*10, 0, 1), ncol=3)
y <- x[,1]
filterVars(x,y)
```

freqplot

A plotting function for SISPA sample identifiers

Description

Given a sample changepoint data frame, will plot number of samples with and without profile activity

Usage

freqplot(x)

Arguments

x A data frame containing samples as rows followed by zscores and estimated changepoints to be plotted.
Details

This function expects the output from cptSamples function of SISPA package, and shows the number of samples with (orange filled bars) and without profile activity (grey filled bars).

Value

Bar plot pdf illustrating distribution of samples

Examples

```r
samples <- c("s1","s2","s3","s4","s5","s6","s7","s8","s9","s10")
zscores <- c(3.83,2.70,2.67,2.31,1.70,1.25,-0.42,-1.01,-2.43,-3.37)
changepoints <- c(1,1,1,2,2,3,3,NA,NA,NA)
sample_groups <- c(1,1,1,0,0,0,0,0,0,0)
my.data = data.frame(samples,zscores,changepoints,sample_groups)
freqplot(my.data)
```

Description

SISPA: Method for Sample Integrated Gene Set Analysis

Usage

```r
SISPA(feature=1,f1.df,f1.profile,f2.df,f2.profile,cpt_data="var",cpt_method="BinSeg",cpt_max=60)
```

Arguments

- **feature**: Number of input feature or data types
- **f1.df**: A data matrix of first feature (e.g., gene or probe expression values) where rows correspond to genes and columns correspond to samples
- **f1.profile**: A flag to specify gene profile. If gene.profile="up" then samples with increased zscores are identified. If gene.profile="down" then samples with decreased zscores are identified. Default is "up".
- **f2.df**: A data matrix of second feature (e.g., gene variant change) where rows correspond to genes and columns correspond to samples
- **f2.profile**: A flag to specify gene profile. If gene.profile="up" then samples with increased zscores are identified. If gene.profile="down" then samples with decreased zscores are identified. Default is "up".
- **cpt_data**: Identify changepoints for data using variance (cpt.var), mean (cpt.mean), or both (cpt.meanvar). Default is cpt.var.
- **cpt_method**: Choice of single or multiple changepoint model. Default is "BinSeg". See changepoint R package for details
- **cpt_max**: The maximum number of changepoints to search for using "BinSeg" method. Default is 60.
Sample Integrated Gene Set Analysis (SISPA) is a method designed to define sample groups with similar gene set enrichment profiles. The user specifies a gene list of interest and sample by gene molecular data (expression, methylation, variant, or copy change data) to obtain gene set enrichment scores by each sample. The score statistics is rank ordered by the desired profile (e.g., upregulated or downregulated) for samples. A change point model is then applied to the sample scores to identify groups of samples that show similar gene set profile patterns. Samples are ranked by desired profile activity score and grouped by samples with and without profile activity. Figure 1 shows the schematic representation of the SISPA method overview.

Value

The input molecular data frame with added sample identifiers and estimated changepoints. A plot showing the changepoint locations estimated on the data. Bar plots pdf illustrating distinct distribution of samples with and without profile activity

Examples

```r
# number of genes
g <- 10
# number of samples
s <- 60
# sample data matrix with values ranging from 1 to 10
rnames <- paste("g", 1:g, sep="")
cnames <- paste("s", 1:s, sep="")
expr <- matrix(sample.int(10, size = g*s, replace = TRUE), nrow=g, ncol=s, dimnames=list(rnames, cnames))
SISPA(feature=1,f1.df=expr,f1.profile="up")
```

sortData

Sorts the data by a column

Description

Sorts the data frame by a column index in the given order

Usage

```r
sortData(x,i,b)
```

Arguments

- `x` A data frame
- `i` A numeric column index of the data frame to sort it by
- `b` User specified sorting order, ascending (FALSE) or descending (TRUE)

Details

defaults are used: i = 1, b = FALSE, if not specified

Value

sorted data by the input column index
Author(s)
Bhakti Dwivedi & Jeanne Kowalski

Examples

```r
samples <- c("s1","s2","s3","s4","s5","s6","s7","s8","s9","s10")
zscores <- c(3.83,2.70,2.67,2.31,1.70,1.25,-0.42,-1.01,-2.42,-3.37)
my.data = data.frame(samples,zscores)
sortData(my.data,2,TRUE)
```

variant_data
An example of RNAseq derived gene variant change data

Description
This dataset contains the variant proportion values of variants (n=380) associated with 8 genes (rows) in 125 samples (columns), as compiled by the CoMMpass study.

Usage
data(variant_data)

Details
This is data to be included in my package

Value
numeric variant dataset of 380 variants (rows) on 125 samples (column)

waterfallplot
A plotting function for SISPA sample identifiers

Description
Given a sample changepoint data frame, will plot all samples zscores from that data.

Usage
waterfallplot(x)

Arguments
x A data frame containing samples as rows followed by zscores and estimated sample_groups to be plotted.

Details
This function expects the output from cptSamples function of SISPA package, and highlights the sample profile of interest in the changepoint 1 with orange filled bars.
Value

Bar plot pdf illustrating distinct SISPA sample profiles.

Examples

```r
samples <- c("s1","s2","s3","s4","s5","s6","s7","s8","s9","s10")
zscores <- c(3.83,2.70,2.67,2.31,1.70,1.25,-0.42,-1.01,-2.43,-3.37)
changepoints <- c(1,1,1,2,2,3,3,NA,NA,NA)
sample_groups <- c(1,1,0,0,0,0,0,0,0)
my.data = data.frame(samples,zscores,changepoints,sample_groups)
waterfallplot(my.data)
```
Index

*Topic datasets
 expression_data, 4
 variant_data, 8

callGSVA, 2
callZSCORE, 3
cptSamples, 3

expression_data, 4

filterVars, 5
freqplot, 5

SISPA, 6
sortData, 7

variant_data, 8

waterfallplot, 8