Package ‘STAN’

November 22, 2016

Version 2.2.0
Date 2016-05-30
Title The genomic STate ANnotation package
Author Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch
Maintainer Benedikt Zacher <zacher@genzentrum.lmu.de>
Imports GenomicRanges, IRanges, S4Vectors, BiocGenerics, GenomeInfoDb,
Gviz, Rsolnp
Depends methods, poilog, parallel
VignetteBuilder knitr
Suggests BiocStyle, gplots, knitr
Description Genome segmentation with hidden Markov models has become a useful tool to anno-
tate genomic elements, such as promoters and enhancers. STAN (genomic STate ANnota-
tion) implements (bidirectional) hidden Markov models (HMMs) using a variety of differ-
ent probability distributions, which can model a wide range of current genomic data (e.g. contin-
uous, discrete, binary). STAN de novo learns and annotates the genome into a given num-
ber of 'genomic states'. The 'genomic states' may for instance reflect distinct genome-
associated protein complexes (e.g. 'transcription states') or describe recurring patterns of chro-
matin features (referred to as 'chromatin states'). Unlike other tools, STAN also allows for the in-
tegration of strand-specific (e.g. RNA) and non-strand-specific data (e.g. ChIP).
License GPL (>= 2)
bioCViews HiddenMarkovModel, GenomeAnnotation, Microarray, Sequencing,
ChIPSeq, RNASeq, ChipOnChip, Transcription
LazyLoad yes
NeedsCompilation yes

R topics documented:

 STAN-package .. 2
 bdHMM ... 3
 bdHMM-class .. 4
 binarizeData .. 5
 c2optimize ... 5
 call_dpoilog .. 6
 data2Gviz ... 6
 DimNames .. 7
STAN-package

Description

The genomic STate ANnotation package

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

References

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DirScore</td>
<td>7</td>
</tr>
<tr>
<td>Emission</td>
<td>8</td>
</tr>
<tr>
<td>EmissionParams</td>
<td>9</td>
</tr>
<tr>
<td>example</td>
<td>9</td>
</tr>
<tr>
<td>fitHMM</td>
<td>10</td>
</tr>
<tr>
<td>flags</td>
<td>11</td>
</tr>
<tr>
<td>getAvgSignal</td>
<td>11</td>
</tr>
<tr>
<td>getLogLik</td>
<td>12</td>
</tr>
<tr>
<td>getPosterior</td>
<td>13</td>
</tr>
<tr>
<td>getSizeFactors</td>
<td>14</td>
</tr>
<tr>
<td>getViterbi</td>
<td>14</td>
</tr>
<tr>
<td>HMM</td>
<td>15</td>
</tr>
<tr>
<td>HMM-class</td>
<td>16</td>
</tr>
<tr>
<td>HMMEmission</td>
<td>17</td>
</tr>
<tr>
<td>HMMEmission-class</td>
<td>17</td>
</tr>
<tr>
<td>initBdHMM</td>
<td>18</td>
</tr>
<tr>
<td>initHMM</td>
<td>19</td>
</tr>
<tr>
<td>InitProb</td>
<td>19</td>
</tr>
<tr>
<td>LogLik</td>
<td>20</td>
</tr>
<tr>
<td>observations</td>
<td>21</td>
</tr>
<tr>
<td>pilot.hg19</td>
<td>21</td>
</tr>
<tr>
<td>runningMean</td>
<td>21</td>
</tr>
<tr>
<td>StateNames</td>
<td>22</td>
</tr>
<tr>
<td>trainRegions</td>
<td>22</td>
</tr>
<tr>
<td>Transitions</td>
<td>23</td>
</tr>
<tr>
<td>ucsGenes</td>
<td>23</td>
</tr>
<tr>
<td>viterbi2GRanges</td>
<td>24</td>
</tr>
<tr>
<td>viterbi2Gviz</td>
<td>24</td>
</tr>
<tr>
<td>yeastTF_databychrom_ex</td>
<td>25</td>
</tr>
<tr>
<td>yeastTF_SGDGenes</td>
<td>25</td>
</tr>
<tr>
<td>[,bdHMM,ANY,ANY-method</td>
<td>26</td>
</tr>
<tr>
<td>[,HMM,ANY,ANY-method</td>
<td>26</td>
</tr>
</tbody>
</table>

Index 27
bdHMM

Create a bdHMM object

Description

This function creates a bdHMM function.

Usage

bdHMM(initProb = numeric(), transMat = matrix(numeric(), ncol = 0, nrow = 0), emission, nStates = numeric(), status = character(), stateNames = character(), dimNames = character(), transitionsOptim = "analytical", directedObs = integer(), dirScore = numeric())

Arguments

initProb Initial state probabilities.
transMat Transition probabilities
emission Emission parameters as an HMMEmission object.
nStates Number of states.
status Status of the bdHMM. 'Initial' means that the model was not fitted yet. 'EM' means that the model was optimized using Expectation maximization.
stateNames Indicates directinality of states. States can be forward (F1, F2, ..., Fn), reverse (R1, R2, ..., Rn) or undirectional (U1, U2, ..., Um). Number of F and R states must be equal and twin states are indicated by integers in id (e.g. F1 and R1 and twins).
dimNames Names of data tracks.
transitionsOptim There are three methods to choose from for fitting the transitions. Bidirectional transition matrices (invariant under reversal of time and direction) can be fitted using c('rsolnp', 'analytical'). 'None' uses standard update formulas and the resulting matrix is not constrained to be bidirectional.
directedObs An integer indicating which dimensions are directed. Undirected dimensions are 0. Directed observations must be marked as unique integer pairs. For instance c(0,0,0,0,1,1,2,2,3,3) contains 5 undirected observations, and three pairs (one for each direction) of directed observations.
dirScore Directionlity score of states of a fitted bdHMM.

See Also

HMMEmission

Examples

nStates = 5
stateNames = c('F1', 'F2', 'R1', 'R2', 'U1')
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
bdHMM-class

transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
myEmission = list(d1=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means)))
bdhmm = bdHMM(initProb=initProb, transMat=transMat, emission=myEmission, nStates=nStates, status='initial',

bdHMM-class

This class is a generic container for bidirectional Hidden Markov Models.

Description

This class is a generic container for bidirectional Hidden Markov Models.

Slots

- initProb Initial state probabilities.
- transMat Transition probabilities
- emission Emission parameters as an HMMEmission object.
- nStates Number of states.
- status of the HMM. On of c('initial', 'EM').
- stateNames State names.
- dimNames Names of data tracks.
- LogLik Log likelihood of a fitted HMM.
- transitionsOptim There are three methods to choose from for fitting the transitions. Bidirectional transition matrices (invariant under reversal of time and direction) can be fitted using c('rsolnp', 'ipopt'). ‘None’ uses standard update formulas and the resulting matrix is not constrained to be bidirectional.
- directedObs An integer indicating which dimensions are directed. Undirected dimensions are 0. Directed observations must be marked as unique integer pairs. For instance c(0,0,0,0,0,1,1,2,2,3,3) contains 5 undirected observations, and thre pairs (one for each direction) of directed observations.
- dirScore Directionality score of states of a fitted bdHMM.

Methods

[get elements from the bdHMM

See Also

HMMEmission
Examples

nStates = 5
stateNames = c('F1', 'F2', 'R1', 'R2', 'U1')
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
myEmission = list(d1=HMM emission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means))

bdhmm = bdHMM(initProb=initProb, transMat=transMat, emission=myEmission, nStates=nStates, status='initial',

binarizeData
Binarize Sequencing data with the default ChromHMM binarization

Description

Binarize Sequencing data with the default ChromHMM binarization

Usage

binarizeData(obs)

Arguments

obs
The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).

Value

Binarized observation sequences as a list.

Examples

data(trainRegions)
binData = binarizeData(trainRegions)

c2optimize
Optimize transitions

Description

The function is called from C++ to optimize transitions.

Usage

c2optimize(pars)
Arguments

pars
Parameters for optimization.

Value

optimized transitions

```
call_dpoilog  
Calculate density of the Poisson-Log-Normal distribution.
```

Description

Calculate density of the Poisson-Log-Normal distribution.

Usage

```
call_dpoilog(x)
```

Arguments

x
A vector c(n, mu, sigma), where n is the number of observed counts, mu the mean of the Log-Normal distribution and sigma its variance.

Value

Density of the Poisson-Log-Normal distribution.

Examples

```
call_dpoilog(c(5, 2, 1))
```

```
data2Gviz  
Convert data for plotting with Gviz
```

Description

Convert data for plotting with Gviz

Usage

```
data2Gviz(obs, regions, binSize, gen, col = "black")
```

Arguments

obs
The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).

regions
GRanges object of the regions (e.g. chromosomes) stored in the viterbi path.

binSize
The bin size of the viterbi path.

gen
The geome id, e.g. hg19, hg38 for human.

col
The color of the data tracks.
DimNames

Get dimNames of a (bd)HMM

Value

A list containing the data tracks converted to Gviz objects for plotting.

Description

This function returns the names of dimensions (data tracks).

Usage

```r
DimNames(hmm)
```

Arguments

- `hmm` An object of class HMM or bdHMM.

Value

A character vector

Examples

```r
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(dimNames="1", initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma)), nStates=length(means)), nStates=nStates, status="initial")
DimNames(hmm)
```

DirScore

Get directionality score of a bdHMM

Description

This function returns the directionality score of a bdHMM.

Usage

```r
DirScore(bdhmm)
```

Arguments

- `bdhmm` An object of class bdHMM.

Value

Directionality score of the bdHMM after model fitting.
Examples

data(example)
bdhmm_ex = initBdHMM(observations, nStates=3, method="Gaussian", directedObs=0)

without flags
bdhmm_fitted_noFlags = fitHMM(observations, bdhmm_ex)
DirScore(bdhmm_fitted_noFlags)

with flags
bdhmm_fitted_flags = fitHMM(observations, bdhmm_ex, dirFlags=flags)
DirScore(bdhmm_fitted_flags)

Emission

Get Emission functions of a (bd)HMM

Description

This function returns the Emission functions of a (bd)HMM.

Usage

Emission(hmm)

Arguments

hmm

An object of class HMM or bdHMM.

Value

An object of class HMMEmission

See Also

HMMEmission

Examples

nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma)), nStates=nStates, status='initial')
Emission(hmm)
EmissionParams

Get Emission parameters of a (bd)HMM.

Description

This function returns the parameters of emission functions of a (bd)HMM object.

Usage

```r
EmissionParams(hmm)
```

Arguments

- `hmm`
 An object of class (bd)HMM.

Value

A list containing the parameters of the Emission functions.

See Also

HMMEmission, HMM, bdHMM

Examples

```r
nStates = 5
means = list(4, 11, 4, 11, -1)
Sigma = lapply(list(4, 4, 4, 4, 4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma)), nStates=nStates, status='initial')
EmissionParams(hmm)
```

example

The data for the bdHMM example in the vignette and examples in the manual

Description

The data for the bdHMM example in the vignette and examples in the manual

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch
fitHMM

Fit a Hidden Markov Model

Description

The function is used to fit (bidirectional) Hidden Markov Models, given one or more observation sequence.

Usage

```r
fitHMM(obs=list(), hmm, convergence=1e-6, maxIters=1000, dirFlags=list(), emissionProbs=list(), effectiveZero=0, verbose=FALSE, nCores=1, incrementalEM=FALSE, updateTransMat=TRUE, sizeFactors=matrix(1, nrow=length(obs), ncol=ncol(obs[[1]])))
```

Arguments

- `obs` The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
- `hmm` The initial Hidden Markov Model. This is a HMM.
- `convergence` Convergence cutoff for EM-algorithm (default: 1e-6).
- `maxIters` Maximum number of iterations.
- `dirFlags` The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its known directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
- `emissionProbs` List of precalculated emission probabilities of emission function is of type `null`.
- `effectiveZero` Transitions below this cutoff are analytically set to 0 to speed up computations.
- `verbose` logical for printing algorithm status or not.
- `nCores` Number of cores to use for computations.
- `incrementalEM` When TRUE, the incremental EM is used to fit the model, where parameters are updated after each iteration over a single observation sequence.
- `updateTransMat` Wether transitions should be updated during model learning, default: TRUE.
- `sizeFactors` Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

A list containing the trace of the log-likelihood during EM learning and the fitted HMM model.

See Also

HMM

Examples

```r
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
```
Pre-computed flag sequence for the 'example' data.

Description

Pre-computed flag sequence for the 'example' data.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

getAvgSignal

Compute average signal in state segmentation

Description

Compute average signal in state segmentation

Usage

getAvgSignal(viterbi, obs, fct=mean)

Arguments

viterbi A list containing the viterbi paths as factors. The output from getViterbi.
obs The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
fct The averaging function, default: mean.

Value

A state x data track matrix containing the average signal.

Examples

data(yeastTF_databychrom_ex)
nStates = 6
dirobs = as.integer(c(rep(0,10), 1, 1))
bdhmm_gauss = initBdHMM(yeastTF_databychrom_ex, nStates, "Gaussian", directedObs=dirobs)
bdhmm_fitted_gauss = fitHMM(yeastTF_databychrom_ex, bdhmm_gauss)
viterbi_bdhmm_gauss = getViterbi(bdhmm_fitted_gauss, yeastTF_databychrom_ex)
avg_signal = getAvgSignal(viterbi_bdhmm_gauss, yeastTF_databychrom_ex)
getLogLik

Calculate log likelihood state distribution.

Description

The function calculates log likelihood for one or more observation sequence.

Usage

getLogLik(hmm, obs = list(), emissionProbs = list(), dirFlags = list(), verbose = FALSE, nCores = 1, sizeFactors=matrix(1, nrow=length(obs), ncol=ncol(obs[[1]])))

Arguments

hmm The Hidden Markov Model.
obs The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
emissionProbs List of precalculated emission probabilities of emission function is of type 'null'.
dirFlags The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its known directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.
verbose logical for printing algorithm status or not.
nCores Number of cores to use for computations.
sizeFactors Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

The log likelihood of the observations sequences, given the model.

See Also

HMM

Examples

data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
loglik = getLogLik(hmm_fitted, observations)
loglik
getPosterior

Calculate posterior state distribution.

Description

The function calculates posterior state probabilities for one or more observation sequence.

Usage

```r
generatePosterior(hmm, obs=list(), emissionProbs=list(), dirFlags=list(), verbose=FALSE, nCores=1, sizeFactors=matrix(1, nrow=length(obs), ncol=ncol(obs[[1]])))
```

Arguments

- **hmm**
 - The Hidden Markov Model.

- **obs**
 - The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).

- **emissionProbs**
 - List of precalculated emission probabilities of emission function is of type 'null'.

- **dirFlags**
 - The flag sequence is needed when a bdHMM is fitted on undirected data (e.g.) ChIP only. It is a list of character vectors indication for each position its known directionality. U allows all states. F allows undirected states and states in forward direction. R allows undirected states and states in reverse direction.

- **verbose**
 - logical for printing algorithm status or not.

- **nCores**
 - Number of cores to use for computations.

- **sizeFactors**
 - Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.

Value

A list containing for the observation sequences the posterior state (col) distribution at each position (row).

Examples

```r
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
posterior = getPosterior(hmm_fitted, observations)
```
getSizeFactors
Compute size factors

Description
Compute size factors

Usage
```
getSizeFactors(obs, celltypes)
```

Arguments
- `obs` The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
- `celltypes` Indicates the cell type/tissue for each entry in obs.

Value
A celltype/tissue x data tracks matrix containing the size factors.

Examples
```
data(trainRegions)
celltypes = list("E123"=grep("E123", names(trainRegions)),
                  "E116"=grep("E116", names(trainRegions)))
sizeFactors = getSizeFactors(trainRegions, celltypes)
sizeFactors
```

getViterbi
Calculate the most likely state path

Description
Given a Hidden Markov Model, the function calculates the most likely state path (viterbi) for one or more observation sequence.

Usage
```
getViterbi(hmm, obs=list(), NAtol=5, emissionProbs=list(), verbose=FALSE, sizeFactors=matrix(1, nrow=length(obs), ncol=ncol(obs[[1]])))
```
HMM

Create a HMM object

Description

This function creates a HMM object.

Usage

\[
HMM(initProb = numeric(), transMat = matrix(numeric(), ncol = 1, nrow = 1),
 emission, nStates = numeric(), status = character(),
 stateNames = character(), dimNames = character(), LogLik = numeric())
\]

Arguments

- `initProb` Initial state probabilities.
- `transMat` Transition probabilities
- `emission` Emission parameters as an HMMEmission object.
- `nStates` Number of states.
- `status` of the HMM. On of c('initial', 'EM').
- `stateNames` State names.
- `dimNames` Names of data tracks.
- `LogLik` Log likelihood of a fitted HMM.

Examples

```r
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
viterbi = getViterbi(hmm_fitted, observations)
```
HMM-class

This class is a generic container for Hidden Markov Models.

Description

This class is a generic container for Hidden Markov Models.

Slots

initProb Initial state probabilities.
transMat Transition probabilities
emission Emission parameters as an HMMEmission object.
nStates Number of states.
status Status of the HMM. One of c('initial', 'EM').
stateNames State names.
dimNames Names of data tracks.
LogLik Log likelihood of a fitted HMM.

Methods

[] get elements from the HMM

See Also

HMMEmission

Examples

nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means)), nStates=nStates, status='initial')
HMM

Create a HMM object

Description

This function creates a HMM object.

Usage

```r
HMM(type = character(), parameters = list(), nStates = numeric())
```

Arguments

- `type`: The type of emission function `c('Gaussian')`
- `parameters`: A list containing the parameters for each state.
- `nStates`: The number of states.

Examples

```r
nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
HMM(type='Gaussian', parameters=list(mu=means, cov=Sigma), nStates=length(means))
```
initBdHMM
Initialization of bidirectional hidden Markov models

Description

Initialization of bidirectional hidden Markov models

Usage

```
initBdHMM(obs, nStates, method, directedObs = rep(0, ncol(obs[[1]])), sizeFactors = matrix(1, nrow = length(obs), ncol = ncol(obs[[1]])), sharedCov = FALSE)
```

Arguments

- `obs`
The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
- `nStates`
The number of states.
- `method`
Emission distribution of the model. One out of c("NegativeBinomial", "PoissonLogNormal", "NegativeMultinomial", "ZINegativeBinomial", "Poisson", "Bernoulli", "Gaussian", "IndependentGaussian")
- `directedObs`
Integer vector defining the directionality (or strand-specificity) of the data tracks. Undirected (non-strand-specific) data tracks (e.g. ChIP) are indicated indicated by '0'. Directed (strand-specific) data tracks are indicated by increasing pairs of integers. For instance c(0,0,1,1,2,2): The first three data tracks are undirected, followed by two pairs of directed measurements.
- `sizeFactors`
Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
- `sharedCov`
If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.

Value

A HMM object.

Examples

```r
data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
```
initHMM

Initialization of hidden Markov models

Description

Initialization of hidden Markov models

Usage

initHMM(obs, nStates, method, sizeFactors = matrix(1, nrow = length(obs), ncol = ncol(obs[[1]]),, sharedCov = FALSE)

Arguments

- **obs**: The observations. A list of one or more entries containing the observation matrix (numeric) for the samples (e.g. chromosomes).
- **nStates**: The number of states.
- **sizeFactors**: Library size factors for Emissions PoissonLogNormal or NegativeBinomial as a length(obs) x ncol(obs[[1]]) matrix.
- **sharedCov**: If TRUE, (co-)variance of (Independent)Gaussian is shared over states. Only applicable to 'Gaussian' or 'IndependentGaussian' emissions. Default: FALSE.

Value

A HMM object.

Examples

data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")

InitProb

Get initial state probabilities of a (bd)HMM

Description

This function returns the initial state probabilities of a (bd)HMM.

Usage

InitProb(hmm)

Arguments

- **hmm**: An object of class HMM or bdHMM.
Value

The initial state probabilities as a numeric vector.

See Also

HMM, bdHMM

Examples

nStates = 5
means = list(4, 11, 4, 11, -1)
Sigma = lapply(list(4, 4, 4, 4, 4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, Sigma=Sigma), nStates=length(means)), nStates=nStates, status='initial')
InitProb(hmm)

Description

This function returns the Log-Likelihood of a (bd)HMM.

Usage

LogLik(hmm)

Arguments

hmm An object of class HMM or bdHMM.

Value

Log likelihood during model fitting.

Examples

data(example)
hmm_ex = initHMM(observations, nStates=3, method="Gaussian")
hmm_fitted = fitHMM(observations, hmm_ex)
LogLik(hmm_fitted)
observations

Observation sequence for the 'example' data.

Description
Observation sequence for the 'example' data.

Author(s)
Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

pilot.hg19
Genomic positions of processed signal for the Roadmap Epigenomics data set. Regions from the ENCODE pilot phase.

Description
Genomic positions of processed signal for the Roadmap Epigenomics data set. Regions from the ENCODE pilot phase.

Author(s)
Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

runningMean
Smooth data with running mean

Description
Smooth data with running mean

Usage
runningMean(x, winHalfSize = 2)

Arguments
x A vector with the data.
winHalfSize The smoothing window half size.

Value
A vector containing the smoothed data.
trainRegions

Examples

data(trainRegions)
celltypes = list("E123"=grep("E123", names(trainRegions)),
 "E116"=grep("E116", names(trainRegions)))
sizeFactors = getSizeFactors(trainRegions, celltypes)
sizeFactors

StateNames

Get stateNames of a (bd)HMM

Description

This function returns the names of states.

Usage

StateNames(hmm)

Arguments

hmm

An object of class HMM or bdHMM.

Value

A character vector

Examples

nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(stateNames=as.character(1:5), initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian'), nStates=nStates, status='initial')
StateNames(hmm)

trainRegions

Training regions for the Roadmap Epigenomics data set. Three ENCODE pilot regions with data from two cell lines.

Description

Training regions for the Roadmap Epigenomics data set. Three ENCODE pilot regions with data from two cell lines.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch
Transitions

Get transitions of a (bd)HMM

Description

This function returns the transition matrix of a (bd)HMM.

Usage

Transitions(hmm)

Arguments

hmm An object of class HMM or bdHMM.

Value

The transitions as a nStates x nStates matrix.

See Also

HMM, bdHMM

Examples

nStates = 5
means = list(4,11,4,11,-1)
Sigma = lapply(list(4,4,4,4,4), as.matrix)
transMat = matrix(1/nStates, nrow=nStates, ncol=nStates)
initProb = rep(1/nStates, nStates)
hmm = HMM(initProb=initProb, transMat=transMat, emission=HMMEmission(type='Gaussian', parameters=list(mu=means, cov=Sigma)), nStates=nStates, status='initial')
Transitions(hmm)

ucscGenes

UCSC gene annotation for the Roadmap Epigenomics data set.

Description

UCSC gene annotation for the Roadmap Epigenomics data set.

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch
viterbi2GRanges

Convert the viterbi path to a GRanges object

Description

Convert the viterbi path to a GRanges object

Usage

viterbi2GRanges(viterbi, regions, binSize)

Arguments

viterbi A list containing the viterbi paths as factors. The output from getViterbi.
regions GRanges object of the regions (e.g. chromosomes) stored in the viterbi path.
binSize The bin size of the viterbi path.

Value

The viterbi path as GRanges object.

Examples

library(GenomicRanges)
data(yeastTF_databychrom_ex)
nStates = 6
dirobs = as.integer(c(rep(0,10), 1, 1))
bdhmm_gauss = initBdHMM(yeastTF_databychrom_ex, nStates, "Gaussian", directedObs=dirobs)
bdhmm_fitted_gauss = fitHMM(yeastTF_databychrom_ex, bdhmm_gauss)
viterbi_bdhmm_gauss = getViterbi(bdhmm_fitted_gauss, yeastTF_databychrom_ex)
yeastGRanges = GRanges(IRanges(start=1214616, end=1225008), seqnames="chrIV")
names(viterbi_bdhmm_gauss) = "chrIV"
viterbi_bdhmm_gauss_gr = viterbi2GRanges(viterbi_bdhmm_gauss, yeastGRanges, 8)

viterbi2Gviz

Convert state segmentation for plotting with Gviz

Description

Convert state segmentation for plotting with Gviz

Usage

viterbi2Gviz(viterbi, chrom, gen, from, to, statecols)
Arguments

viterbi A list containing the viterbi paths as factors. The output from getViterbi.
chrom The chromosome/sequence if to convert.
gen The genome id, e.g. hg19, hg38 for human.
from Genomic start position.
to Genomic end position.
statecols Named vector with state colors.

Value

A list containing the viterbi path converted to Gviz objects for plotting.

Description

Processed ChIP-on-chip data for yeast TF example

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch

Description

SGD annotation for the yeast TF example

Author(s)

Benedikt Zacher, Julia Ertl, Julien Gagneur, Achim Tresch
This function subsets a bdHMM object. Rows are interpreted as states, columns as dimensions of emissions.

Description
This function subsets a bdHMM object. Rows are interpreted as states, columns as dimensions of emissions.

Usage
S4 method for signature 'bdHMM,ANY,ANY'
x[i, j, ..., drop = "missing"]

Arguments
- `x`: A bidirectional hidden Markov model.
- `i`: State ids to extract.
- `j`: Emissions to extract.
- `drop`: ...

This function subsets an HMM object. Rows are interpreted as states, columns as dimensions of emissions.

Description
This function subsets an HMM object. Rows are interpreted as states, columns as dimensions of emissions.

Usage
S4 method for signature 'HMM,ANY,ANY'
x[i, j, ..., drop = "missing"]

Arguments
- `x`: A hidden Markov model.
- `i`: State ids to extract.
- `j`: Emissions to extract.
- `drop`: ...
Index

∗Topic data
 example, 9
 flags, 11
 observations, 21
 pilot.hg19, 21
 trainRegions, 22
 ucscGenes, 23
 yeastTF_databychrom_ex, 25
 yeastTF_SGDGenes, 25

∗Topic package
 STAN-package, 2
 .HMM (HMM-class), 16
 .HMMEmission (HMMEmission-class), 17
 .bdHMM (bdHMM-class), 4
 [,HMM,ANY,ANY,ANY-method (HMM-class), 16
 [,HMM,ANY,ANY-method, 26
 [,bdHMM,ANY,ANY,ANY-method
 (bdHMM-class), 4
 [,bdHMM,ANY,ANY-method, 26
 bdHMM, 3, 9, 20, 23
 bdHMM-class, 4
 binarizeData, 5
 c2optimize, 5
 call_dpoilog, 6
 data2Gviz, 6
 DimNames, 7
 DirScore, 7
 Emission, 8
 EmissionParams, 9
 example, 9
 fitHMM, 10
 flags, 11
 getAvgSignal, 11
 getLogLik, 12
 getPosterior, 13
 getSizeFactors, 14
 getViterbi, 14
 HMM, 9, 10, 12, 15, 20, 23
 HMM-class, 16
 HMMEmission, 3, 4, 8, 9, 16, 17
 HMMEmission-class, 17
 initBdHMM, 18
 initHMM, 19
 InitProb, 19
 LogLik, 20
 observations, 21
 pilot.hg19, 21
 runningMean, 21
 STAN-package, 2
 StateNames, 22
 trainRegions, 22
 Transitions, 23
 ucscGenes, 23
 viterbi2GRanges, 24
 viterbi2Gviz, 24
 yeastTF_databychrom_ex, 25
 yeastTF_SGDGenes, 25