Package ‘SPLINTER’

December 22, 2016

Type Package
Title Splice Interpreter Of Transcripts
Version 1.0.0
Date 2016-10-07
Author Diana Low
Maintainer Diana Low <dlow@imcb.a-star.edu.sg>
Description SPLINTER provides tools to analyze alternative splicing sites, interpret outcomes based on sequence information, select and design primers for site validation and give visual representation of the event to guide downstream experiments.
License GPL-2
LazyData TRUE
Depends R (>= 3.3.0), grDevices, stats
Imports graphics, ggplot2, seqLogo, Biostrings, biomaRt, GenomicAlignments, GenomicRanges, GenomicFeatures, Gviz, IRanges, S4Vectors, GenomeInfoDb, utils, plyr, BSgenome.Mmusculus.UCSC.mm9
biocViews GeneExpression, RNASeq, Visualization, AlternativeSplicing
Collate primerpcr.R main_splinter.R
RoxygenNote 5.0.1
VignetteBuilder knitr
Suggests BiocStyle, knitr, rmarkdown
NeedsCompilation no

R topics documented:

addEnsemblAnnotation ... 2
callPrimer3 .. 3
checkPrimer ... 4
compatible_cds ... 4
compatible_tx .. 5
eventOutcomeCompare .. 5
eventOutcomeTranslate .. 6
eventPlot ... 6
addEnsemblAnnotation

Description

Adds annotation to `extractSpliceEvents` object (if not present)

Usage

```r
addEnsemblAnnotation(data, species = "hsapiens")
```

Arguments

- `data` `extractSpliceEvents` object
- `species` character. biomaRt species passed to retrieve annotation. Common species include: ‘hsapiens’, ‘mmusculus’

Value

`extractSpliceEvents` object with annotated genes under $geneSymbol

Author(s)

Diana Low
callPrimer3

See Also

http://asia.ensembl.org/info/data/biomart/biomart_r_package.html#biomartexamples

Examples

```r
data_path<-system.file("extdata", package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
splice_data<-addEnsemblAnnotation(data=splice_data, species="mmusculus")
```

Description

call primer3 for a given set of DNAstringSet object

Usage

callPrimer3(seq, size_range = "150-500", Tm = c(57, 59, 62),
 name = "Primer1", primer3 = "primer3-2.3.7/bin/primer3_core",
 thermo.param = "primer3-2.3.7/src/primer3_config/",
 sequence_target = NULL,
 settings = "primer3-2.3.7/primer3web_v4_0_0_default_settings.txt")

Arguments

- `seq` DNAstring object, one DNA string for the given amplicon
- `size_range` default: '151-500'
- `Tm` melting temperature parameters default:c(55,57,58)
- `name` name of the amplicon in chr_start_end format
- `primer3` primer3 path
- `thermo.param` thermodynamic parameters folder
- `sequence_target` If one or more targets is specified then a legal primer pair must flank at least one of them.
- `settings` text file for parameters

Details

modified to include SEQUENCE_TARGET as an option

Value

data.frame of designed primers and parameters

Author(s)

Altuna Akalin’s modified Arnaud Krebs’ original function further modified here by Diana Low
```r
# primer_results<-callPrimer3(seq='')
```

Description

`checkPrimer`

Usage

```r
checkPrimer(pp, genome, roi = NULL)
```

Arguments

- `pp`
 - data.frame defining primers, or output of `callPrimer3`. minimal columns = `PRIMER_LEFT_SEQUENCE`, `PRIMER_RIGHT_SEQUENCE`
- `genome`
 - BSgenome object
- `roi`
 - makeROI object

Value

- list of GRanges with primer locations

Author(s)

Diana Low

Examples

```r
# create a primer pair  
roi  
primer_pair <- data.frame(PRIMER_LEFT_SEQUENCE="agctctttgaaattggagctgac",  
PRIMER_RIGHT_SEQUENCE="cttagaaagaacaggaaatcc",  
stringsAsFactors=FALSE)
```

Description

`compatible_cds`

Examples

```r
data(compatible_cds)  
## maybe str(compatible_cds); plot(compatible_cds) ...
compatible_tx

Description
compatible_tx

Examples
data(compatible_tx)
## maybe str(compatible_tx) ; plot(compatible_tx) ...

eventOutcomeCompare  eventOutcomeCompare

Description
Compares two sequences and gives differences if there’s a switch from 1->2 if seq2 is NULL, assume seq1 is a list of length 2 to compare

Usage
eventOutcomeCompare(seq1, seq2 = NULL, genome, direction = TRUE, fullseq = TRUE)

Arguments
seq1  GRangesList
seq2  GRangesList
genome  BSGenome object
direction  logical. Report direction of sequence change.
fullseq  logical. Report full sequences.

Value
list containing
(1) tt : PairwiseAlignmentsSingleSubject pairwise alignment
(2) eventtypes : string detailing primary event classification

Author(s)
Diana LOW

Examples
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome<-BSgenome.Mmusculus.UCSC.mm9
eventOutcomeCompare(seq1=compatible_cds$hits[[1]],seq2=region_minus_exon, genome=bsgenome,direction=TRUE)
Description
translates sequences, reports if NMD or NTC

Usage
eventOutcomeTranslate(seq1, genome, direction = FALSE, fullseq = TRUE)

Arguments
seq1 GRangesList
genome BSGenome object
direction logical. Report direction of sequence change.
fullseq logical. Output full AA sequence.

Value
list of translated sequences

Author(s)
Diana LOW

Examples
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome<-BSgenome.Mmusculus.UCSC.mm9
translation_results<-eventOutcomeTranslate(compatible_cds,genome=bsgenome,
direction=TRUE)

Description
eventPlot

Usage
eventPlot(transcripts, roi_plot = NULL, bams = c(), names = c(),
annoLabel = c("Gene A"), rspan = 1000, showAll = TRUE)
Arguments

- transcripts: GRanges object
- roi_plot: GRanges object region to plot
- bams: character vector of bam file locations
- names: character vector of name labels
- annoLabel: character. annotation label
- rspan: integer or NULL. number of basepairs to span from roi. if NULL, will consider whole gene of roi
- showAll: logical. TRUE = display splice junctions of entire view or FALSE = just roi.

Value

a Gviz plot of genomic region

Author(s)

Diana Low

Examples

```r
define BAM files
data_path <- system.file("extdata", package="SPLINTER")
mt <- paste(data_path, "/mt_chr14.bam", sep="")
wt <- paste(data_path, "/wt_chr14.bam", sep="")

plot results
eventPlot(transcripts=valid_tx, roi_plot=roi,bams=c(wt,mt),
 names=c("wt","mt"),rspan=1000)
```

Description

extend the span of the current ROI by n number of up/downstream exon(s) by modifying roi_range within the makeROI object while retaining legacy sites by keeping $roi and $flank

Usage

```r
extendROI(roi, tx, up = 0, down = 0)
```

Arguments

- roi: makeROI object
- tx: GRangesList transcript list to pull regions from
- up: integer. number of exons to extend upstream
- down: integer. number of exons to extend downstream
**extractSpliceEvents**

**Value**

*makeROI* object with modified ranges

**Examples**

```
extendROI(roi, valid_tx, up=1)
```

---

**Description**

Extracts the location of target, upstream and downstream splice sites Used for calculations and genome visualizations Adds 1bp to 0base start (MATS format)

**Usage**

```
extractSpliceEvents(data = NULL, filetype = "mats", splicetype = "SE",
 fdr = 1, inclusion = 1)
```

**Arguments**

- `data` character. path to file
- `filetype` character. type of splicing output. c(‘mats’,’custom’). see Details.
- `splicetype` character. c(‘SE’, ’RI’, ’MXE’, ’A5SS’, ’A3SS’)
- `fdr` numeric. false discovery rate filter range [0,1]
- `inclusion` numeric. splicing inclusion range, takes absolute value

**Details**

filetype ’custom’ should provide a 9-column tab-delimited text file with the following columns: GeneID (Ensembl gene id), chr, strand, exonStart, exonEnd, upstreamES, upstreamEE, downstreamES, downstreamEE eg. ENSG0000012345 chr1 + 3 4 1 2 5 6 for filetype ’custom’, coordinates are expected to be in base-1.

**Value**

list containing information on

1. original file type
2. splice event type
3. data.frame with splicing regions

**Author(s)**

Diana Low

**See Also**

[http://rnaseq-mats.sourceforge.net/user_guide.htm](http://rnaseq-mats.sourceforge.net/user_guide.htm) for MATS file definition
extractSpliceSites

Examples

data_path<system.file("extdata", package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))

extractSpliceSites

Description

Extracts and formats to bed the location of target, upstream and downstream splice sites

Usage

extractSpliceSites(file, splicetype = "SE", site = "donor", fdr = 1,
motif_range = c(-3, 6), inclusion = 0)

Arguments

file character MATS http://rnaseq-mats.sourceforge.net/ output filename or
data.frame output from extractSpliceEvents
splicetype character either SE (skipped exon) or RI (retained intron)
site character donor or acceptor
fdr numeric false discovery rate filter range [0,1]
motif_range numeric vector of splice position to extract
inclusion numeric fraction, takes absolute value

Value

GRanges object

Author(s)

Diana Low

See Also

http://rnaseq-mats.sourceforge.net/user_guide.htm for MATS file definition

Examples

data_path<system.file("extdata", package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
splice_sites<-extractSpliceSites(splice_data$data)

## or
#splice_sites<-extractSpliceSites(file=paste(data_path,"/skipped_exons.txt",sep=""))
Description

Which transcript contains the event? Each event has 2 possibilities, as long as the transcript fulfills one, it passes the test Has to be exact (inner junctions)

Usage

findCompatibleEvents(tx, tx2 = NULL, roi, sequential = TRUE, verbose = FALSE)

Arguments

- **tx**: GRangesList object of transcripts
- **tx2**: optional GRangesList object of transcripts if tx is list of cds
- **roi**: makeROI object containing event information
- **sequential**: logical. Exons have to appear sequentially to be considered compatible
- **verbose**: logical. printouts and messages.

Details

Seperates into event/region1 and 2 for the alternative case

Value

list of length 4
(1) GRangesList
(2) Hits status [c]=coding; [nc]=non-coding
(3) ct - compatible transcripts
(4) tt - total transcripts

Author(s)

Diana Low

Examples

compatible_cds <- findCompatibleEvents(valid_cds, roi=roi, verbose=TRUE)
**findCompatibleExon**

**Description**

Finds compatible exon in annotation with the one present in roi object.

**Usage**

```r
findCompatibleExon(tx, roi, verbose = FALSE)
```

**Arguments**

- `tx` : GRangesList object of transcripts
- `roi` : `makeROI` object containing event information
- `verbose` : logical. printouts and messages.

**Value**

- list of length 3
  - (1) GRangesList hits
  - (2) Number of transcripts
  - (3) Original number of input transcripts

**Author(s)**

Diana Low

**Examples**

```r
compatible_exons <- findCompatibleExon(valid_cds, roi)
```

---

**findTX**

**Description**

Given an ENSEMBL id, find all transcripts that matches id.

**Usage**

```r
findTX(id, db, tx, valid = FALSE)
```

**Arguments**

- `id` : character. transcript identification (currently ENSEMBL gene names)
- `db` : TxDb object
- `tx` : GRangesList
- `valid` : logical. check if in multiples of 3 [TRUE] for CDS translation.
getPCRsizes

Value

GRangesList

Author(s)

Diana Low

Examples

valid_cds <- findTX(id=splice_data$data[1,]$GeneID, tx=thecds, db=txdb, valid=FALSE)

getPCRsizes

description

returns length of product given a GRanges span and GRangesList of transcripts

Usage

getPCRsizes(pcr_span, txlist, verbose = FALSE)

Arguments

pcr_span

GRanges object

txlist

GRangesList object

verbose

logical. report intermediate output.

Value

data.frame of transcript names with detected sizes in basepairs

Author(s)

Diana Low

Examples

suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome <- BSgenome.Mmusculus.UCSC.mm9

## create a primer pair
## for actual use, obtain primer pair from primer design (callPrimer3)
primer_pair <- data.frame(PRIMER_LEFT_SEQUENCE="agctcttgaaattggagctgac",
PRIMER_RIGHT_SEQUENCE="cttagaaagaacaggaaatcc",
stringsAsFactors=FALSE)

## confirm location
cp <- checkPrimer(primer_pair, bsgenome, roi)
cp

## get the PCR sizes
pcr_result1 <- getPCRsizes(cp, theexons)
**getRegionDNA**

**Description**

get DNA sequence give a region of interest

**Usage**

`getRegionDNA(roi, genome, introns = FALSE)`

**Arguments**

- `roi`  
  makeROI object
- `genome`  
  BSgenome object
- `introns`  
  TRUE/FALSE. whether to include intronic (lowercase) DNA. By default returns only exonic (uppercase) DNA.

**Value**

list of
(1) DNA sequence (2) Junction start (for primer design)

**Author(s)**

Diana Low

**Examples**

```r
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome<-BSgenome.Mmusculus.UCSC.mm9
getRegionDNA(roi,bsgenome)
```

---

**insertRegion**

**Description**

inserts a region (exon or intron) into roi object

**Usage**

`insertRegion(subject, roi)`

**Arguments**

- `subject`  
  GrangesList
- `roi`  
  makeROI object containg region of interest (to insert). refer to makeROI().
Details

in the case of intron retention, replaces exon with intron retention range reduce() the GRanges in question

Value

GRanges object

Author(s)

Diana Low

Examples

#Inserts the exon defined in roi GRanges object from a GRanges/GRangesList
region_minus_exon
region_with_exon<-insertRegion(region_minus_exon,roi)

makeROI

makeROI

Description

Creates an object to store information about the splice site (region of interest) including flanking regions and alternative splice outcome

Usage

makeROI(info, itemnum = 1)

Arguments

info extractSpliceEvents object
itemnum integer. row number of item in info

Value

a list containing
(1) type : splice type
(2) name : ID of transcript
(3) roi : GRanges object of splice site
(4) flank : GRanges object of flanking exons of splice site
(5) roi_range : GRangesList of splice site and it’s alternative outcome based on type

Author(s)

Diana Low

Examples

roi <- makeROI(splice_data,1)
### Description

Makes unique ID names from event location

### Usage

```r
makeUniqueIDs(data)
```

### Arguments

- `data` extractSpliceEvents object

### Value

original extractSpliceEvents list object with unique ID appended to data accessor

### Author(s)

Diana Low

### Examples

```r
data_with_id<-makeUniqueIDs(splice_data)
```

---

### Description

`pcr_result1`

### Examples

```r
data(pcr_result1)
```
plot_seqlogo  

**Description**  
Plots the sequence logo of a given set of FASTA sequences

**Usage**  
plot_seqlogo(fasta_seq)

**Arguments**  
  
  * fasta_seq  
  DNAStringSet or path to fasta-formatted file

**Value**  
sequence logo image

**Author(s)**  
Diana Low

**Examples**  
  head(splice_fasta)  
  test<-Biostrings::DNAStringSet(splice_fasta$V2)  
  plot_seqlogo(test)

---

**primers**  

**Description**  
primers designed using Primer3 for sample data

**Usage**  
  data("primers")

**Format**  
A data frame with 5 observations on the following 28 variables.
  
  * i  
    a numeric vector
  * PRIMER_LEFT_SEQUENCE  
    a character vector
  * PRIMER_RIGHT_SEQUENCE  
    a character vector
  * PRIMER_LEFT_TM  
    a numeric vector
  * PRIMER_RIGHT_TM  
    a numeric vector
psiPlot

PRIMER_LEFT_pos  a numeric vector
PRIMER_LEFT_len  a numeric vector
PRIMER_RIGHT_pos a numeric vector
PRIMER_RIGHT_len a numeric vector
PRIMER_PAIR_PENALTY a numeric vector
PRIMER_LEFT_PENALTY a numeric vector
PRIMER_RIGHT_PENALTY a numeric vector
PRIMER_LEFT_GC_PERCENT a numeric vector
PRIMER_RIGHT_GC_PERCENT a numeric vector
PRIMER_LEFT_SELF_ANY_TH a numeric vector
PRIMER_RIGHT_SELF_ANY_TH a numeric vector
PRIMER_LEFT_SELF_END_TH a numeric vector
PRIMER_RIGHT_SELF_END_TH a numeric vector
PRIMER_LEFT_HAIRPIN_TH a numeric vector
PRIMER_RIGHT_HAIRPIN_TH a numeric vector
PRIMER_LEFT_END_STABILITY a numeric vector
PRIMER_RIGHT_END_STABILITY a numeric vector
PRIMER_LEFT_TEMPLATE_MISPRIMING a numeric vector
PRIMER_RIGHT_TEMPLATE_MISPRIMING a numeric vector
PRIMER_PAIR_COMPL_ANY_TH a numeric vector
PRIMER_PAIR_COMPL_END_TH a numeric vector
PRIMER_PAIR_PRODUCT_SIZE a numeric vector
PRIMER_PAIR_TEMPLATE_MISPRIMING a numeric vector

Value

Dataframe of primer design results

Examples

data(primers)

Description

Plots percentage spliced in (PSI) values in terms of inclusion levels

Usage

psiPlot(df = NULL, type = "MATS", sample_labels = c("Sample 1", "Sample 2"))
removeRegion

Arguments

- **df**: data.frame containing PSI values
- **type**: character. either 'MATS' output (will read in MATS headers) or 'generic' (provide 4 or 6 column data.frame)
- **sample_labels**: x-axis labels for the plot

Value

bar plot of PSI values

Author(s)

Diana Low

Examples

```r
we give inclusion and skipped numbers as reads
this will be converted into percentages
df <- data.frame(inclusion1=c("6,4,6"), skipped1=c("10,12,12"), inclusion2=c("15,15,15"),
 skipped2=c("3,3,4"), stringsAsFactors = FALSE)
psiPlot(df, type='generic')
```

---

region_minus_exon

Description

removes a region (exon) from a GRanges or GRangesList

Usage

```r
removeRegion(subject, roi)
```

Arguments

- **subject**: GRanges or GrangesList object
- **roi**: makeROI object containing GRanges range (to remove)
# Removes the exon defined in roi GRanges object from a GRanges/GRangesList compatible_cdsShits[[1]]
region_minus_exon<-removeRegion(compatible_cdsShits[[1]],roi)

---

## roi

**Value**
GRanges object

**Author(s)**
Diana Low

## splice_data

**Description**
splice_data

**Usage**
data("splice_data")

**Value**
List containing splice event file information

**Examples**
data(splice_data)
splice.fasta

**Description**
splice.fasta

**Usage**
data("splice.fasta")

**Format**
A data frame with 0 observations on the following 2 variables.
- V1 a numeric vector
- V2 a numeric vector

**Value**
Dataframe of region and fasta sequence

**Examples**
data(splice.fasta)

---

splitPCRhit

**Description**
 splits the PCR alignment into the two AS conditions

**Usage**
splitPCRhit(res, hitlist)

**Arguments**
- res result from getPCRsizes
- hitlist findCompatibleEvents object

**Value**
list of 2 data.frame objects with isoform name (ID) and length of PCR product (bp) matching Type 1 or Type 2 transcripts

**Author(s)**
Diana Low
### thecds

#### Description

thecd

#### Usage

```r
data("thecd")
```

#### Value

List containing GRanges info

#### Examples

```r
data(thecd)
```

---

### theexons

#### Description

theexons

#### Usage

```r
data("thecd")
```

#### Value

List containing GRanges info

#### Examples

```r
data(theexons)
```
valid_cds

Description
valid_cds

Usage
data("valid_cds")

Value
GRangesList

Examples
data(valid_cds)

valid_tx

Description
valid_tx

Value
GRangesList

Examples
data(valid_tx)
## maybe str(valid_tx) ; plot(valid_tx) ...
Index

**Topic datasets**
- compatible_cds, 4
- compatible_tx, 5
- pcr_result1, 15
- primers, 16
- region_minus_exon, 18
- roi, 19
- splice_data, 19
- splicefasta, 20
- thecds, 21
- theexons, 21
- valid_cds, 22
- valid_tx, 22

- addEnsemblAnnotation, 2
- callPrimer3, 3, 4
- checkPrimer, 4
- compatible_cds, 4
- compatible_tx, 5

- eventOutcomeCompare, 5
- eventOutcomeTranslate, 6
- eventPlot, 6
- extendROI, 7
- extractSpliceEvents, 2, 8, 14
- extractSpliceSites, 9

- findCompatibleEvents, 10, 20
- findCompatibleExon, 11
- findTX, 11

- getPCRsizes, 12, 20
- getRegionDNA, 13

- insertRegion, 13

- makeROI, 4, 7, 8, 10, 11, 13, 14, 18
- makeUniqueIDs, 15

- pcr_result1, 15
- plot_seqlogo, 16
- primers, 16
- psiPlot, 17

- region_minus_exon, 18