Package ‘StarBioTrek’

December 22, 2016

Type Package
Title StarBioTrek
Version 1.0.1
Date 12-19-2016
Author Claudia Cava,
 Isabella Castiglioni
Maintainer Claudia Cava <claudia.cava@ibfm.cnr.it>
Depends R (>= 3.3)
Imports SpidermiR, KEGGREST, org.Hs.eg.db, AnnotationDbi, e1071, ROCR,
grDevices
Description This tool StarBioTrek presents some methodologies to measure pathway activity and cross-talk among pathways integrating also the information of network data.
License GPL (>= 3)
biocViews GeneRegulation, Network, Pathways, KEGG
Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2,
 qgraph, png, grid
VignetteBuilder knitr
LazyData true
URL https://github.com/claudiacava/StarBioTrek
BugReports https://github.com/claudiacava/StarBioTrek/issues
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

average ... 2
ds_score_crtlk ... 2
deu_dist_crtlk ... 3
getKEGGdata .. 4
getNETdata ... 4
GE_matrix .. 5
list_path_net ... 5
average

For TCGA data get human pathway data and creates a matrix with the average of genes for each pathway.

Description

average creates a matrix with a summarized value for each pathway

Usage

average(dataFilt, pathway)

Arguments

dataFilt TCGA matrix
pathway pathway data

Value

a matrix value for each pathway

Examples

score_mean<-average(dataFilt=tumo[,1:2],path)

ds_score_crtlk

For TCGA data get human pathway data and creates a measure of discriminating score among pathways

Description

ds_score_crtlk creates a matrix with discriminating score for pathways

Usage

ds_score_crtlk(dataFilt, pathway)
euc_dist_crtlk

Arguments

- `dataFilt`: TCGA matrix
- `pathway`: pathway data

Value

A matrix value for each pathway

Examples

```r
cross_talk_st_dv<-ds_score_crtlk(dataFilt=tumo[,1:2],pathway=path)
```

euc_dist_crtlk

For TCGA data get human pathway data and creates a measure of cross-talk among pathways

Description

euc_dist_crtlk creates a matrix with euclidean distance for pairwise pathways

Usage

euc_dist_crtlk(dataFilt, pathway)

Arguments

- `dataFilt`: TCGA matrix
- `pathway`: pathway data

Value

A matrix value for each pathway

Examples

```r
score_euc_distac<-euc_dist_crtlk(dataFilt=tumo[,1:2],path)
```
getKEGGdata

Get human KEGG pathway data.

Description

getKEGGdata creates a data frame with human KEGG pathway. Columns are the pathways and rows the genes inside those pathway.

Usage

getKEGGdata(KEGG_path)

Arguments

- **KEGG_path** variable

Value

dataframe with human pathway data

Examples

path<-getKEGGdata(KEGG_path="Transcript")

getNETdata

Get network data.

Description

getNETdata creates a data frame with network data. Network category can be filtered among: physical interactions, co-localization, genetic interactions and shared protein domain.

Usage

getNETdata(network, organism = NULL)

Arguments

- **network** variable. The user can use the following parameters based on the network types to be used. PHint for Physical_interactions, COloc for Co-localization, GENint for Genetic_interactions and SHpd for Shared_protein_domains
- **organism** organism==NULL default value is homo sapiens

Value

dataframe with gene-gene (or protein-protein interactions)

Examples

organism="Saccharomyces_cerevisiae"
netw<-getNETdata(network="SHpd",organism)
GE_matrix

Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the gene expression for only pathways given in input.

Description

GE_matrix creates a matrix of gene expression for pathways given by the user.

Usage

```
GE_matrix(DataMatrix, pathway)
```

Arguments

- **DataMatrix**: gene expression matrix (e.g., TCGA data)
- **pathway**: pathway data as provided by getKEGGdata

Value

- a matrix for each pathway (gene expression level belong to that pathway)

Examples

```
list_path_gene<-GE_matrix(DataMatrix=tumo[,1:2],pathway=path)
```

list_path_net

Get human KEGG pathway data and output of path_net in order to define the common genes.

Description

list_path_net creates a list of interacting genes for each human pathway.

Usage

```
list_path_net(lista_net, pathway)
```

Arguments

- **lista_net**: output of path_net
- **pathway**: pathway data as provided by getKEGGdata

Value

- a list of genes for each pathway (interacting genes belong to that pathway)

Examples

```
lista_netw<-path_net(pathway=path,net_type=netw)
list_path<-list_path_net(lista_net=lista_netw,pathway=path)
```
matrix_plot

Get human KEGG pathway data and a gene expression matrix in order to obtain a matrix with the mean gene expression for only pathways given in input.

Description
GE_matrix creates a matrix of mean gene expression for pathways given by the user.

Usage
matrix_plot(DataMatrix, pathway)

Arguments
DataMatrix gene expression matrix (eg. TCGA data)
pathway pathway data as provided by getKEGGdata

Value
a matrix for each pathway (mean gene expression level belong to that pathway)

Examples
list_path_plot<-matrix_plot(DataMatrix=tumo[,1:2],pathway=path)

path_net
Get human KEGG pathway data and network data in order to define the common gene.

Description
path_net creates a list of network data for each human pathway. The network data will be generated when interacting genes belong to that pathway.

Usage
path_net(pathway, net_type)

Arguments
pathway pathway data as provided by getKEGGdata
net_type network data as provided by getNETdata

Value
a list of network data for each pathway (interacting genes belong to that pathway)

Examples
lista_net<-path_net(pathway=path,net_type=netw)
plotting_cross_talk

Get human KEGG pathway data and a gene expression matrix we obtain a matrix with the gene expression for only pathways given in input.

Description

plotting_matrix creates a matrix of gene expression for pathways given by the user.

Usage

plotting_cross_talk(DataMatrix, pathway, path_matrix)

Arguments

DataMatrix gene expression matrix (eg.TCGA data)
pathway pathway data as provided by getKEGGdata
path_matrix output of the function matrix_plot

Value

a plot for pathway cross talk

Examples

mt<-plotting_cross_talk(DataMatrix=tumo[,1:2],pathway=path,path_matrix=list_path_plot)

process_matrix Process matrix TCGA data after the selection of pairwise pathway

Description

processing gene expression matrix

Usage

process_matrix(measure, list_perf)

Arguments

measure matrix with measure of cross-talk among pathways
list_perf output of the function select_class

Value

a gene expression matrix for case study 1
SelectedSample

Select the class of TCGA data

Description

select two labels from ID barcode

Usage

SelectedSample(Dataset, typesample)

Arguments

Dataset gene expression matrix
typesample the labels of the samples (e.g. tumor,normal)

Value

a gene expression matrix of the samples with specified label

Examples

tumo<-SelectedSample(Dataset=Data_CANCER_normUQ_filt,typesample="tumor")[,2]
select_class
Select the class of TCGA data

Description
select two labels from ID barcode

Usage
`select_class(auc.df, cutoff)`

Arguments
- `auc.df` list of AUC value
- `cutoff` cut-off for AUC value

Value
a gene expression matrix with only pairwise pathway with a particular cut-off

StarBioTrek
Download data

Description
StarBioTrek allows you to Download data of samples from StarBioTrek

Details
The functions you’re likely to need from **StarBioTrek** is `path_star` Otherwise refer to the vignettes to see how to format the documentation.

st_dv
For TCGA data get human pathway data and creates a measure of standard deviations among pathways

Description
st_dv creates a matrix with standard deviation for pathways

Usage
`st_dv(DataMatrix, pathway)`

Arguments
- `DataMatrix` TCGA matrix
- `pathway` pathway data
Value

a matrix value for each pathway

Examples

```r
stand_dev<-st_dv(DataMatrix=tumo[,1:2],pathway=path)
```

Description

svm class creates a list with auc value

Usage

```r
svm_classification(TCGA_matrix, tumour, normal, nfs)
```

Arguments

- **TCGA_matrix**: gene expression matrix
- **tumour**: barcode samples for a class
- **normal**: barcode samples for another class
- **nfs**: nfs split data into a training and test set

Value

a list with AUC value for pairwise pathway

Examples

```r
nf <- 60
res_class<-svm_classification(TCGA_matrix=score_euc_dist,nfs=nf,
normal=colnames(norm[,1:10]),tumour=colnames(tumo[,1:10]))
```
Index

average, 2

ds_score_crtlk, 2

euc_dist_crtlk, 3

GE_matrix, 5
getKEGGdata, 4
getNETdata, 4

list_path_net, 5

matrix_plot, 6

path_net, 6
plotting_cross_talk, 7
proc_path, 8
process_matrix, 7

select_class, 9
SelectedSample, 8
st_dv, 9
StarBioTrek, 9
StarBioTrek-package (StarBioTrek), 9
svm_classification, 10