Package ‘SNPRelate’

November 21, 2016

Type Package
Title Parallel Computing Toolset for Relatedness and Principal Component Analysis of SNP Data
Version 1.8.0
Date 2016-10-13
Depends R (>= 2.15), gdsfmt (>= 1.8.3)
LinkingTo gdsfmt
Suggests parallel, RUnit, knitr, MASS, BiocGenerics
Enhances SeqArray (>= 1.11.12)
Description Genome-wide association studies (GWAS) are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed an R package SNPRelate to provide a binary format for single-nucleotide polymorphism (SNP) data in GWAS utilizing CoreArray Genomic Data Structure (GDS) data files. The GDS format offers the efficient operations specifically designed for integers with two bits, since a SNP could occupy only two bits. SNPRelate is also designed to accelerate two key computations on SNP data using parallel computing for multi-core symmetric multiprocessing computer architectures: Principal Component Analysis (PCA) and relatedness analysis using Identity-By-Descent measures. The SNP GDS format is also used by the GWASTools package with the support of S4 classes and generic functions. The extended GDS format is implemented in the SeqArray package to support the storage of single nucleotide variations (SNVs), insertion/deletion polymorphism (indel) and structural variation calls.
License GPL-3
VignetteBuilder knitr
URL http://github.com/zhengxwen/SNPRelate,
http://corearray.sourceforge.net/tutorials/SNPRelate/
BugReports http://github.com/zhengxwen/SNPRelate/issues
biocViews Infrastructure, Genetics, StatisticalMethod, PrincipalComponent
NeedsCompilation yes
R topics documented:

Author Xiwen Zheng [aut, cre, cph],
Stephanie Gogarten [ctb],
Cathy Laurie [ctb],
Bruce Weir [ctb, ths]
Maintainer Xiwen Zheng <zhengx@u.washington.edu>

R topics documented:

SNPRelate-package ... 3
hapmap_geno ... 5
snpdgsAdmixProp .. 6
snpdgsAlleleSwitch .. 8
snpdgsApartSelection ... 9
snpdgsBED2GDS ... 10
snpdgsClose ... 12
snpdgsCombineGeno ... 13
snpdgsCreateGeno ... 14
snpdgsCreateGenoSet .. 15
snpdgsCutTree ... 17
snpdgsDiss ... 19
snpdgsDrawTree ... 21
snpdgsEIGMIX ... 22
snpdgsErrMsg ... 24
snpdgsExampleFileName .. 25
SNPGDSFileClass ... 26
snpdgsFst ... 26
snpdgsGDS2BED ... 28
snpdgsGDS2Eigen .. 29
snpdgsGDS2PED ... 30
snpdgsGEN2GDS .. 31
snpdgsGetGeno .. 33
snpdgsGRM ... 34
snpdgsHCluster .. 35
snpdgsHWE ... 37
snpdgsIBDKING .. 38
snpdgsIBDML ... 40
snpdgsIBDMLLogLik ... 43
snpdgsIBDMoM ... 45
snpdgsIBDSelection ... 47
snpdgsIBS ... 49
snpdgsIBSNum ... 50
snpdgsIndInb ... 51
snpdgsIndInbCoef ... 53
snpdgsIndivBeta .. 54
snpdgsLDMat ... 55
snpdgsLDpair .. 57
snpdgsLDpruning ... 58
snpdgsOpen ... 60
snpdgsOption .. 61
snpdgsPairIBD ... 62
snpdgsPairIBDMLLogLik .. 64
Description

Genome-wide association studies are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed SNPRelate (R package for multi-core symmetric multiprocessing computer architectures) to accelerate two key computations on SNP data: principal component analysis (PCA) and relatedness analysis using identity-by-descent measures. The kernels of our algorithms are written in C/C++ and highly optimized.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>License</th>
<th>Depends</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNPRelate</td>
<td>Package</td>
<td>GPL version 3</td>
<td>gdsfmt (>= 1.0.4)</td>
</tr>
</tbody>
</table>

The genotypes stored in GDS format can be analyzed by the R functions in SNPRelate, which utilize the multi-core feature of machine for a single computer.

Tutorial: http://corearray.sourceforge.net/tutorials/SNPRelate/

Author(s)

Xiuwen Zheng <zhengxwen@gmail.com>
References

Examples

###
Convert the PLINK BED file to the GDS file
#
PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")

###
Principal Component Analysis
#
open
genofile <- snpgdsOpen("HapMap.gds")
RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1",
 col=rgb(0,0,150, 50, maxColorValue=255), pch=19)

close the file
snpgdsClose(genofile)

###
Identity-By-Descent (IBD) Analysis
#
open
genofile <- snpgdsOpen(snpgdsExampleFileName())
RV <- snpgdsIBDMoM(genofile)
flag <- lower.tri(RV$k0)
plot(RV$k0[flag], RV$k1[flag], xlab="k0", ylab="k1",
 col=rgb(0,0,150, 50, maxColorValue=255), pch=19)
abline(1, -1, col="red", lty=4)

close the file
snpgdsClose(genofile)

###
Identity-By-State (IBS) Analysis
#

hapmap_geno

SNP genotypes of HapMap samples

Description

A list object including the following components:
- **sample.id** – a vector of sample ids;
- **snp.id** – a vector of SNP ids;
- **snp.position** – a vector of SNP positions;
- **snp.chromosome** – a vector of chromosome indices;
- **snp.allele** – a character vector of “reference / non-reference”;
- **genotype** – a “# of SNPs” X “# of samples” genotype matrix.

Usage

`hapmap_geno`

Value

A list
snpgdsAdmixProp

Estimate ancestral proportions from the eigen-analysis

Description

Estimate ancestral (admixture) proportions based on the eigen-analysis.

Usage

snpgdsAdmixProp(eigobj, groups, bound=FALSE)

Arguments

eigobj an object of snpgdsEigMixClass from snpgdsEIGMIX, or an object of snpgdsPCAClass from snpgdsPCA

groups a list of sample IDs, such like groups = list(CEU = c("NA0101", "NA1022", ...), YRI = c("NAxxxx", ...), Asia = c("NA1234", ...))

bound if TRUE, the estimates are bounded so that no component < 0 or > 1, and the sum of proportions is one

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value

Return a snpgdsEigMixClass object, and it is a list:

- sample.id the sample ids used in the analysis
- snp.id the SNP ids used in the analysis
- eigenval eigenvalues
- eigenvect eigenvectors, "# of samples" x "eigen.cnt"
- ibdmat the IBD matrix

Author(s)

Xiuwen Zheng

References

See Also

snpgdsEIGMIX, snpgdsPCA
Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

get population information
or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),
 EV1 = RV$eigenvect[,1], # the first eigenvector
 EV2 = RV$eigenvect[,2], # the second eigenvector
 stringsAsFactors = FALSE)
head(tab)

draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
 xlab="eigenvector 2", ylab="eigenvector 1")
legend("topleft", legend=levels(tab$pop), pch="o", col=1:4)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],
 YRI = samp.id[pop_code == "YRI"],
 CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))])

prop <- snpgdsAdmixProp(RV, groups=groups)

draw
plot(prop[, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),
 xlab="Admixture Proportion from YRI",
 ylab="Admixture Proportion from CEU")
abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", lty=2)
abline(a=1, b=-1, col="gray25", lty=2)
legend("topright", legend=levels(tab$pop), pch="o", col=1:4)

run eigen-analysis
RV <- snpgdsEIGMIX(genofile, sample.id=samp.id[pop_code=="JPT"])
z <- RV$ibdmat

mean(c(z))
mean(diag(z))
close the genotype file
snpgdsClose(genofile)

Allele-switching

Description

Switch alleles according to the reference if needed.

Usage

```r
snpgdsAlleleSwitch(gdsobj, A.allele, verbose=TRUE)
```

Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **A.allele**: characters, referring to A allele
- **verbose**: if TRUE, show information

Value

A logical vector with TRUE indicating allele-switching and NA when it is unable to determine. NA occurs when A.allele = NA or A.allele is not in the list of alleles.

Author(s)

Xiuwen Zheng

Examples

```r
# the file name of SNP GDS
(fn <- snpgdsExampleFileName())

# copy the file
file.copy(fn, "test.gds", overwrite=TRUE)

# open the SNP GDS file
genofile <- snpgdsOpen("test.gds", readonly=FALSE)

# allelic information
allele <- read.gdsn(index.gdsn(genofile, "snp.allele"))
allele.list <- strsplit(allele, "/")

A.allele <- sapply(allele.list, function(x) { x[1] })
B.allele <- sapply(allele.list, function(x) { x[2] })

set.seed(1000)
flag <- rep(FALSE, length(A.allele))
flag[sample.int(length(A.allele), 50, replace=TRUE)] <- TRUE
A.allele[flag] <- B.allele[flag]
```
A.allele[sample.int(length(A.allele), 10, replace=TRUE)] <- NA
table(A.allele, exclude=NULL)

allele switching
z <- snpgdsAlleleSwitch(genofile, A.allele)
table(z, exclude=NULL)

close the file
snpgdsClose(genofile)

delete the temporary file
unlink("test.gds", force=TRUE)

snpgdsApartSelection
Select SNPs with a basepair distance

Description
Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

Usage

```r
snpgdsApartSelection(chromosome, position, min.dist=100000,  
max.n.snp.perchr=-1, verbose=TRUE)
```

Arguments
- **chromosome**: chromosome codes
- **position**: SNP positions in base pair
- **min.dist**: A numeric value to specify minimum distance required (in basepairs)
- **max.n.snp.perchr**: A numeric value specifying the maximum number of SNPs to return per chromosome, "-1" means no number limit
- **verbose**: if TRUE, show information

Value
A logical vector indicating which SNPs were selected.

Author(s)
Xiuwen Zheng

See Also
- `snpgdsLDpruning`
Examples

```r
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())
genofile
chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))
pos <- read.gdsn(index.gdsn(genofile, "snp.position"))
set.seed(1000)
flag <- snpgdsApartSelection(chr, pos, min.dist=250000, verbose=TRUE)
table(flag)
# close the genotype file
snpdgsClose(genofile)
```

snpdgsBED2GDS

Conversion from PLINK BED to GDS

Description

Convert a PLINK binary ped file to a GDS file.

Usage

```r
snpdgsBED2GDS(bed.fn, fam.fn, bim.fn, out.gdsfn, family=FALSE,
snpfirstdim=NA, compress.annotation="ZIP_RA.max", compress.geno="",
onption=NULL, cvt.chr=c("int", "char"), cvt.snpid=c("auto", "int"),
verbose=TRUE)
```

Arguments

- **bed.fn** the file name of binary file, genotype information
- **fam.fn** the file name of first six columns of ".ped"
- **bim.fn** the file name of extended MAP file: two extra columns = allele names
- **out.gdsfn** the output GDS file
- **family** if TRUE, to include family information in the sample annotation
- **snpfirstdim** if TRUE, genotypes are stored in the individual-major mode, (i.e. list all SNPs for the first individual, and then list all SNPs for the second individual, etc); NA, the dimension is determined by the BED file
- **compress.annotation** the compression method for the GDS variables, except "genotype"; optional values are defined in the function add.gdsn
- **compress.geno** the compression method for "genotype"; optional values are defined in the function add.gdsn
- **option** NULL or an object from snpgdsOption, see details
- **cvt.chr** "int" – chromosome code in the GDS file is integer; "char" – chromosome code in the GDS file is character
- **cvt.snpid** "int" – to create an integer snp.id starting from 1; "auto" – if SNP IDs in the PLINK file are not unique, to create an an integer snp.id, otherwise to use SNP IDs for snp.id
- **verbose** if TRUE, show information
Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format is used in the gdsfmt package.

BED – the PLINK binary ped format.

The user could use option to specify the range of code for autosomes. For humans there are 22 autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for humans. The user could call option = snpgdsOption(autosome.end=38) for importing the BED file of dog. It also allow define new chromosome coding, e.g., option = snpgdsOption(Z=27).

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

See Also

snpgdsOption, snpgdsPED2GDS, snpgdsGDS2PED

Examples

PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")

open
genofile <- snpgdsOpen("HapMap.gds")
genofile

close
snpgdsClose(genofile)

delete the temporary file
unlink("HapMap.gds", force=TRUE)
snpgdsClose

Description

Close the SNP GDS file

Usage

```r
snpgdsClose(gdsobj)
```

Arguments

- `gdsobj` an object of class `SNPGDSFileClass`, a SNP GDS file

Details

It is suggested to call `snpgdsClose` instead of `closefn.gds`.

Value

None.

Author(s)

Xiuwen Zheng

See Also

- `snpgdsOpen`

Examples

```r
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

genofile

# close the file
snpgdsClose(genofile)
```
snp
gdsCombineGeno

Merge SNP datasets

Description
To merge GDS files of SNP genotypes into a single GDS file

Usage
snp
gdsCombineGeno(gds.fn, out.fn, sample.id=NULL, snpobj=NULL,
name.prefix=NULL, snpfirstdim=TRUE, compress.annotation="ZIP_RA.MAX",
compress.geno="", other.vars=NULL, verbose=TRUE)

Arguments
- gds.fn: a list of SNP GDS files to be merged
- out.fn: the name of output GDS file
- sample.id: NULL, or a list. If it is a list, specify sample ids for each SNP GDS file
- snpobj: specify a snpgdsSNPListClass object, used for strand switch; if NULL, the strand information of the first SNP GDS file is used
- name.prefix: NULL, a character vector (added to sample ids for each GDS file)
- snpfirstdim: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
- compress.annotation: the compression method for the variables except genotype
- compress.geno: the compression method for the variable genotype
- other.vars: a list object storing other variables
- verbose: if TRUE, show information

Details
The typical variables specified in other.vars are “sample.annot” and “snp.annot”, which are data.frame objects.

Value
None.

Author(s)
Xiuwen Zheng

See Also
snp
gdsCreateGeno, snpgdsCreateGenoSet
Examples

```r
# get the file name of a gds file
fn <- snpgdsExampleFileName()

# combine
snpgdsCombineGeno(c(fn, fn), "test.gds")

snpgdsSummary("test.gds")
```

snpgdsCreateGeno:
Create a SNP genotype dataset from a matrix

Description

To create a GDS file of genotypes from a matrix.

Usage

```r
snpgdsCreateGeno(gds.fn, genmat, sample.id=NULL, snp.id=NULL, snp.rs.id=NULL, 
snp.chromosome=NULL, snp.position=NULL, snp.allele=NULL, snpfirstdim=TRUE, 
compress.annotation="ZIP_RA.max", compress.geno="", other.vars=NULL)
```

Arguments

- `gds.fn`: the file name of gds
- `genmat`: a matrix of genotypes
- `sample.id`: the sample ids, which should be unique
- `snp.id`: the SNP ids, which should be unique
- `snp.rs.id`: the rs ids for SNPs, which can be not unique
- `snp.chromosome`: the chromosome indices
- `snp.position`: the SNP positions in basepair
- `snp.allele`: the reference/non-reference alleles
- `snpfirstdim`: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
- `compress.annotation`: the compression method for the variables except genotype
- `compress.geno`: the compression method for the variable genotype
- `other.vars`: a list object storing other variables

Details

There are possible values stored in the variable `genmat`: 0, 1, 2 and other values. “0” indicates two B alleles, “1” indicates one A allele and one B allele, “2” indicates two A alleles, and other values indicate a missing genotype.

If `snpfirstdim` is TRUE, then `genmat` should be “# of SNPs X # of samples”; if `snpfirstdim` is FALSE, then `genmat` should be “# of samples X # of SNPs”.

The typical variables specified in `other.vars` are “sample.annot” and “snp.annot”, which are data.frame objects.
Description
To create a GDS file of genotypes from a specified GDS file.

Usage
```
snpgdsCreateGenoSet(src.fn, dest.fn, sample.id=NULL, snp.id=NULL,
                     snpfirstdim=NULL, compress.annotation="ZIP_RA.max",
                     compress.geno="", verbose=TRUE)
```

Arguments
- **src.fn**: the file name of a specified GDS file
- **dest.fn**: the file name of output GDS file
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used
- **snp.id**: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- **snpfirstdim**: if TRUE, genotypes are stored in the individual-major mode, (i.e. list all SNPs for the first individual, and then list all SNPs for the second individual, etc)

Examples
```r
# load data
data(hapmap_geno)

# create a gds file
with(hapmap_geno, snpgdsCreateGeno("test.gds", genmat=genotype,
                                sample.id=sample.id, snp.id=snp.id, snp.chromosome=snp.chromosome,
                                snp.position=snp.position, snp.allele=snp.allele, snpfirstdim=TRUE))

# open the gds file
genofile <- snpgdsOpen("test.gds")

RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1")

# close the file
snpgdsClose(genofile)
```
snpgdsCreateGenoSet

compress.annotation
the compression method for the variables except genotype
compress.geno
the compression method for the variable genotype
verbose
if TRUE, show information

Value
None.

Author(s)
Xiuwen Zheng

See Also
snpgdsCreateGeno, snpgdsCombineGeno

Examples

open an example dataset (HapMap)
(genofile <- snpgdsOpen(snpgdsexampleFileName()))

+ [] *
|--+ sample.id { FStr8 279 ZIP(23.10%) }
|--+ snp.id { Int32 9088 ZIP(34.76%) }
|--+ snp.rs.id { FStr8 9088 ZIP(42.66%) }
|--+ snp.position { Int32 9088 ZIP(94.73%) }
|--+ snp.chromosome { UInt8 9088 ZIP(0.94%) } *
|--+ snp.allele { FStr8 9088 ZIP(14.45%) }
|--+ genotype { Bit2 9088x279 } *
|--+ sample.annot [data.frame] *
| |--+ sample.id { FStr8 279 ZIP(23.10%) }
| |--+ family.id { FStr8 279 ZIP(28.37%) }
| |--+ geneva.id { Int32 9088 ZIP(80.29%) }
| |--+ father.id { FStr8 9088 ZIP(12.98%) }
| |--+ mother.id { FStr8 9088 ZIP(12.86%) }
| |--+ plate.id { FStr8 9088 ZIP(1.29%) }
| |--+ sex { FStr8 9088 ZIP(28.32%) }
| |--+ pop.group { FStr8 9088 ZIP(7.89%) }

set.seed(1000)
snpset <- unlist(snpgdslDpruning(genofile))
length(snpset) # 6547

close the file
snpgdsClose(genofile)
snpgdscreateGenoSet(snpgdsexampleFileName(), "test.gds", snp.id=snpset)

##
check

(gfile <- snpgdsOpen("test.gds"))

+ [] *
|--+ sample.id { VStr8 279 ZIP(29.89%) }
|--+ snp.id { Int32 6547 ZIP(34.89%) }
snpgdsCutTree

```r
# |--- snp.rs.id { VStr8 6547 ZIP(40.52%) }
# |--- snp.position { Int32 6547 ZIP(94.85%) }
# |--- snp.chromosome { Int32 6547 ZIP(0.41%) }
# |--- snp.allele { VStr8 6547 ZIP(11.51%) }
# |--- genotype { Bit2 6547x279 } *

# close the file
snpgdsClose(gfile)

unlink("test.gds", force=TRUE)
```

snpCutTree

Determine clusters of individuals

Description

To determine sub groups of individuals using a specified dendrogram from hierarchical cluster analysis.

Usage

```r
snpCutTree(hc, z.threshold=15, outlier.n=5, n.perm = 5000, samp.group=NULL,
col.outlier="red", col.list=NULL, pch.outlier=4, pch.list=NULL,
label.H=FALSE, label.Z=TRUE, verbose=TRUE)
```

Arguments

- `hc` an object of `snpCutTree`
- `z.threshold` the threshold of Z score to determine whether split the node or not
- `outlier.n` the cluster with size less than or equal to `outlier.n` is considered as outliers
- `n.perm` the times for permutation
- `samp.group` if NULL, determine groups by Z score; if a vector of factor, assign each individual in dendrogram with respect to `samp.group`
- `col.outlier` the color of outlier
- `col.list` the list of colors for different clusters
- `pch.outlier` plotting 'character' for outliers
- `pch.list` plotting 'character' for different clusters
- `label.H` if TRUE, plotting heights in a dendrogram
- `label.Z` if TRUE, plotting Z scores in a dendrogram
- `verbose` if TRUE, show information

Details

The details will be described in future.
Value

Return a list:

- sample.id: the sample ids used in the analysis
- z.threshold: the threshold of Z score to determine whether split the node or not
- outlier.n: the cluster with size less than or equal to outlier.n is considered as outliers
- samp.order: the order of samples in the dendrogram
- samp.group: a vector of factor, indicating the group of each individual
- dmat: a matrix of pairwise group dissimilarity
- dendrogram: the dendrogram of individuals
- merge: a data.frame of (z, n1, n2) describing each combination: z, the Z score; n1, the size of the first cluster; n2, the size of the second cluster
- clust.count: the counts for clusters

Author(s)

Xiuwen Zheng

See Also

- `snpqdsHCluster`, `snpqdsDrawTree`, `snpqdsIBS`, `snpqdsDiss`

Examples

```r
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpqdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))
pop.level <- levels(pop.group)
diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

# close the genotype file
snpqdsClose(genofile)

# cluster individuals

set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

# the distribution of Z scores
snpqdsDrawTree(rv, type="z-score", main="HapMap Phase II")

# draw dendrogram
snpqdsDrawTree(rv, main="HapMap Phase II",
               edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))
```
snpgdsDiss

Individual dissimilarity analysis

Description

Calculate the individual dissimilarities for each pair of individuals.

Usage

```r
snpgdsDiss(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, num.thread=1, verbose=TRUE)
```

Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used
- **snp.id**: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with \(^{\geq} \text{ maf}\) only; if NaN, no MAF threshold
missing.rate to use the SNPs with \(^{\leq} \text{ missing.rate}\) only; if NaN, no missing threshold
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information

Details
The minor allele frequency and missing rate for each SNP passed in \text{snp.id} are calculated over all the samples in \text{sample.id}.
The details will be described in future.

Value
Return a class "\text{snpgdsDissClass}":

\begin{itemize}
\item \text{snp.id} the SNP ids used in the analysis
\item \text{diss} a matrix of individual dissimilarity
\end{itemize}

Author(s)
Xiuwen Zheng

References

See Also
\text{snpgdsHCluster}

Examples
\begin{verbatim}
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpgdsClose(genofile)
\end{verbatim}
split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
 edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))

Description

To draw a dendrogram or the distribution of Z scores

Usage

```r
snpgdsDrawTree(obj, clust.count=NULL, dend.idx=NULL,
                type=c("dendrogram", "z-score"), yaxis.height=TRUE, yaxis.kinship=TRUE,
                y.kinship.baseline=NaN, y.label.kinship=FALSE, outlier.n=NULL,
                shadow.col=c(rgb(0.5, 0.5, 0.5, 0.25), rgb(0.5, 0.5, 0.5, 0.05)),
                outlier.col=rgb(1, 0.50, 0.50, 0.5), leaflab="none",
                labels=NULL, y.label=0.2, ...)
```

Arguments

- **obj**: an object returned by `snpgdsCutTree`
- **clust.count**: the counts for clusters, drawing shadows
- **dend.idx**: the index of sub tree, plot `obj$dendrogram[[dend.idx]]`, or NULL for the whole tree
- **type**: "dendrogram", draw a dendrogram; or "z-score", draw the distribution of Z score
- **yaxis.height**: if TRUE, draw the left Y axis: height of tree
- **yaxis.kinship**: if TRUE, draw the right Y axis: kinship coefficient
- **y.kinship.baseline**: the baseline value of kinship; if NaN, it is the height of the first split from top in a dendrogram; only works when yaxis.kinship = TRUE
- **y.label.kinship**: if TRUE, show 'PO/FS' etc on the right axis
- **outlier.n**: the cluster with size less than or equal to outlier.n is considered as outliers; if NULL, let outlier.n = obj$outlier.n
- **shadow.col**: two colors for shadow
- **outlier.col**: the colors for outliers
- **leaflab**: a string specifying how leaves are labeled. The default "perpendicular" write text vertically (by default). "textlike" writes text horizontally (in a rectangle), and "none" suppresses leaf labels.
- **labels**: the legend for different regions
- **y.label**: y positions of labels
- **...**: Arguments to be passed to the method "plot(...)", such as graphical parameters.
Details
The details will be described in future.

Value
None.

Author(s)
Xiuwen Zheng

See Also
snpdgsCutTree

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

pop.group <- as.factor(read.gdsn(index.gdsn(
genofile, "sample.annot/pop.group")))
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)

close the genotype file
snpdgsClose(genofile)

split
set.seed(100)
rv <- snpgdsCutTree(hc, label.H=TRUE, label.Z=TRUE)

draw dendrogram
snpdgsDrawTree(rv, main="HapMap Phase II",
edgePar=list(col=rgb(0.5,0.5,0.5,0.75), t.col="black"))

snpdgsEIGMIX
Eigen-analysis on SNP genotype data

Description
Eigen-analysis on IBD matrix based SNP genotypes.

Usage

snpdgsEIGMIX(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monoSnp=TRUE, maf=NaN, missing.rate=NaN, num.thread=1L,
eigen.cnt=32L, need.ibdmat=FALSE, ibdmat.only=FALSE, verbose=TRUE)
Arguments

gdsobj an object of class **SNPGDSFileClass**, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
eigen.cnt output the number of eigenvectors; if eigen.cnt <= 0, then return all eigenvectors
need.ibdmat if TRUE, return the IBD matrix
ibdmat.only return the IBD matrix only, do not compute the eigenvalues and eigenvectors
verbose if TRUE, show information

Value

Return a **snpgdsEIGMIXClass** object, and it is a list:
sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
eigenval eigenvalues
eigenvect eigenvactors, "# of samples" x "eigen.cnt"
ibdmat the IBD matrix

Author(s)

Xiuwen Zheng

References

See Also

snpgdsEIGMIX, **snpgdsPCA**

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

get population information
or pop_code <- scan("pop.txt", what=character())
if it is stored in a text file "pop.txt"
pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
run eigen-analysis
RV <- snpgdsEIGMIX(genofile)

eigenvalues
RV$eigenval

make a data.frame
tab <- data.frame(sample.id = samp.id, pop = factor(pop_code),
 EV1 = RV$eigenvect[,1], # the first eigenvector
 EV2 = RV$eigenvect[,2], # the second eigenvector
 stringsAsFactors = FALSE)
head(tab)

draw
plot(tab$EV2, tab$EV1, col=as.integer(tab$pop),
 xlab="eigenvector 2", ylab="eigenvector 1")
legend("topleft", legend=levels(tab$pop), pch="o", col=1:4)

define groups
groups <- list(CEU = samp.id[pop_code == "CEU"],
 YRI = samp.id[pop_code == "YRI"],
 CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))])

prop <- snpgdsAdmixProp(RV, groups=groups)

draw
plot(prop[, "YRI"], prop[, "CEU"], col=as.integer(tab$pop),
 xlab = "Admixture Proportion from YRI",
 ylab = "Admixture Proportion from CEU")
abline(v=0, col="gray25", lty=2)
abline(h=0, col="gray25", lty=2)
abline(a=1, b=-1, col="gray25", lty=2)
legend("topright", legend=levels(tab$pop), pch="o", col=1:4)

run eigen-analysis
RV <- snpgdsEIGMIX(genofile, sample.id=samp.id[pop_code=="JPT"],
 need.ibdmat=TRUE)
z <- RV$ibdmat

mean(c(z))
mean(diag(z))

close the genotype file
snpgdsClose(genofile)

snpgdsErrMsg

Get the last error information

Description

Return the last error message.
snpgdsExampleFileName

Usage

snpgdsErrMsg()

Value

Characters

Author(s)

Xiuwen Zheng

Examples

snpgdsErrMsg()

snpgdsExampleFileName Example GDS file

Description

Return the file name of example data

Usage

snpgdsExampleFileName()

Details

A GDS genotype file was created from a subset of HapMap Phase II dataset consisting of 270 individuals and duplicates.

Value

Characters

Author(s)

Xiuwen Zheng

Examples

snpgdsExampleFileName()
SNPGDSFileClass

Description
A SNPGDSFileClass object provides access to a GDS file containing genome-wide SNP data. It extends the class gds.class in the gdsfmt package.

Author(s)
Xiuwen Zheng

See Also
snpgdsOpen, snpgdsClose

Examples
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile
class(genofile)
"SNPGDSFileClass" "gds.class"

close the file
snpgdsClose(genofile)

snpgdsFst

F-statistics (fixation indices)

Description
Calculate relatedness measures F-statistics (also known as fixation indices) for given populations

Usage
snpgdsFst(gdsobj, population, method=c("W&H02", "W&C84"), sample.id=NULL,
snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN,
missing.rate=NaN, with.id=FALSE, verbose=TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
population a factor, indicating population information for each individual
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
.snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosomal.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<<= missing.rate" only; if NaN, no missing threshold
with.id if TRUE, the returned value with sample.id and sample.id
verbose if TRUE, show information

Details
The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value
Return a list:
sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
Fst Fst estimator
Beta Beta matrix

Author(s)
Xiuwen Zheng

References

Examples
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

group <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))

Fst estimation
snpdgsFst(genofile, population=group, method="W&H02")

or
snpdgsFst(genofile, population=group, method="W&C84")

close the genotype file
snpdgsClose(genofile)
snpgdsGDS2BED

Conversion from GDS to PLINK BED

Description

Convert a GDS file to a PLINK binary ped file.

Usage

snpgdsGDS2BED(gdsobj, bed.fn, sample.id=NULL, snp.id=NULL, snpfirstdim=NULL, verbose=TRUE)

Arguments

gdsobj an object of class SNPGDSFileClass, a SNP GDS file; or characters, the file name of GDS
bed.fn the file name of output
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc); if NULL, determine automatically
verbose if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format used in the gdsfmt package.
BED – the PLINK binary ped format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.
http://corearray.sourceforge.net/

See Also

snpgdsBED2GDS, snpgdsGDS2PED
Examples

```r
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpgdsGDS2BED(genofile, bed.fn="test", snp.id=snpset)

# close the genotype file
snpgdsClose(genofile)

# delete the temporary files
unlink(c("test.bed", "test.bim", "test.fam"), force=TRUE)
```

snpgdsGDS2Eigen

Conversion from GDS to Eigen (EIGENSTRAT)

Description

Convert a GDS file to an EIGENSTRAT file.

Usage

```r
snpgdsGDS2Eigen(gdsobj, eigen.fn, sample.id=NULL, snp.id=NULL, verbose=TRUE)
```

Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `eigen.fn`: the file name of EIGENSTRAT
- `sample.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `verbose`: if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format used in the `gdsfmt` package.

Eigen – the text format used in EIGENSTRAT.

Value

None.

Author(s)

Xiuwen Zheng
References

http://corearray.sourceforge.net/

See Also

snpGDS2PED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpGDSExampleFileName())

snpset <- snpgdsSelectSNP(genofile, missing.rate=0.95)
snpGDS2Eigen(genofile, eigen.fn="tmpeigen", snp.id=snpset)

close the genotype file
snpGdsClose(genofile)

delete the temporary files
unlink(c("tmpeigen.eigenstratgeno", "tmpeigen.ind", "tmpeigen.snp"), force=TRUE)

snpGDS2PED Conversion from GDS to PED

Description

Convert a GDS file to a PLINK ped file.

Usage

snpGDS2PED(gdsobj, ped.fn, sample.id=NULL, snp.id=NULL, use.snp.rsid=TRUE,
format=c("A/G/C/T", "A/B", "1/2"), verbose=TRUE)

Arguments

gdsobj a GDS file object (gds.class)
ped.fn the file name of output
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
use.snp.rsid if TRUE, use "snp.rs.id" instead of "snp.id" if available
format specify the coding: "A/G/C/T" – allelic codes stored in "snp.allele" of the GDS file; "A/B" – A and B codes; "1/2" – 1 and 2 codes
verbose if TRUE, show information
Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format used in the gdsfmt package.

PED – the PLINK text ped format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

http://corearray.sourceforge.net/

See Also

snpmdsGDS2BED

Examples

open an example dataset (HapMap)
genofile <- snpgdsOpen(snpmdsExampleFileName())

GDS ==> PED
snpmdsGDS2PED(genofile, ped.fn="tmp")

close the GDS file
snpmdsClose(genofile)
Arguments

- `gen.fn`: the file name of Oxford GEN text file(s), it could be a vector indicate merging all files
- `sample.fn`: the file name of sample annotation
- `out.fn`: the output GDS file
- `chr.code`: a vector of chromosome code according to `gen.fn`, indicating chromosomes. It could be either numeric or character-type
- `call.threshold`: the threshold to determine missing genotypes
- `version`: either ">=2.0" or "<=1.1.5", see details
- `snpfirstdim`: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
- `compress.annotation`: the compression method for the GDS variables, except "genotype"; optional values are defined in the function `add.gdsn`
- `compress.geno`: the compression method for "genotype"; optional values are defined in the function `add.gdsn`
- `verbose`: if TRUE, show information

Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format is used in the `gdsfmt` package.

NOTE: the sample file format (`sample.fn`) has changed with the release of SNPTEST v2. Specifically, the way in which covariates and phenotypes are coded on the second line of the header file has changed. `version` has to be specified, and the function uses ">=2.0" by default.

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References

http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html

See Also

`snpGdsBED2GDS`, `snpGdsVCF2GDS`

Examples

```r
cat("running snpgdsGEN2GDS ...
")
## Not run:
snpGdsGEN2GDS("test.gen", "test.sample", "output.gds", chr.code=1)

## End(Not run)```
snpgdsGetGeno

To get a genotype matrix

Description
To get a genotype matrix from a specified GDS file

Usage
snpgdsGetGeno(gdsobj, sample.id=NULL, snp.id=NULL, snpfirstdim=NA, .snpread=NA, with.id=FALSE, verbose=TRUE)

Arguments
- gdsobj: an object of class SNPGDSFileClass, a SNP GDS file; or characters to specify the file name of SNP GDS
- sample.id: a vector of sample id specifying selected samples; if NULL, all samples are used
- snp.id: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- snpfirstdim: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc); FALSE for snp-major mode; if NA, determine automatically
- .snpread: internal use
- with.id: if TRUE, return sample.id and snp.id
- verbose: if TRUE, show information

Value
The function returns an integer matrix with values 0, 1, 2 or NA representing the number of reference allele when with.id=FALSE; or list(genotype, sample.id, snp.id) when with.id=TRUE. The orders of sample and SNP IDs in the genotype matrix are actually consistent with sample.id and snp.id in the GDS file, which may not be as the same as the arguments sample.id and snp.id specified by users.

Author(s)
Xiuwen Zheng

Examples
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
set.seed(1000)
snpset <- sample(read.gdsn(index.gdsn(genofile, "snp.id")), 1000)
mat1 <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=TRUE)
dim(mat1)
# 1000 279
table(c(mat1), exclude=NULL)
mat2 <- snpgdsGetGeno(genofile, snp.id=snpset, snpfirstdim=FALSE)
dim(mat2)
# 279 1000
table(c(mat2), exclude=NULL)

identical(t(mat1), mat2)
# TRUE

# close the file
snpgdsClose(genofile)

---

### snpgdsGRM

**Genetic Relationship Matrix (GRM) for SNP genotype data**

**Description**

Calculate Genetic Relationship Matrix (GRM) using SNP genotype data.

**Usage**

```r
snpgdsGRM(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, method=c("GCTA", "Eigenstrat", "EIGMIX", "W&Z15"), num.thread=1L, with.id=TRUE, verbose=TRUE)
```

**Arguments**

- `gdsobj` an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id` a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id` a vector of SNP id specifying selected SNPs; if NULL, all SNPs are used
- `autosome.only` if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- `remove.monosnp` if TRUE, remove monomorphic SNPs
- `maf` to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- `missing.rate` to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- `num.thread` the number of (CPU) cores used; if NA, detect the number of cores automatically
- `with.id` if TRUE, the returned value with sample.id and sample.id
- `verbose` if TRUE, show information

**Value**

Return a list if `with.id = TRUE`:

- `sample.id` the sample ids used in the analysis
- `snp.id` the SNP ids used in the analysis
- `grm` the genetic relationship matrix; different methods might have different meanings and interpretation for estimates

If `with.id = FALSE`, this function returns the genetic relationship matrix (GRM) without sample and SNP IDs.
snpdfsHCluster

Author(s)

Xiuwen Zheng

References


See Also

snpdfsIndInb, snpdfsFst

Examples

# open an example dataset (HapMap)
genofile <- snpdfsOpen(snpdfsExampleFileName())

rv <- snpdfsGRM(genofile, method="GCTA")
eig <- eigen(rv$grm) # Eigen-decomposition

pop <- factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))

plot(eig$vectors[,1], eig$vectors[,2], col=pop)
legend("topleft", legend=levels(pop), pch=19, col=1:4)

# close the file
snpdfsClose(genofile)

snpdfsHCluster   Hierarchical cluster analysis

Description

Perform hierarchical cluster analysis on the dissimilarity matrix.

Usage

snpdfsHCluster(dist, sample.id=NULL, need.mat=TRUE, hang=0.25)
snpgdsHCluster

Arguments

- **dist**: an object of "snpgdsDissClass" from `snpgdsDiss`, an object of "snpgdsIBSClass" from `snpgdsIBS`, or a square matrix for dissimilarity
- **sample.id**: to specify sample id, only work if dist is a matrix
- **need.mat**: if TRUE, store the dissimilarity matrix in the result
- **hang**: The fraction of the plot height by which labels should hang below the rest of the plot. A negative value will cause the labels to hang down from 0.

Details

Call the function `hclust` to perform hierarchical cluster analysis, using method="average".

Value

Return a list (class "snpgdsHCClass"):

- **sample.id**: the sample ids used in the analysis
- **hclust**: an object returned from `hclust`
- **dendrogram**: the dissimilarity matrix, if need.mat = TRUE

Author(s)

Xiuwen Zheng

See Also

`snpgdsIBS`, `snpgdsDiss`, `snpgdsCutTree`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

pop.group <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
pop.group <- as.factor(pop.group)
pop.level <- levels(pop.group)

diss <- snpgdsDiss(genofile)
hc <- snpgdsHCluster(diss)
rv <- snpgdsCutTree(hc)
rv

call 'plot' to draw a dendrogram
plot(rv$dendrogram, leaflab="none", main="HapMap Phase II")

the distribution of Z scores
snpgdsDrawTree(rv, type="z-score", main="HapMap Phase II")

draw dendrogram
snpgdsDrawTree(rv, main="HapMap Phase II",
 edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black"))
```
# close the file
snpgdsClose(genofile)

## snpgdsHWE

### Statistical test of Hardy-Weinberg Equilibrium

**Description**

Calculate the p-values for the exact SNP test of Hardy-Weinberg Equilibrium.

**Usage**

```r
snpgdsHWE(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)
```

**Arguments**

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id`: a vector of sample id specifying selected samples; if `NULL`, all samples will be used
- `snp.id`: a vector of snp id specifying selected SNPs; if `NULL`, all SNPs will be used
- `with.id`: if `TRUE`, the returned value with sample and SNP IDs

**Value**

If `with.id=FALSE`, return a vector of numeric values (p-value); otherwise, return a list with three components "pvalue", "sample.id" and "snp.id".

**Author(s)**

Xiuwen Zheng, Janis E. Wigginton

**References**


**See Also**

`snpgdsSNPRateFreq`

**Examples**

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

Japanese samples
sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
(samp.sel <- sample.id[pop=="JPT"])
samp.sel <- samp.sel[nchar(samp.sel) == 7]
```
# chromosome 1
snp.id <- snpgdsSelectSNP(genofile, sample.id=samp.sel, autosome.only=1L)

# HWE test
p <- snpgdsHWE(genofile, sample.id=samp.sel, snp.id=snp.id)
summary(p)

# QQ plot
plot(-log10((1:length(p))/length(p)), -log10(p[order(p)]),
xlab="-log10(expected P)", ylab="-log10(observed P)", main="QQ plot")
abline(a=0, b=1, col="blue")

# close the genotype file
snpgdsClose(genofile)

---

### Description

Calculate IBD coefficients by KING method of moment.

### Usage

```r
snpgdsIBDKING(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
type=c("KING-robust", "KING-homo"), family.id=NULL,
num.thread=1, verbose=TRUE)
```

### Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used
- **snp.id**: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- **autosome.only**: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- **remove.monosnp**: if TRUE, remove monomorphic SNPs
- **maf**: to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- **missing.rate**: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- **type**: "KING-robust" – relationship inference in the presence of population stratification; "KING-homo" – relationship inference in a homogeneous population
- **family.id**: if NULL, all individuals are treated as singletons; if family id is given, within-and between-family relationship are estimated differently. If sample.id=NULL, family.id should have the same length as "sample.id" in the GDS file, otherwise family.id should have the same length and order as the argument sample.id
- **num.thread**: the number of (CPU) cores used; if NA, detect the number of cores automatically
- **verbose**: if TRUE, show information
Details

KING IBD estimator is a moment estimator, and it is computationally efficient relative to MLE method. The approaches include "KING-robust" – robust relationship inference within or across families in the presence of population substructure, and "KING-homo" – relationship inference in a homogeneous population.

With "KING-robust", the function would return the proportion of SNPs with zero IBS (IBS0) and kinship coefficient (kinship). With "KING-homo" it would return the probability of sharing one IBD (k1) and the probability of sharing zero IBD (k0).

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value

Return a list:

- sample.id: the sample ids used in the analysis
- snp.id: the SNP ids used in the analysis
- k0: IBD coefficient, the probability of sharing zero IBD
- k1: IBD coefficient, the probability of sharing one IBD
- IBS0: proportion of SNPs with zero IBS
- kinship: the estimated kinship coefficients, if the parameter kinship=TRUE

Author(s)

Xiuwen Zheng

References


See Also

snpdnsIBDME, snpgdsIBDMoM

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdnsExampleFileName())

CEU population
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
CEU.id <- samp.id[
 read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))="CEU"]

KING-robust:
relationship inference in the presence of population stratification
robust relationship inference across family

ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=NULL)
```

names(ibd.robust)
# [1] "sample.id" "snp.id" "afreq" "IBS0" "kinship"

# select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust, 1/32)
head(dat)

plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
     ylab="Estimated Kinship Coefficient (KING-robust)")

#### KING-robust:
#### relationship inference in the presence of population stratification
#### within- and between-family relationship inference

# incorporate with pedigree information
family.id <- read.gdsn(index.gdsn(genofile, "sample.annot/family.id"))
family.id <- family.id[match(CEU.id, samp.id)]

ibd.robust2 <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=family.id)
names(ibd.robust2)

# select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust2, 1/32)
head(dat)

plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
     ylab="Estimated Kinship Coefficient (KING-robust)")

#### KING-homo: relationship inference in a homogeneous population

ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo")
names(ibd.homo)
# "sample.id" "snp.id" "afreq" "k0" "k1"

# select a subset of pairs of individuals
dat <- snpgdsIBDSelection(ibd.homo, 1/32)
head(dat)

plot(dat$k0, dat$kinship, xlab="Pr(IBD=0)",
     ylab="Estimated Kinship Coefficient (KING-homo)")

# close the genotype file
snpgdsClose(genofile)
Description

Calculate the three IBD coefficients ($k_0, k_1, k_2$) for non-inbred individual pairs by Maximum Likelihood Estimation.

Usage

```r
snpgdsIBDMLE(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, kinship=FALSE, kinship.constraint=FALSE, allele.freq=NULL, method=c("EM", "downhill.simplex", "Jacquard"), max.niter=1000L, reltol=sqrt(.Machine$double.eps), coeff.correct=TRUE, out.num.iter=TRUE, num.thread=1, verbose=TRUE)
```

Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `autosome.only`: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- `remove.monosnp`: if TRUE, remove monomorphic SNPs
- `maf`: to use the SNPs with ">= maf" only; if NaN, no any MAF threshold
- `missing.rate`: to use the SNPs with "<= missing.rate" only; if NaN, no any missing threshold
- `kinship`: if TRUE, output the estimated kinship coefficients
- `kinship.constraint`: if TRUE, constrict IBD coefficients ($k_0, k_1, k_2$) in the genetical region ($2k_0k_1 \geq k_2^2$)
- `allele.freq`: to specify the allele frequencies; if NULL, determine the allele frequencies from gdsobj using the specified samples; if snp.id is specified, allele.freq should have the same order as snp.id
- `method`: "EM", "downhill.simplex", "Jacquard", see details
- `max.niter`: the maximum number of iterations
- `reltol`: relative convergence tolerance; the algorithm stops if it is unable to reduce the value of log likelihood by a factor of $reltol \times (abs(log likelihood with the initial parameters) + reltol)$ at a step.
- `coeff.correct`: TRUE by default, see details
- `out.num.iter`: if TRUE, output the numbers of iterations
- `num.thread`: the number of (CPU) cores used; if NA, detect the number of cores automatically
- `verbose`: if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

The PLINK moment estimates are used as the initial values in the algorithm of searching maximum value of log likelihood function. Two numeric approaches can be used: one is Expectation-Maximization (EM) algorithm, and the other is Nelder-Mead method or downhill simplex method.
Generally, EM algorithm is more robust than downhill simplex method. "Jacquard" refers to the estimation of nine Jacquard’s coefficients.

If `coeff.correct` is `TRUE`, the final point that is found by searching algorithm (EM or downhill simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any numeric approach might not reach the maximum position after a finite number of steps. If any of these six points has a higher value of log likelihood, the final point will be replaced by the best one.

Although MLE estimates are more reliable than MoM, MLE is much more computationally intensive than MoM, and might not be feasible to estimate pairwise relatedness for a large dataset.

Value

Return a `snpgdsIBDClass` object, which is a list:

- `sample.id` the sample ids used in the analysis
- `snp.id` the SNP ids used in the analysis
- `afreq` the allele frequencies used in the analysis
- `k0` IBD coefficient, the probability of sharing ZERO IBD, if `method=“EM”` or `“downhill.simplex”`
- `k1` IBD coefficient, the probability of sharing ONE IBD, if `method=“EM”` or `“downhill.simplex”`
- `D1, ..., D8` Jacquard’s coefficients, if `method=“Jacquard”`
- `kinship` the estimated kinship coefficients, if the parameter `kinship=TRUE`

Author(s)

Xiuwen Zheng

References


See Also

`snpgdsIBDMLELogLik`, `snpgdsIBDMoM`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpagsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id")[
 read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))="YRI"]
YRI.id <- YRI.id[1:30]

SNP pruning
set.seed(10)
```
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05, missing.rate=0.05)
snpset <- sample(unlist(snpset), 250)
mibd <- snpgdsIBDMLLE(genofile, sample.id=YRI.id, snp.id=snpset)

# select a set of pairs of individuals
d <- snpgdsIBDSelection(mibd, kinship.cutoff=1/8)
head(d)

# log likelihood
loglik <- snpgdsIBDMLELogLik(genofile, mibd)
loglik0 <- snpgdsIBDMLELogLik(genofile, mibd, relatedness="unrelated")

# likelihood ratio test
p.value <- pchisq(loglik - loglik0, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(mibd$k0[flag], mibd$k1[flag])

# specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset)$AlleleFreq
subibd <- snpgdsIBDMLLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset, allele.freq=afreq)
summary(c(subibd$k0 - mibd$k0[1:25, 1:25]))
# ZERO
summary(c(subibd$k1 - mibd$k1[1:25, 1:25]))
# ZERO

# close the genotype file
snpgdsClose(genofile)

---

### snpgdsIBDMLELogLik

Log likelihood for MLE method in the Identity-By-Descent (IBD) Analysis

**Description**

Calculate the log likelihood values from maximum likelihood estimation.

**Usage**

```r
snpgdsIBDMLELogLik(gdsobj, ibdobj, k0 = NaN, k1 = NaN, relatedness=c("", "self", "fullsib", "offspring", "halfsib", "cousin", "unrelated"))
```
Arguments

gdsobj an object of class **SNPGDSFileClass**, a SNP GDS file
ibdobj the snpgdsIBDClass object returned from **snpBdsIBDMLE**
k0 specified IBD coefficient
k1 specified IBD coefficient
relatedness specify a relatedness, otherwise use the values of k0 and k1

Details

If (relatedness == "") and (k0 == NaN or k1 == NaN), then return the log likelihood values for each (k0, k1) stored in ibdobj. \ If (relatedness == ") and (k0 != NaN) and (k1 != NaN), then return the log likelihood values for a specific IBD coefficient (k0, k1). \ If relatedness is: "self", then k0 = 0, k1 = 0; "fullsib", then k0 = 0.25, k1 = 0.5; "offspring", then k0 = 0, k1 = 1; "halfsib", then k0 = 0.5, k1 = 0.5; "cousin", then k0 = 0.75, k1 = 0.25; "unrelated", then k0 = 1, k1 = 0.

Value

Return a n-by-n matrix of log likelihood values, where n is the number of samples.

Author(s)

Xiuwen Zheng

References


See Also

**snpBdsIBDMLE, snpBdsIBDMoM**

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpBdsExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))="YRI"]
YRI.id <- YRI.id[1:30]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05, missing.rate=0.05)
snpset <- sample(unlist(snpset), 250)
mibd <- snpgdsIBDMLE(genofile, sample.id=YRI.id, snp.id=snpset)
names(mibd)

select a set of pairs of individuals
```
d <- snpgdsIBDSélection(mibd, kinship.cutoff=1/8)
head(d)

# log likelihood
loglik <- snpgdsIBDMLMLELogLik(genofile, mibd)
loglik0 <- snpgdsIBDMLMLELogLik(genofile, mibd, relatedness="unrelated")

# likelihood ratio test
p.value <- pchisq(loglik - loglik0, 1, lower.tail=FALSE)

flag <- lower.tri(mibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(mibd$k0[flag], mibd$k1[flag])

# specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id,
snp.id=snpset)$AlleleFreq
subibd <- snpgdsIBDMLLE(genofile, sample.id=YRI.id[1:25], snp.id=snpset,
allele.freq=afreq)
summary(c(subibd$k0 - mibd$k0[1:25, 1:25]))
# ZERO
summary(c(subibd$k1 - mibd$k1[1:25, 1:25]))
# ZERO

# close the genotype file
snpgdsClose(genofile)

---

**snpgdsIBDMoM**

**PLINK method of moment (MoM) for the Identity-By-Descent (IBD) Analysis**

**Description**

Calculate three IBD coefficients for non-inbred individual pairs by PLINK method of moment (MoM).

**Usage**

```r
snpgdsIBDMoM(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, allele.freq=NULL,
kinship=FALSE, kinship.constraint=FALSE, num.thread=1, verbose=TRUE)
```

**Arguments**

- `gdsobj` an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id` a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id` a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
allele.freq to specify the allele frequencies; if NULL, determine the allele frequencies from gdsobj using the specified samples; if snp.id is specified, allele.freq should have the same order as snp.id
kinship if TRUE, output the estimated kinship coefficients
kinship.constraint if TRUE, constrict IBD coefficients ($k_0,k_1,k_2$) in the genetical region ($2k_0 k_1 >= k_2^2$)
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information

Details
PLINK IBD estimator is a moment estimator, and it is computationally efficient relative to MLE method. In the PLINK method of moment, a correction factor based on allele counts is used to adjust for sampling. However, if allele frequencies are specified, no correction factor is conducted since the specified allele frequencies are assumed to be known without sampling.

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value
Return a list:
sample.id the sample ids used in the analysis
snp.id the SNP ids used in the analysis
k0 IBD coefficient, the probability of sharing ZERO IBD
k1 IBD coefficient, the probability of sharing ONE IBD
kinship the estimated kinship coefficients, if the parameter kinship=TRUE

Author(s)
Xiuwen Zheng

References
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

See Also
snp.gdsIBDMLE, snpgdsIBDMLELogLik
Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdfsExampleFileName())

#########################################################
# CEU population

CEU.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) == "CEU"]
pibd <- snpgdsIBDMoM(genofile, sample.id=CEU.id)
names(pibd)
flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

# select a set of pairs of individuals
d <- snpgdsIBDSelection(pibd, kinship.cutoff=1/8)
head(d)

#########################################################
# YRI population

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) == "YRI"]
pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)
flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

# specify the allele frequencies
afreq <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id)$AlleleFreq
aibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id, allele.freq=afreq)
flag <- lower.tri(aibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(aibd$k0[flag], aibd$k1[flag])

# analysis on a subset
subibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:25], allele.freq=afreq)
summary(c(subibd$k0 - aibd$k0[1:25, 1:25]))
# ZERO
summary(c(subibd$k1 - aibd$k1[1:25, 1:25]))
# ZERO

# close the genotype file
snpgdsClose(genofile)
Description

Return a data frame with IBD coefficients.

Usage

```r
snpgdsIBDSelection(ibdobj, kinship.cutoff=NaN, samp.sel=NULL)
```

Arguments

- `ibdobj` an object of `snpgdsIBDClass` returned by `snpgdsIBDMLE` or `snpgdsIBDMoM`
- `kinship.cutoff` select the individual pairs with kinship coefficients >= kinship.cutoff; no filter if `kinship.cutoff = NaN`
- `samp.sel` a logical vector or integer vector to specify selection of samples

Value

Return a data.frame:

- **ID1** the id of the first individual
- **ID2** the id of the second individual
- **k0** the probability of sharing ZERO alleles
- **k1** the probability of sharing ONE alleles
- **kinship** kinship coefficient

Author(s)

Xiuwen Zheng

See Also

`snpgdsIBDMLE`, `snpgdsIBDMoM`, `snpgdsIBDKING`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

YRI population
YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[
 read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) == "YRI"]
pibd <- snpgdsIBDMoM(genofile, sample.id=YRI.id)
flag <- lower.tri(pibd$k0)
plot(NaN, xlim=c(0,1), ylim=c(0,1), xlab="k0", ylab="k1")
lines(c(0,1), c(1,0), col="red", lty=3)
points(pibd$k0[flag], pibd$k1[flag])

close the genotype file
snpgdsClose(genofile)

IBD coefficients
dat <- snpgdsIBDSelection(pibd, 1/32)
head(dat)
ID1 ID2 k0 k1 kinship
```
Description

Calculate the fraction of identity by state for each pair of samples

Usage

```r
snpgdsIBS(gdsobj, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
 remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,
 num.thread = 1L, verbose = TRUE)
```

Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `autosome.only`: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- `remove.monosnp`: if TRUE, remove monomorphic SNPs
- `maf`: to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- `missing.rate`: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- `num.thread`: the number of (CPU) cores used; if NA, detect the number of cores automatically
- `verbose`: if TRUE, show information

Details

The minor allele frequency and missing rate for each SNP passed in `snp.id` are calculated over all the samples in `sample.id`.

The values of the IBS matrix range from ZERO to ONE.

Value

Return a list (class "snpgdsIBSClass"):  
- `sample.id`: the sample ids used in the analysis  
- `snp.id`: the SNP ids used in the analysis  
- `ibs`: a matrix of IBS proportion, "# of samples" x "# of samples"

Author(s)

Xiuwen Zheng
See Also

snp捻sIBSNum

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snp捻sExampleFileName())

# perform identity-by-state calculations
ibs <- snpgdsIBS(genofile)

# perform multidimensional scaling analysis on
# the genome-wide IBS pairwise distances:
loc <- cmdscale(1 - ibs$ibs, k = 2)
x <- loc[, 1]; y <- loc[, 2]
race <- as.factor(read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")))
plot(x, y, col=race, xlab = "", ylab = "", main = "cmdscale(IBS Distance)")
legend("topleft", legend=levels(race), text.col=1:nlevels(race))

# close the file
snp捻sClose(genofile)

snp捻sIBSNum

Identity-By-State (IBS)

Description

Calculate the number of SNPs for identity by state for each pair of samples.

Usage

snp捻sIBSNum(gdsobj, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN, num.thread = 1L,
verbose = TRUE)

Arguments

gdsobj | an object of class SNP捻sFileClass, a SNP GDS file
sample.id | a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id | a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only | if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome
remove.monosnp | if TRUE, remove monomorphic SNPs
maf | to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate | to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
num.thread | the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose | if TRUE, show information
Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value

Return a list (n is the number of samples):

- **sample.id**: the sample ids used in the analysis
- **snp.id**: the SNP ids used in the analysis
- **ibs0**: a n-by-n matrix, the number of SNPs sharing 0 IBS
- **ibs1**: a n-by-n matrix, the number of SNPs sharing 1 IBS
- **ibs2**: a n-by-n matrix, the number of SNPs sharing 2 IBS

Author(s)

Xiuwen Zheng

See Also

- `snpdgsIBS`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())
RV <- snpgdsIBSNum(genofile)
pop <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))
L <- order(pop)
image(RV$ibs0[L, L]/length(RV$snp.id))

close the genotype file
snpdgsClose(genofile)
```

---

### snpgdsIndInb

**Individual Inbreeding Coefficients**

**Description**

To calculate individual inbreeding coefficients using SNP genotype data

**Usage**

```r
snpdgsIndInb(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, method=c("mom.weir", "mom.visscher", "mle"), allele.freq=NULL, out.num.iter=TRUE, reltol=.Machine$double.eps^0.75, verbose=TRUE)
```
Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file.
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used.
- **snp.id**: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used.
- **autosome.only**: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome.
- **remove.monosnp**: if TRUE, remove monomorphic SNPs.
- **maf**: to use the SNPs with ">= maf" only; if NaN, no MAF threshold.
- **missing.rate**: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold.
- **method**: see details.
- **allele.freq**: to specify the allele frequencies; if NULL, the allele frequencies are estimated from the given samples.
- **out.num.iter**: output the numbers of iterations.
- **reltol**: relative convergence tolerance used in MLE; the algorithm stops if it is unable to reduce the value of log likelihood by a factor of $\text{reltol} * (\text{abs(log likelihood with the initial parameters)} + \text{reltol})$ at a step.
- **verbose**: if TRUE, show information.

Details

The method can be: "mom.weir": a modified Visscher’s estimator, proposed by Bruce Weir; "mom.visscher": Visscher’s estimator described in Yang et al. (2010); "mle": the maximum likelihood estimation.

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References


Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

rv <- snpgdsIndInb(genofile, method="mom.visscher")
head(rv$sinbreeding)
summary(rv$sinbreeding)

# close the genotype file
snpgdsClose(genofile)
Description

To calculate an individual inbreeding coefficient using SNP genotype data

Usage

```r
snpgdsIndInbCoef(x, p, method = c("mom.weir", "mom.visscher", "mle"), reltol=.Machine$double.eps^0.75)
```

Arguments

- `x`  
  SNP genotypes  
- `p`  
  allele frequencies  
- `method`  
  see details  
- `reltol`  
  relative convergence tolerance used in MLE; the algorithm stops if it is unable to reduce the value of log likelihood by a factor of \( \text{reltol} \times (\text{abs(log likelihood with the initial parameters)} + \text{reltol}) \) at a step.

Details

The method can be:  
- "mom.weir": a modified Visscher's estimator, proposed by Bruce Weir;  
- "mom.visscher": Visscher's estimator described in Yang et al. (2010);  
- "mle": the maximum likelihood estimation.

Value

Return estimated inbreeding coefficient.

Author(s)

Xiuwen Zheng

References


Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

chr1 <- read.gdsn(index.gdsn(genofile, "snp.id"))[read.gdsn(index.gdsn(genofile, "snp.chromosome"))==1]
chr1idx <- match(chr1, read.gdsn(index.gdsn(genofile, "snp.id")))

AF <- snpgdsSNPRateFreq(genofile)
g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(-1,1))
```
snpgdsIndivBeta

Individual inbreeding and relatedness estimation (beta estimator)

Description

Calculate individual inbreeding and relatedness estimation (beta estimator) using SNP genotype data.

Usage

```
snpgdsIndivBeta(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE,
remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
method=c("weighted"), num.thread=1L, with.id=TRUE, verbose=TRUE)
```

Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used
- **snp.id**: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- **autosome.only**: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- **remove.monosnp**: if TRUE, remove monomorphic SNPs
- **maf**: to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- **missing.rate**: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- **method**: "weighted" estimator
- **num.thread**: the number of (CPU) cores used; if NA, detect the number of cores automatically
- **with.id**: if TRUE, the returned value with sample.id and sample.id
- **verbose**: if TRUE, show information

Value

Return a list if `with.id = TRUE`:

- **sample.id**: the sample ids used in the analysis
- **snp.id**: the SNP ids used in the analysis
- **beta**: the genetic relationship matrix; different methods might have different meanings and interpretation for estimates

If `with.id = FALSE`, this function returns the genetic relationship matrix without sample and SNP IDs.
Author(s)
Xiuwen Zheng

References

See Also
snpGPSRM, snpgdsIndIndb, snpgdsFst

Examples
library(SNPRelate)
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpGPSExampleFileName())

rv <- snpgdsGRM(genofile, method="W&Z15")

beta <- snpgdsIndivBeta(genofile, with.id=FALSE)
beta[1:10, 1:10]

# close the file
snpgdsClose(genofile)

snpGPSLDMat  

Linkage Disequilibrium (LD) analysis

Description
Return a LD matrix for SNP pairs.

Usage
snpGPSLDMat(gdsobj, sample.id=NULL, snp.id=NULL, slide=250L,
 method=c("composite", "r", "dprime", "corr", "cov"), mat.trim=FALSE,
 num.thread=1L, with.id=TRUE, verbose=TRUE)

Arguments
gdsobj  an object of class SNPGDSFileClass, a SNP GDS file
sample.id  a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id  a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
slide  # of SNPs, the size of sliding window, see details
method  "composite", "r", "dprime", "corr", "cov", see details
mat.trim  if TRUE, trim the matrix when slide > 0: the function returns a "num_slide x (n_snp - slide)" matrix
num.thread  the number of (CPU) cores used; if NA, detect the number of cores automatically
with.id  if TRUE, the returned value with sample.id and sample.id
verbose  if TRUE, show information
Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime" for D', and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA.

If slide <= 0, the function returns a n-by-n LD matrix where the value of i row and j column is LD of i and j SNPs. If slide > 0, it returns a m-by-n LD matrix where n is the number of SNPs, m is the size of sliding window, and the value of i row and j column is LD of j and j+i SNPs.

Value

Return a list:

- sample.id the sample ids used in the analysis
- snp.id the SNP ids used in the analysis
- LD a matrix of LD values
- slide the size of sliding window

Author(s)

Xiuwen Zheng

References


See Also

snpdgsLDpair, snpgdsLDpruning

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

# chromosome 15
snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[read.gdsn(index.gdsn(genofile, "snp.chromosome")) == 15]
length(snpset)

# LD matrix without sliding window
ld.noslide <- snpgdsLDMat(genofile, snp.id=snpset, slide=-1, method="composite")
# plot
image(t(ld.noslide$LD^2), col=terrain.colors(16))

# LD matrix with a sliding window
ld.slide <- snpgdsLDMat(genofile, snp.id=snpset, method="composite")
# plot
image(t(ld.slide$LD^2), col=terrain.colors(16))
Description

Return a LD value between snp1 and snp2.

Usage

```
snpgdsLDpair(snp1, snp2, method = c("composite", "r", "dprime", "corr"))
```

Arguments

- `snp1`: a vector of SNP genotypes (0 – BB, 1 – AB, 2 – AA)
- `snp2`: a vector of SNP genotypes (0 – BB, 1 – AB, 2 – AA)
- `method`: "composite", "r", "dprime", "corr", see details

Details

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime" for D', and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA.

Value

Return a numeric vector:

- `ld`: a measure of linkage disequilibrium
- `pA_A`: haplotype frequency of AA, the first locus is A and the second locus is A
- `pA_B`: haplotype frequency of AB, the first locus is A and the second locus is B
- `pB_A`: haplotype frequency of BA, the first locus is B and the second locus is A
- `pB_B`: haplotype frequency of BB, the first locus is B and the second locus is B

Author(s)

Xiuwen Zheng

References

See Also
snpgdsLDMat, snpgdsLDpruning

Examples
# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snp1 <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(1,-1))
snp2 <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(2,1), count=c(1,-1))

snpgdsLDpair(snp1, snp2, method = "composite")
snpgdsLDpair(snp1, snp2, method = "r")
snpgdsLDpair(snp1, snp2, method = "dprime")
snpgdsLDpair(snp1, snp2, method = "corr")

# close the genotype file
snpgdsClose(genofile)

snpgdsLDpruning

Description
Recursively removes SNPs within a sliding window

Usage
snpgdsLDpruning(gdsobj, sample.id = NULL, snp.id = NULL, autosome.only = TRUE,
remove.monosnp = TRUE, maf = NaN, missing.rate = NaN,
method = c("composite", "r", "dprime", "corr"), slide.max.bp = 500000,
slide.max.n = NA, ld.threshold = 0.2, num.thread = 1, verbose = TRUE)

Arguments
gdsobj an object of class SNPGDSFileClass, a SNP GDS file
sample.id a vector of sample id specifying selected samples; if NULL, all samples are used
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
autosome.only if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
SNPs according to the specified chromosome
remove.monosnp if TRUE, remove monomorphic SNPs
maf to use the SNPs with ">= maf" only; if NaN, no MAF threshold
missing.rate to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
method "composite", "r", "dprime", "corr", see details
slide.max.bp the maximum basepairs in the sliding window
slide.max.n the maximum number of SNPs in the sliding window
ld.threshold the LD threshold
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Four methods can be used to calculate linkage disequilibrium values: "composite" for LD composite measure, "r" for R coefficient (by EM algorithm assuming HWE, it could be negative), "dprime" for D', and "corr" for correlation coefficient. The method "corr" is equivalent to "composite", when SNP genotypes are coded as: 0 – BB, 1 – AB, 2 – AA. The argument ld.threshold is the absolute value of measurement.

It is useful to generate a pruned subset of SNPs that are in approximate linkage equilibrium with each other. The function snpgdsLDpruning recursively removes SNPs within a sliding window based on the pairwise genotypic correlation. SNP pruning is conducted chromosome by chromosome, since SNPs in a chromosome can be considered to be independent with the other chromosomes.

The pruning algorithm on a chromosome is described as follows (n is the total number of SNPs on that chromosome):

1) Randomly select a starting position i, and let the current SNP set S = { i };  
2) For each right position j from i+1 to n: if any LD between j and k is greater than ld.threshold, where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be S + { j };  
3) For each left position j from i-1 to 1: if any LD between j and k is greater than ld.threshold, where k belongs to S, and both of j and k are in the sliding window, then skip j; otherwise, let S be S + { j };  
4) Output S, the final selection of SNPs.

Value

Return a list of SNP IDs stratified by chromosomes.

Author(s)

Xiuwen Zheng

References


See Also

snpgdsLDMat, snpgdsLDpair

Examples

# open an example dataset (HapMap)  
genofile <- snpgdsOpen(snpgdsExampleFileName())

set.seed(1000)
snpset <- snpgdsLDpruning(genofile)

names(snpset)
snpgdsOpen

Open a SNP GDS File

Description

Open a SNP GDS file

Usage

snpgdsOpen(filename, readonly=TRUE, allow.duplicate=FALSE, allow.fork=FALSE)

Arguments

filename the file name
readonly whether read-only or not
allow.duplicate
allow.fork TRUE for parallel environment using forking, see openfn.gds

Details

It is strongly suggested to call snpgdsOpen instead of openfn.gds, since snpgdsOpen will perform internal checking for data integrity.

Value

Return an object of class SNPGDSFileClass.

Author(s)

Xiuwen Zheng

See Also

snpgdsClose
Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
genofile

# close the file
snpgdsClose(genofile)

---

**Description**

Return an option list used by the SNPRelate package or a GDS file

**Usage**

```r
snpgdsOption(gdsobj=NULL, autosome.start=1L, autosome.end=22L, ...)
```

**Arguments**

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `autosome.start`: the starting index of autosome
- `autosome.end`: the ending index of autosome
- `...`: optional arguments for new chromosome coding

**Value**

A list

**Author(s)**

Xiuwen Zheng

**Examples**

# define the new chromosomes 'Z' and 'W'
snpgdsOption(Z=27L, W=28L)

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

snpgdsOption(genofile)

# close the genotype file
snpgdsClose(genofile)
Calculate Identity-By-Descent (IBD) Coefficients

**Description**

Calculate the three IBD coefficients ($k_0, k_1, k_2$) for non-inbred individual pairs by Maximum Likelihood Estimation (MLE) or PLINK Method of Moment (MoM).

**Usage**

```r
snpGdsPairIBD(geno1, geno2, allele.freq,
method=c("EM", "downhill.simplex", "MoM"), kinship.constraint=FALSE,
max.niter=1000, reltol=sqrt(.Machine$double.eps), coeff.correct=TRUE,
out.num.iter=TRUE, verbose=TRUE)
```

**Arguments**

- `geno1`: the SNP genotypes for the first individual, 0 – BB, 1 – AB, 2 – AA, other values – missing
- `geno2`: the SNP genotypes for the second individual, 0 – BB, 1 – AB, 2 – AA, other values – missing
- `allele.freq`: the allele frequencies
- `method`: "EM", "downhill.simplex", or "MoM", see details
- `kinship.constraint`: if TRUE, constrict IBD coefficients ($k_0, k_1, k_2$) in the genealogical region ($2 k_0 k_1 >= k_2^2$)
- `max.niter`: the maximum number of iterations
- `reltol`: relative convergence tolerance; the algorithm stops if it is unable to reduce the value of log likelihood by a factor of `reltol * (abs(log likelihood with the initial parameters) + reltol)` at a step.
- `coeff.correct`: TRUE by default, see details
- `out.num.iter`: if TRUE, output the numbers of iterations
- `verbose`: if TRUE, show information

**Details**

If `method` = "MoM", then PLINK Method of Moment without a allele-count-based correction factor is conducted. Otherwise, two numeric approaches for maximum likelihood estimation can be used: one is Expectation-Maximization (EM) algorithm, and the other is Nelder-Mead method or downhill simplex method. Generally, EM algorithm is more robust than downhill simplex method.

If `coeff.correct` is TRUE, the final point that is found by searching algorithm (EM or downhill simplex) is used to compare the six points (fullsib, offspring, halfsib, cousin, unrelated), since any numeric approach might not reach the maximum position after a finite number of steps. If any of these six points has a higher value of log likelihood, the final point will be replaced by the best one.
Value

Return a data.frame:

- **k0**: IBD coefficient, the probability of sharing ZERO IBD
- **k1**: IBD coefficient, the probability of sharing ONE IBD
- **loglik**: the value of log likelihood
- **niter**: the number of iterations

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpgedsPairIBDMLLogLik, snpgdsIBDMLE, snpgdsIBDMLLogLik, snpgdsIBDMoM

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgeExampleFileName())

YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id")[
 read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=='YRI']

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05, missing.rate=0.05)
snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25

specify allele frequencies
RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset, with.id=TRUE)
summary(RF$AlleleFreq)

subMLE <- snpgdsIBDMLMML(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id, allele.freq=RF$AlleleFreq)
subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id, allele.freq=RF$AlleleFreq)
```
# genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,
  snpfirstdim=TRUE)

########################################################################
rv <- NULL
for (i in 2:n)
  {rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM"))
   print(snpgpsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,
      relatedness="unrelated", verbose=TRUE))
  }
rv
summary(rv$k0 - subMLE$k0[1, 2:n])
summary(rv$k1 - subMLE$k1[1, 2:n])
# ZERO

rv <- NULL
for (i in 2:n)
  {rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
  rv
summary(rv$k0 - subMoM$k0[1, 2:n])
summary(rv$k1 - subMoM$k1[1, 2:n])
# ZERO
# close the genotype file
snpgdsClose(genofile)

# snpgdsPairIBDMELogLik

log likelihood for MLE method in the Identity-By-Descent (IBD) Analysis

Description
Calculate the log likelihood values from maximum likelihood estimation.

Usage
snpgpsPairIBDMELogLik(geno1, geno2, allele.freq, k0=NaN, k1=NaN,
  relatedness=c("", "self", "fullsib", "offspring", "halfsib",
  "cousin", "unrelated"), verbose=TRUE)

Arguments

  geno1 the SNP genotypes for the first individual, 0 – BB, 1 – AB, 2 – AA, other values – missing
  geno2 the SNP genotypes for the second individual, 0 – BB, 1 – AB, 2 – AA, other values – missing
**allele.freq**  the allele frequencies

**k0**  specified IBD coefficient

**k1**  specified IBD coefficient

**relatedness**  specify a relatedness, otherwise use the values of k0 and k1

**verbose**  if TRUE, show information

**Details**

If `relatedness == ""` and `(k0 == NaN or k1 == NaN)`, then return the log likelihood values for each `(k0, k1)` stored in ibdobj.

If `relatedness == ""` and `(k0 != NaN) and (k1 != NaN)`, then return the log likelihood values for a specific IBD coefficient `(k0, k1)`.

If `relatedness` is: "self", then `k0 = 0, k1 = 0`; "fullsib", then `k0 = 0.25, k1 = 0.5`; "offspring", then `k0 = 0, k1 = 1`; "halfsib", then `k0 = 0.5, k1 = 0.5`; "cousin", then `k0 = 0.75, k1 = 0.25`; "unrelated", then `k0 = 1, k1 = 0`.

**Value**

The value of log likelihood.

**Author(s)**

Xiuwen Zheng

**References**


**See Also**

`snpgdsPairIBD`, `snpgdsIBDMLE`, `snpgdsIBDMLELogLik`, `snpgdsIBDMoM`

**Examples**

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snp-gdsExampleFileName())
YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) == "YRI"]

SNP pruning
set.seed(10)
snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05, missing.rate=0.05)
snpset <- unname(sample(unlist(snpset), 250))

the number of samples
n <- 25
```
# specify allele frequencies
RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset,
with.id=TRUE)
snpgdsPairScore

summary(RF$AlleleFreq)

subMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id,
allele.freq=RF$AlleleFreq)

# genotype matrix
mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset,
snpprfirstdim=TRUE)

# close the genotype file
snpgdsClose(genofile)

rv <- NULL
for (i in 2:n)
{
  rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM")
  print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq,
relatedness="unrelated", verbose=TRUE))
}

rv

summary(rv$k0 - subMLE$k0[1, 2:n])

summary(rv$k1 - subMLE$k1[1, 2:n])

# ZERO
rv <- NULL
for (i in 2:n)
  rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM"))
rv

summary(rv$k0 - subMoM$k0[1, 2:n])

summary(rv$k1 - subMoM$k1[1, 2:n])

# close the genotype file
snpgdsClose(genofile)

---

snpgdsPairScore  

Genotype Score for Pairs of Individuals

Description

Calculate the genotype score for pairs of individuals based on identity-by-state (IBS) measure

Usage

snpgdsPairScore(gdobj, sample1.id, sample2.id, snp.id=NULL,
method=c("IBS", "GVH", "HVG"),
type=c("per.pair", "per.snp", "matrix", "gds.file"),
dosage=TRUE, with.id=TRUE, output=NULL, verbose=TRUE)
snpgdsPairScore

Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample1.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `sample2.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `method`: "IBS" – identity-by-state score, "GVH" or "HVG", see Details
- `type`: "per.pair", "per.snp" or "matrix", see Value
- `dosage`: TRUE, uses dosages 0, 1, 2; FALSE, uses 0, 1 (changing a return value of 1 or 2 to be 1)
- `with.id`: if TRUE, returns "sample.id" and "snp.id"; see Value
- `output`: if type="gds.file", the file name
- `verbose`: if TRUE, show information

Details

<table>
<thead>
<tr>
<th>Patient (sample1.id)</th>
<th>Coded Genotype</th>
<th>Donor (sample2.id)</th>
<th>Coded Genotype</th>
<th>IBS</th>
<th>GVH</th>
<th>HVG</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0</td>
<td>AA</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AA</td>
<td>0</td>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AA</td>
<td>0</td>
<td>BB</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>AA</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>AB</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>BB</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>BB</td>
<td>2</td>
<td>AA</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>BB</td>
<td>2</td>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BB</td>
<td>2</td>
<td>BB</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Value

Return a list:

- `sample.id`: the sample ids used in the analysis, if `with.id=TRUE`
- `snp.id`: the SNP ids used in the analysis, if `with.id=TRUE`
- `score`: a matrix of genotype score: if `type="per.pair"`, a data.frame with the first column for average scores, the second column for standard deviation and the third column for the valid number of SNPs; the additional columns for pairs of samples. if `type="per.snp"`, a 3-by-# of SNPs matrix with the first row for average scores, the second row for standard deviation and the third row for the valid number of individual pairs; if `type="matrix"`, a # of pairs-by-# of SNPs matrix with rows for pairs of individuals

Author(s)

Xiuwen Zheng
References


See Also

snpdgsIBS

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

# autosomal SNPs
selsnp <- snpgdsSelectSNP(genofile, autosome.only=TRUE, remove.monosnp=FALSE)

# sample ID
sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
father.id <- read.gdsn(index.gdsn(genofile, "sample.annot/father.id"))

offspring.id <- sample.id[father.id != ""]
father.id <- father.id[father.id != ""]

# calculate average genotype scores
z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
                       method="IBS", type="per.pair")
names(z1)
head(z1$score)

# calculate average genotype scores
z1 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
                       method="IBS", type="per.pair", dosage=FALSE)
names(z1)
head(z1$score)

# calculate average genotype scores
z2 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
                       method="IBS", type="per.snp"
names(z2)
mean(z2$score["Avg",])
mean(z2$score["SD",])

plot(z2$score["Avg",], pch=20, cex=0.75, xlab="SNP Index", ylab="IBS score")

# calculate a matrix of genotype scores over samples and SNPs
z3 <- snpgdsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
                       method="IBS", type="matrix")
dim(z3$score)

# output the score matrix to a GDS file
snpdgsPairScore(genofile, offspring.id, father.id, snp.id=selsnp,
snpgdsPCA

Principal Component Analysis (PCA) on SNP genotype data

Description

To calculate the eigenvectors and eigenvalues for principal component analysis in GWAS.

Usage

```r
snpgdsPCA(gdsobj, sample.id=NULL, snp.id=NULL,
 autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN,
 algorithm=c("exact", "randomized"),
 eigen.cnt=ifelse(identical(algorithm, "randomized"), 16L, 32L),
 num.thread=1L, bayesian=FALSE, need.genmat=FALSE,
 genmat.only=FALSE, eigen.method=c("DSPEVX", "DSPEV"),
 aux.dim=eigen.cnt*2L, iter.num=10L, verbose=TRUE)
```

Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `autosome.only`: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- `remove.monosnp`: if TRUE, remove monomorphic SNPs
- `maf`: to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- `missing.rate`: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- `eigen.cnt`: output the number of eigenvectors; if eigen.cnt <= 0, then return all eigenvectors
- `algorithm`: "exact", traditional exact calculation; "randomized", fast PCA with randomized algorithm introduced in Galinsky et al. 2016
- `num.thread`: the number of (CPU) cores used; if NA, detect the number of cores automatically
- `bayesian`: if TRUE, use bayesian normalization
- `need.genmat`: if TRUE, return the genetic covariance matrix
- `genmat.only`: return the genetic covariance matrix only, do not compute the eigenvalues and eigenvectors

Examples

```r
(f <- snpgdsOpen("tmp.gds"))
snpgdsClose(f)
close the file
snpgdsClose(genofile)
unlink("tmp.gds", force=TRUE)
```
eigen.method  "DSPEVX" – compute the top eigen.cnt eigenvalues and eigenvectors using LAPACK::DSPEVX; "DSPEV" – to be compatible with SNPRelate_1.1.6 or earlier, using LAPACK::DSPEV; "DSPEVX" is significantly faster than "DSPEV" if only top principal components are of interest

aux.dim  auxiliary dimension used in fast randomized algorithm

iter.num  iteration number used in fast randomized algorithm

verbose  if TRUE, show information

x  a snpgdsPCAClass object

eig  indices of eigenvectors, like 1:2 or 1:4

...  the arguments passed to or from other methods, like pch, col

Details

The minor allele frequency and missing rate for each SNP passed in snp.id are calculated over all the samples in sample.id.

Value

Return a snpgdsPCAClass object, and it is a list:

sample.id  the sample ids used in the analysis

snp.id  the SNP ids used in the analysis

eigenval  eigenvalues

eigenvect  eigenvectors, "# of samples" x "eigen.cnt"

varprop  variance proportion for each principal component

TraceXTX  the trace of the genetic covariance matrix

Bayesian  whether use bayerisan normalization

genmat  the genetic covariance matrix

Author(s)

Xiuwen Zheng

References


See Also

snpgdsPCACorr, snpgdsPCASampLoading, snpgdsPCASNPLoading
Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpagsExampleFileName())

# run PCA
RV <- snpgdsPCA(genofile)

# eigenvalues
head(RV$eigenval)

# variance proportion (%)
head(round(RV$varprop*100, 2))
# [1] 12.23 5.84 1.01 0.95 0.84 0.74

plot(RV)
plot(RV, 1:4)

#### there is no population information ####

# make a data.frame
tab <- data.frame(sample.id = RV$sample.id,
                  EV1 = RV$eigenvect[,1],  # the first eigenvector
                  EV2 = RV$eigenvect[,2],  # the second eigenvector
                  stringsAsFactors = FALSE)
head(tab)
# sample.id EV1 EV2
# 1 NA19152 -0.08411287 -0.01226860
# 2 NA19139 -0.08360644 -0.01085849
# 3 NA18912 -0.08110808 -0.01184524
# 4 NA19160 -0.08680864 -0.01447106
# 5 NA07034 0.03109761 0.07709255
# 6 NA07055 0.03228450 0.08155730

# draw
plot(tab$EV2, tab$EV1, xlab="eigenvector 2", ylab="eigenvector 1")

#### there are population information ####

# get population information
# or pop_code <- scan("pop.txt", what=character())
# if it is stored in a text file "pop.txt"
prog_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))

# get sample id
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

# assume the order of sample IDs is as the same as population codes
cbind(samp.id, prog_code)
# samp.id prog_code
# [1,] "NA19152" "YRI"
# [2,] "NA19139" "YRI"
# [3,] "NA18912" "YRI"
snpgdsPCACorr

PC-correlated SNPs in principal component analysis

Description

To calculate the SNP correlations between eigenvectors and SNP genotypes

Usage

snpgdsPCACorr(pcaobj, gdsobj, snp.id=NULL, eig.which=NULL, num.thread=1L, verbose=TRUE)

Arguments

pcaobj the snpgdsPCAClass object returned from the function snpgdsPCA
gdsobj an object of class SNPGLSFileClass, a SNP GDS file
snp.id a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
eig.which a vector of integers, to specify which eigenvectors to be used
num.thread the number of (CPU) cores used; if NA, detect the number of cores automatically
verbose if TRUE, show information
Value

Return a list:

- **sample.id**: the sample ids used in the analysis
- **snp.id**: the SNP ids used in the analysis
- **snpccorr**: a matrix of correlation coefficients, "# of eigenvectors" x "# of SNPs"

Author(s)

Xiuwen Zheng

References


See Also

- `snpgdsPCA`, `snpgdsPCASampLoading`, `snpgdsPCASNPLoading`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
get chromosome index
chr <- read.gdsn(index.gdsn(genofile, "snp.chromosome"))

pca <- snpgdsPCA(genofile)
CORR <- snpgdsPCACorr(pca, genofile, eig.which=1:4)
plot(abs(CORR$snpccorr[3,]), xlab="SNP Index", ylab="PC 3", col=chr)

close the file
snpgdsClose(genofile)
```

---

**snpgdsPCASampLoading**  
*Project individuals onto existing principal component axes*

**Description**

To calculate the sample eigenvectors using the specified SNP loadings

**Usage**

```r
snpgdsPCASampLoading(loadobj, gdsobj, sample.id=NULL, num.thread=1L,
verbose=TRUE)
```

**Arguments**

- **loadobj**  
  the `snpgdsPCASNPLoadingClass` object, returned from `snpgdsPCASNPLoading`

- **gdsobj**  
  an object of class `SNPGDSFileClass`, a SNP GDS file

- **sample.id**  
  a vector of sample id specifying selected samples; if NULL, all samples are used

- **num.thread**  
  the number of CPU cores used

- **verbose**  
  if TRUE, show information
Details

The sample.id are usually different from the samples used in the calculation of SNP loadings.

Value

Return a snpgdsPCAClass object, and it is a list:

- **sample.id**: the sample ids used in the analysis
- **snp.id**: the SNP ids used in the analysis
- **eigenval**: eigenvalues
- **eigenvect**: eigenvactors, "# of samples" x "eigen.cnt"
- **TraceXTX**: the trace of the genetic covariance matrix
- **Bayesian**: whether use bayerisan normalization

Author(s)

Xiuwen Zheng

References


See Also

snpgdsPCA, snpgdsPCACorr, snpgdsPCASNPLoading

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpndsExampleFileName())

sample.id <- read.gdsn(index.gdsn(genofile, "sample.id"))

PCARV <- snpgdsPCA(genofile, eigen.cnt=8)
SnpLoad <- snpgdsPCASNPLoading(PCARV, genofile)

calculate sample eigenvectors from SNP loadings
SL <- snpgdsPCASampLoading(SnpLoad, genofile, sample.id=sample.id[1:100])

diff <- PCARV$eigenvect[1:100,] - SL$eigenvect
snpgdsClose(genofile)
```
Description

To calculate the SNP loadings in Principal Component Analysis

Usage

```r
snpgdsPCASNPLoading(pcaobj, gdsobj, num.thread=1L, verbose=TRUE)
```

Arguments

- `pcaobj`: the `snpgdsPCAClass` object returned from the function `snpgdsPCA`
- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `num.thread`: the number of (CPU) cores used; if `NA`, detect the number of cores automatically
- `verbose`: if TRUE, show information

Details

Calculate the SNP loadings (or SNP eigenvectors) from the principal component analysis conducted in `snpgdsPCA`.

Value

Return a `snpgdsPCASNPLoading` object, which is a list:

- `sample.id`: the sample ids used in the analysis
- `snp.id`: the SNP ids used in the analysis
- `eigenval`: eigenvalues
- `snploading`: the SNP loadings, or SNP eigenvectors
- `TraceXTX`: the trace of the genetic covariance matrix
- `Bayesian`: whether use bayesian normalization
- `avefreq`: the allele frequency used in `snpgdsPCA`
- `scale`: internal parameter

Author(s)

Xiuwen Zheng

References


See Also

snpgdsPCA, snpgdsPCASampLoading, snpgdsPCACorr

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

PCARV <- snpgdsPCA(genofile, eigen.cnt=8)
SnpLoad <- snpgdsPCASNPloading(PCARV, genofile)

names(SnpLoad)
# [1] "sample.id" "snp.id" "eigenval" "snplloading" "TraceXTX"
# [6] "Bayesian" "avefreq" "scale"

dim(SnpLoad$snploading)
# [1] 8 8722

plot(SnpLoad$snploading[1,], type="h", ylab="PC 1")

# close the genotype file
snpgdsClose(genofile)

---

snpgdsPED2GDS  Conversion from PLINK PED to GDS

Description

Convert a PLINK PED text file to a GDS file.

Usage

snpgdsPED2GDS(ped.fn, map.fn, out.gdsfn, family=TRUE, snpfirstdim=FALSE,
compress.annotation="ZIP_RA.max", compress.geno="", verbose=TRUE)

Arguments

ped.fn the file name of PED file, genotype information
map.fn the file name of MAP file
out.gdsfn the output GDS file
family if TRUE, to include family information in the sample annotation
snpfirstdim if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
compress.annotation the compression method for the GDS variables, except "genotype"; optional values are defined in the function add.gdsn
compress.geno the compression method for "genotype"; optional values are defined in the function add.gdsn
verbose if TRUE, show information
Details

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file format is used in the gdsfmt package.
PED – PLINK PED format.

Value

None.

Author(s)

Xiuwen Zheng

References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

See Also

snpGds2PED, snpGdsBED2GDS, snpGdsGDS2BED

Examples

```r
open
genofile <- snpgdsOpen(snpGdsExampleFileName())
snpGds2PED(genofile, "tmp")
close
snpGdsClose(genofile)

PED ==> GDS
snpGdsPED2GDS("tmp.ped", "tmp.map", "test.gds")

delete the temporary file
unlink(c("tmp.ped", "tmp.map", "test.gds"), force=TRUE)
```

---

snpGdsSampMissRate  Missing Rate of Samples

Description

Return the missing fraction for each sample

Usage

```r
snpGdsSampMissRate(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)
```
Arguments

- `gdsobj`: An object of class `SNPGDSFileClass`, a SNP GDS file.
- `sample.id`: A vector of sample id specifying selected samples; if `NULL`, all samples will be used.
- `snp.id`: A vector of snp id specifying selected SNPs; if `NULL`, all SNPs will be used.
- `with.id`: If `TRUE`, the returned value with sample id.

Value

A vector of numeric values.

Author(s)

Xiuwen Zheng

See Also

`snpgdsSNPRateFreq`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())
RV <- snpgdsSampMissRate(genofile)
summary(RV)
close the genotype file
snpgdsClose(genofile)
```

---

### snpgdsSelectSNP

**SNP selection**

Create a list of candidate SNPs based on specified criteria.

**Usage**

```r
snpgdsSelectSNP(gdsobj, sample.id=NULL, snp.id=NULL, autosome.only=TRUE, remove.monosnp=TRUE, maf=NaN, missing.rate=NaN, verbose=TRUE)
```

**Arguments**

- `gdsobj`: An object of class `SNPGDSFileClass`, a SNP GDS file.
- `sample.id`: A vector of sample id specifying selected samples; if `NULL`, all samples will be used.
- `snp.id`: A vector of snp id specifying selected SNPs; if `NULL`, all SNPs will be used.
- `autosome.only`: If `TRUE`, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome.
snpgsdsSlidingWindow  Sliding window

Description

Apply a user-defined function with a sliding window.

Usage

snpgsdsSlidingWindow(gdsobj, sample.id=NULL, snp.id=NULL, 
FUN=NULL, winsize=100000L, shift=10000L, unit=c("basepair", "locus"), 
winstart=NULL, autosome.only=FALSE, remove.monosnp=TRUE, maf=NaN, 
missing.rate=NaN, as.is=c("list", "numeric", "array"), 
with.id=c("snp.id", "snp.id.in.window", "none"), num.thread=1, 
verbose=TRUE, ...)
Arguments

- `gdsobj`: an object of class `SNPGDSFileClass`, a SNP GDS file
- `sample.id`: a vector of sample id specifying selected samples; if NULL, all samples are used
- `snp.id`: a vector of snp id specifying selected SNPs; if NULL, all SNPs are used
- `FUN`: a character or a user-defined function, see details
- `winsize`: the size of sliding window
- `shift`: the amount of shifting the sliding window
- `unit`: "basepair" – winsize and shift are applied with SNP coordinate of basepair; "locus" – winsize and shift are applied according to the SNP order in the GDS file
- `winstart`: NULL – no specific starting position; an integer – a starting position for all chromosomes; or a vector of integer – the starting positions for each chromosome
- `autosome.only`: if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep SNPs according to the specified chromosome
- `remove.monosnp`: if TRUE, remove monomorphic SNPs
- `maf`: to use the SNPs with ">= maf" only; if NaN, no MAF threshold
- `missing.rate`: to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold
- `as.is`: save the value returned from FUN as "list" or "numeric"; "array" is equivalent to "numeric" except some cases, see details
- `with.id`: "snp.id", "snp.id.in.window" or "none"
- `num.thread`: the number of (CPU) cores used; if NA, detect the number of cores automatically
- `verbose`: if TRUE, show information
- `...`: optional arguments to FUN

Details

If FUN="snpgdsFst", two additional arguments "population" and "method" should be specified. "population" and "method" are defined in `snpgdsFst`. "as.is" could be "list" (returns a list of the values from `snpgdsFst`), "numeric" (population-average Fst, returns a vector) or "array" (population-average and -specific Fst, returns a '# of pop + 1'-by-'# of windows' matrix, and the first row is population-average Fst).

Value

Return a list

Author(s)

Xiuwen Zheng

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

sliding windows
rv <- snpgdsSlidingWindow(genofile, winsize=500000, shift=100000,
 FUN=function(...) NULL)
```
# plot
plot(rv$chr1.num, ylab="# of SNPs in the sliding window")

# close the genotype file
snpgdsClose(genofile)

### snpgdsSNPList  
Create a SNP list object

#### Description
A list object of SNP information including rs, chr, pos, allele and allele frequency.

#### Usage

```r
snpgdsSNPList(gdsobj, sample.id=NULL)
```

#### Arguments
- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **sample.id**: a vector of sample id specifying selected samples; if NULL, all samples are used

#### Value
Return an object of `snpgdsSNPListClass` including the following components:
- **rs.id**: SNP id
- **chromosome**: SNP chromosome index
- **position**: SNP physical position in basepair
- **allele**: reference / non-ref alleles
- **afreq**: allele frequency

#### Author(s)
Xiuwen Zheng

#### See Also

- `snpgdsSNPListIntersect`, `snpgdsSNPListStrand`

#### Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpgdsExampleFileName())

to get a snp list object
snplist <- snpgdsSNPList(genofile)

close the file
snpgdsClose(genofile)
```
**snpgdsSNPListIntersect**

*snpgdsSNPListClass*  
*the class of a SNP list*

**Description**

the class of a SNP list, and its instance is returned from *snpgdsSNPList*.

**Value**

Return an object of “snpgdsSNPListClass” including the following components:

- **rs.id**  
  SNP id

- **chromosome**  
  SNP chromosome index

- **position**  
  SNP physical position in basepair

- **allele**  
  reference / non-ref alleles

- **afreq**  
  allele frequency

**Author(s)**

Xiuwen Zheng

**See Also**

*snpgdsSNPList, snpgdsSNPListIntersect*

**snpgdsSNPListIntersect**  
*Get a common SNP list between two SNP list objects*

**Description**

Get a common SNP list by comparing their rs id, chromosome indices and positions.

**Usage**

`snpgdsSNPListIntersect(snplist1, snplist2)`

**Arguments**

- **snplist1**  
  the first SNP list object *snpgdsSNPListClass*

- **snplist2**  
  the second SNP list object *snpgdsSNPListClass*

**Value**

Return an object of *snpgdsSNPListClass* including the following components:

- **rs.id**  
  SNP id

- **chromosome**  
  SNP chromosome index

- **position**  
  SNP physical position in basepair

- **allele**  
  reference / non-ref alleles from the first SNP list object

- **afreq**  
  allele frequency from the first SNP list object
Author(s)
Xiuwen Zheng

See Also

snpdgsSNPList, snpgdsSNPListStrand

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpdgsExampleFileName())

# to get a snp list object
snplist1 <- snpgdsSNPList(genofile)
snplist2 <- snpgdsSNPList(genofile)

# a common snp list
snplist <- snpgdsSNPListIntersect(snplist1, snplist2)

summary(snplist$afreq)

# close the file
snpgdsClose(genofile)

snpdgsSNPListStrand  Switch allele strand.

Description

To get a logical vector, indicating whether allele references of snplist2 need to be switched, with respect to snplist1.

Usage

snpdgsSNPListStrand(snplist1, snplist2, same.strand=FALSE)

Arguments

  snplist1  the first SNP list object “snpdgsSNPListClass”
  snplist2  the second SNP list object “snpdgsSNPListClass”
  same.strand  TRUE assuming alleles are on the same strand (e.g., forward strand); otherwise, FALSE not assuming whether on the same strand or not

Value

  a logical vector, where TRUE indicates the allele references need to be switched, and NA indicates that locus is not in the common snp list.

Author(s)
Xiuwen Zheng
See Also

`snp EuropeList, snpgdsSNPListStrand`

Examples

```r
open an example dataset (HapMap)
genofile <- snpgdsOpen(snpEuropeExampleFile())

to get a snp list object
snplist1 <- snpgdsSNPList(genofile)
snplist2 <- snpgdsSNPList(genofile)

a common snp list
L <- snpgdsSNPListStrand(snplist1, snplist2)
table(L, exclude=NULL)

close the file
snpgdsClose(genofile)
```

`snp EuropeRateFreq`  
*Allele Frequency, Minor Allele Frequency, Missing Rate of SNPs*

Description

Calculate the allele frequency, minor allele frequency and missing rate per SNP.

Usage

`snp EuropeRateFreq(gdsobj, sample.id=NULL, snp.id=NULL, with.id=FALSE)`  

Arguments

- **gdsobj**: an object of class `SNPGDSFileClass`, a SNP GDS file
- **sample.id**: a vector of sample id specifying selected samples; if `NULL`, all samples will be used
- **snp.id**: a vector of snp id specifying selected SNPs; if `NULL`, all SNPs will be used
- **with.id**: if `TRUE`, return sample and SNP IDs

Value

Return a list:

- **AlleleFreq**: allele frequencies
- **MinorFreq**: minor allele frequencies
- **MissingRate**: missing rates
- **sample.id**: sample id, if `with.id=TRUE`
- **snp.id**: SNP id, if `with.id=TRUE`
snpGDS::Summary

Author(s)
Xiuwen Zheng

See Also
snpGDS::SampMissRate

Examples

# open an example dataset (HapMap)
genofile <- snpgdsOpen(snpGDSExampleFileName())

RV <- snpgdsSNPRateFreq(genofile)
hist(RV$AlleleFreq, breaks=128)
summary(RV$MissingRate)

# close the file
snpGDSClose(genofile)

snpGDS::Summary

Summary of GDS genotype file

Description
Print the information stored in the gds object

Usage
snpGDS::Summary(gds, show=TRUE)

Arguments

  gds a GDS file name, or an object of class SNP::GDSFileClass
  show if TRUE, show information

Value
Return a list:

  sample.id the IDs of valid samples
  snp.id the IDs of valid SNPs

Author(s)
Xiuwen Zheng

Examples
snpGDS::Summary(snpGDSExampleFileName())
snpgdsTranspose

Transpose genotypic matrix

Description

Transpose the genotypic matrix if needed.

Usage

```r
snpgdsTranspose(gds.fn, snpfirstdim=FALSE, compress=NULL, optimize=TRUE, verbose=TRUE)
```

Arguments

- `gds.fn` : the file name of SNP GDS format
- `snpfirstdim` : if TRUE, genotypes are stored in snp-by-sample; if FALSE, sample-by-snp mode; if NA, force to transpose the SNP matrix
- `compress` : the compression mode for SNP genotypes, optional values are defined in the function of add.gdsn; if NULL, to use the compression mode
- `optimize` : if TRUE, call cleanup.gds after transposing
- `verbose` : if TRUE, show information

Value

None.

Author(s)

Xiuwen Zheng

Examples

```r
the file name of SNP GDS
(fn <- snpgdsExampleFileName())

copy the file
file.copy(fn, "test.gds", overwrite=TRUE)

summary
snpgdsSummary("test.gds")

transpose the SNP matrix
snpgdsTranspose("test.gds", snpfirstdim=TRUE)

summary
snpgdsSummary("test.gds")

delete the temporary file
unlink("test.gds", force=TRUE)
```
Reformat Variant Call Format (VCF) file(s)

Usage

`snpqdsVCF2GDS(vcf.fn, out.fn, method=c("biallelic.only", "copy.num.of.ref"),
  snpfirstdim=FALSE, compress.annotation="ZIP_RA.max", compress.geno="",
  ref.allele=NULL, ignore.chr.prefix="chr", verbose=TRUE)`

Arguments

- `vcf.fn`: the file name of VCF format, `vcf.fn` can be a vector, see details
- `out.fn`: the file name of output GDS
- `method`: either "biallelic.only" by default or "copy.num.of.ref", see details
- `snpfirstdim`: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
- `compress.annotation`: the compression method for the GDS variables, except "genotype"; optional values are defined in the function add.gdsn
- `compress.geno`: the compression method for "genotype"; optional values are defined in the function add.gdsn
- `ref.allele`: NULL or a character vector indicating reference allele (like "A", "G", "T", NA, ...) for each site where NA to use the original reference allele in the VCF file(s). The length of character vector should be the total number of variants in the VCF file(s)
- `ignore.chr.prefix`: a vector of character, indicating the prefix of chromosome which should be ignored, like "chr"; it is not case-sensitive
- `verbose`: if TRUE, show information

Details

GDS – Genomic Data Structures used for storing genetic array-oriented data, and the file format used in the gdsfmt package.

VCF – The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file names in `vcf.fn`, `snpqdsVCF2GDS` will merge all dataset together if they all contain the same samples. It is useful to combine genetic/genomic data together if VCF data are divided by chromosomes.

- `method = "biallelic.only"`: to exact bi-allelic and polymorphic SNP data (excluding monomorphic variants); `method = "copy.num.of.ref"`: to extract and store dosage (0, 1, 2) of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.
Haploid and triploid calls are allowed in the transfer, the variable snp.id stores the original row index of variants, and the variable snp.rs.id stores the rs id.

When snp.chromosome in the GDS file is character, SNPRelate treats a chromosome as autosome only if it can be converted to a numeric value (like "1", "22"). It uses "X" and "Y" for non-autosomes instead of numeric codes. However, some software formats chromosomes in VCF files with a prefix "chr". Users should remove that prefix when importing VCF files by setting ignore.chr.prefix = "chr".

Value

Return the file name of GDS format with an absolute path.

Author(s)

Xiuwen Zheng

References


http://corearray.sourceforge.net/

See Also

snpoolsBED2GDS

Examples

# the VCF file
vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")
snpoolsVCF2GDS(vcf.fn, "test1.gds", method="biallelic.only")
snpoolsSummary("test1.gds")
snpoolsVCF2GDS(vcf.fn, "test2.gds", method="biallelic.only", snpfirstdim=TRUE)
snpoolsSummary("test2.gds")
snpoolsVCF2GDS(vcf.fn, "test3.gds", method="copy.num.of.ref", snpfirstdim=TRUE)
snpoolsSummary("test3.gds")
snpoolsVCF2GDS(vcf.fn, "test4.gds", method="copy.num.of.ref")
snpoolsSummary("test4.gds")
snpoolsVCF2GDS(vcf.fn, "test5.gds", method="copy.num.of.ref", ref.allele=c("A", "T", "T", "T", "A"))
snpoolsSummary("test5.gds")

# open "test1.gds"
(genofile <- snpgdsOpen("test1.gds"))
read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

# close the file
snpgdsClose(genofile)

# open "test2.gds"
(genofile <- snpgdsOpen("test2.gds"))
read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

# close the file
snpgdsClose(genofile)

# open "test3.gds"
(genofile <- snpgdsOpen("test3.gds"))
read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "genotype"))

# close the file
snpgdsClose(genofile)

# open "test4.gds"
(genofile <- snpgdsOpen("test4.gds"))
read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

# close the file
snpgdsClose(genofile)

# open "test5.gds"
(genofile <- snpgdsOpen("test5.gds"))
read.gdsn(index.gdsn(genofile, "sample.id"))
read.gdsn(index.gdsn(genofile, "snp.rs.id"))
read.gdsn(index.gdsn(genofile, "snp.allele"))
read.gdsn(index.gdsn(genofile, "genotype"))

# close the file
snpgdsClose(genofile)

# delete the temporary files
unlink(paste("test", 1:5, ".gds", sep=""), force=TRUE)
Reformat a VCF file (R implementation)

Description
Reformat a Variant Call Format (VCF) file

Usage

```r
snpgdsVCF2GDS_R(vcf.fn, out.fn, nblock=1024,
meth of. = c("biallelic.only", "copy.num.of.ref"),
compress.annotation="ZIP_RA.max", snpfirstdim=FALSE, option = NULL,
verbose=TRUE)
```

Arguments

- `vcf.fn`: the file name of VCF format, `vcf.fn` can be a vector, see details
- `out.fn`: the output gds file
- `nblock`: the buffer lines
- `method`: either "biallelic.only" by default or "copy.num.of.ref", see details
- `compress.annotation`: the compression method for the GDS variables, except "genotype"; optional values are defined in the function add.gdsn
- `snpfirstdim`: if TRUE, genotypes are stored in the individual-major mode, (i.e, list all SNPs for the first individual, and then list all SNPs for the second individual, etc)
- `option`: NULL or an object from `snpgdsOption`, see details
- `verbose`: if TRUE, show information

Details

GDS – Genomic Data Structures used for storing genetic array-oriented data, and the file format used in the gdsfmt package.

VCF – The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

If there are more than one file name in `vcf.fn`, `snpgdsVCF2GDS` will merge all dataset together once they all contain the same samples. It is useful to combine genetic data if VCF data are divided by chromosomes.

- `method = "biallelic.only"`: to exact bi-allelic and polymorphic SNP data (excluding monomorphic variants);
- `method = "copy.num.of.ref"`: to extract and store dosage (0, 1, 2) of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.

Haploid and triploid calls are allowed in the transfer, the variable `snp.id` stores the original row index of variants, and the variable `snp.rs.id` stores the rs id.

The user could use option to specify the range of code for autosomes. For humans there are 22 autosomes (from 1 to 22), but dogs have 38 autosomes. Note that the default settings are used for humans. The user could call `option = snpgdsOption(autosome.end=38)` for importing the VCF file of dog. It also allows defining new chromosome coding, e.g., `option = snpgdsOption(Z=27)`, then "Z" will be replaced by the number 27.
Value

None.

Author(s)

Xiuwen Zheng

References


See Also

snpdgsVCF2GDS_R, snpgdsOption, snpgdsBED2GDS

Examples

# The VCF file
vcf.fn <- system.file("extdata", "sequence.vcf", package="SNPRelate")
cat(readLines(vcf.fn), sep="\n")

snpdgsVCF2GDS_R(vcf.fn, "test1.gds", method="biallelic.only")snpgdsSummary("test1.gds")

snpdgsVCF2GDS_R(vcf.fn, "test2.gds", method="biallelic.only")snpgdsSummary("test2.gds")

snpdgsVCF2GDS_R(vcf.fn, "test3.gds", method="copy.num.of.ref")snpgdsSummary("test3.gds")

snpdgsVCF2GDS_R(vcf.fn, "test4.gds", method="copy.num.of.ref")snpgdsSummary("test4.gds")
Index

*Topic GDS
snpGdsAdmixProp, 6
snpGdsAlleleSwitch, 8
snpGdsApartSelection, 9
snpGdsBED2GDS, 10
snpGdsClose, 12
snpGdsCombineGeno, 13
snpGdsCreateGeno, 14
snpGdsCreateGenoSet, 15
snpGdsCutTree, 17
snpGdsDiss, 19
snpGdsDrawTree, 21
snpGdsEIGMIX, 22
snpGdsErrMsg, 24
snpGdsExampleFileName, 25
SNPGDSFileClass, 26
snpGdsFst, 26
snpGdsGDS2BED, 28
snpGdsGDS2Eigen, 29
snpGdsGDS2PED, 30
snpGdsGEN2GDS, 31
snpGdsGetGeno, 33
snpGdsGRM, 34
snpGdsHCluster, 35
snpGdsHWE, 37
snpGdsIBDKING, 38
snpGdsIBDME, 40
snpGdsIBDMELogLik, 43
snpGdsIBDMoM, 45
snpGdsIBDSelection, 47
snpGdsIBS, 49
snpGdsIBSNum, 50
snpGdsIndInb, 51
snpGdsIndInbCoef, 53
snpGdsIndivBeta, 54
snpGdsLDMat, 55
snpGdsLDpair, 57
snpGdsLDpruning, 58
snpGdsOpen, 60
snpGdsOption, 61
snpGdsPairIBD, 62
snpGdsPairIBDMELogLik, 64
snpGdsPairScore, 66
snpGdsPCA, 69
snpGdsPCACorr, 72
snpGdsPCASampLoading, 73
snpGdsPCASNPLoading, 75
snpGdsPED2GDS, 76
snpGdsSampMissRate, 77
snpGdsSelectSNP, 78
snpGdsSlidingWindow, 79
snpGdsSNPList, 81
snpGdsSNPListClass, 82
snpGdsSNPListIntersect, 82
snpGdsSNPListStrand, 83
snpGdsSNPRateFreq, 84
snpGdsSummary, 85
snpGdsTranspose, 86
snpGdsVC2GDS, 87
SNPRelate-package, 3

*Topic GWAS
snpGdsAdmixProp, 6
snpGdsAlleleSwitch, 8
snpGdsApartSelection, 9
snpGdsBED2GDS, 10
snpGdsClose, 12
snpGdsCombineGeno, 13
snpGdsCreateGeno, 14
snpGdsCreateGenoSet, 15
snpGdsCutTree, 17
snpGdsDiss, 19
snpGdsDrawTree, 21
snpGdsEIGMIX, 22
snpGdsErrMsg, 24
snpGdsExampleFileName, 25
SNPGDSFileClass, 26
snpGdsFst, 26
snpGdsGDS2BED, 28
snpGdsGDS2Eigen, 29
snpGdsGDS2PED, 30
snpGdsGEN2GDS, 31
snpGdsGetGeno, 33
snpGdsGRM, 34
snpGdsHCluster, 35
snpGdsHWE, 37
snpGdsIBDKING, 38
snpGdsIBDME, 40
snpGdsIBDMELogLik, 43
snpGdsIBDMoM, 45
snpGdsIBDSelection, 47
snpGdsIBS, 49
snpGdsIBSNum, 50
snpGdsIndInb, 51
snpGdsIndInbCoef, 53
snpGdsIndivBeta, 54
snpGdsLDMat, 55
snpGdsLDpair, 57
snpGdsLDpruning, 58
snpGdsOpen, 60
snpGdsOption, 61
snpGdsPairIBD, 62
snpGdsPairIBDMELogLik, 64
snpGdsPairScore, 66
INDEX

snpgdsIBDMMLE, 40
snpgdsIBDMMLELogLik, 43
snpgdsIBDMom, 45
snpgdsIBDSelection, 47
snpgdsIBS, 49
snpgdsIBSNum, 50
snpgdsIndInb, 51
snpgdsIndInbCoeff, 53
snpgdsIndivBeta, 54
snpgdsLDMat, 55
snpgdsLDpair, 57
snpgdsLDpruning, 58
snpgdsOpen, 60
snpgdsOption, 61
snpgdsPairIBD, 62
snpgdsPairIBDMMLELogLik, 64
snpgdsPairScore, 66
snpgdsPCA, 69
snpgdsPCACorr, 72
snpgdsPCASampLoading, 73
snpgdsPCASNPLoading, 75
snpgdsPED2GDS, 76
snpgdsSampMissRate, 77
snpgdsSelectSNP, 78
snpgdsSlidingWindow, 79
snpgdsSNPlist, 81
snpgdsSNPlistClass, 82
snpgdsSNPlistIntersect, 82
snpgdsSNPlistStrand, 83
snpgdsSNPRateFreq, 84
snpgdsSummary, 85
snpgdsTranspose, 86
snpgdsVCF2GDS, 87
snpgdsVCF2GDS.R, 90
SNPRelate-package, 3

*Topic PCA
snpgdsPCA, 69
snpgdsPCACorr, 72
snpgdsPCASampLoading, 73
snpgdsPCASNPLoading, 75

*Topic datasets
hapmap_geno, 5

cleanup.gds, 86
closefn.gds, 12

gds.class, 26, 30
gdsfmt, 11, 28, 29, 31, 32, 77, 87, 90

hapmap_geno, 5
hclust, 36

openfn.gds, 60

plot.snpgdsPCAClass (snpgdsPCA), 69

snpgdsAdmixProp, 6
snpgdsAlleleSwitch, 8
snpgdsApartSelection, 9

snpgdsBED2GDS, 10, 28, 32, 77, 88, 91
snpgdsClose, 12, 26, 60

snpgdsCombineGeno, 13, 15, 16
snpgdsCreateGeno, 13, 14, 16
snpgdsCreateGenoSet, 13, 15, 15

snpgdsCutTree, 17, 21, 22, 36

snpgdsDiss, 18, 19, 36

snpgdsDrawTree, 18, 21

snpgdsErrMsg, 24

snpgdsExampleFileName, 25

SNPGDSFileClass, 8, 12, 19, 23, 26, 28, 29, 33, 34, 37, 38, 41, 44, 45, 49, 50, 52, 54, 55, 58, 60, 61, 67, 69, 72, 73, 76, 78, 80, 81, 84, 85

SNPGDSFileClass-class (SNPGDSFileClass), 26

snpgdsFst, 26, 35, 55, 80

snpgdsGDS2BED, 28, 31, 77

snpgdsGDS2Eigen, 29

snpgdsGDS2PED, 11, 28, 30, 30, 77

snpgdsGEN2GDS, 31

snpgdsGetGeno, 33

snpgdsGRM, 34, 55

snpgdsHCluster, 17, 18, 20, 35

snpgdsHWE, 37

snpgdsIBDKING, 38, 48

snpgdsIBDMMLE, 39, 40, 44, 46, 48, 63, 65

snpgdsIBDMMLELogLik, 42, 43, 46, 63, 65

snpgdsIBDMom, 39, 42, 44, 45, 48, 63, 65

snpgdsIBDSelection, 47

snpgdsIBS, 18, 36, 49, 51, 68

snpgdsIBSNum, 30, 50

snpgdsIndInb, 35, 51, 55

snpgdsIndInbCoeff, 53

snpgdsIndivBeta, 54

snpgdsLDMat, 55, 58, 59

snpgdsLDpair, 56, 57, 59

snpgdsLDpruning, 9, 56, 58, 58, 79

snpgdsOpen, 12, 26, 60

snpgdsOption, 10, 11, 61, 90, 91

snpgdsPairIBD, 62, 65

snpgdsPairIBDMMLELogLik, 63, 64

snpgdsPairScore, 66

snpgdsPCA, 6, 23, 69, 72–76

snpgdsPCACorr, 70, 72, 74, 76
snpgsdsPCASampLoading, 70, 73, 73, 76
snpgsdsPCASNPLoading, 70, 73, 74, 75
snpgsdsPED2GDS, 11, 76
snpgsdsSampMissRate, 77, 79, 85
snpgsdsSelectSNP, 78
snpgsdsSlidingWindow, 79
snpgsdsSNPList, 81, 82–84
snpgsdsSNPListClass, 13, 82, 82
snpgsdsSNPListIntersect, 81, 82, 82
snpgsdsSNPListStrand, 81, 83, 83, 84
snpgsdsSNPRateFreq, 37, 78, 79, 84
snpgsdsSummary, 85
snpgsdsTranspose, 86
snpgsdsVCF2GDS, 32, 87
snpgsdsVCF2GDS_R, 90, 91
SNPRelate (SNPRelate-package), 3
SNPRelate-package, 3