Package ‘UNDO’

February 1, 2017

Type Package

Title Unsupervised Deconvolution of Tumor-Stromal Mixed Expressions

Version 1.16.0

Date 2014-07-17

Author Niya Wang <wangny@vt.edu>

Maintainer Niya Wang <wangny@vt.edu>

Depends R (>= 2.15.2), methods, BiocGenerics, Biobase

Imports MASS, boot, nnls, stats, utils

biocViews Software

Description UNDO is an R package for unsupervised deconvolution of tumor and stromal mixed expression data. It detects marker genes and deconvolutes the mixing expression data without any prior knowledge.

License GPL-2

NeedsCompilation no

R topics documented:

UNDO-package .. 2
BiologicalMixMCF7HS27 ... 2
calc_E1 ... 3
dimension_reduction .. 4
gene_expression_input .. 4
marker_gene_selection ... 5
mixing_matrix_computation .. 6
NumericalMixingMatrix ... 7
NumericalMixMixMCF7HS27 ... 7
PureMCF7HS27 ... 8
two_source_deconv .. 9

Index 10
UNDO-package

Implementation of UNDO (unsupervised deconvolution of tumor-stromal mixed expressions)

Description

This package contains main function "two_source_deconv" to implement the deconvolution of mixed tumor-stromal expressions in a completely unsupervised way. The prior knowledge of mixing matrix or pure expression is not needed. The package detects marker genes and calculate the mixing matrix and pure expressions automatically.

Details

- **Package**: UNDO
- **Type**: Package
- **Version**: 1.7.3
- **Date**: 2014-04-30
- **License**: GPL version 2 or later

```r
two_source_deconv(ExpressionData,lowper=0.4,highper=0.1,epsilon1=0.01,epsilon2=0.01,A=NULL,S1=NULL,S2=NULL,return=0)
```

Author(s)

Niya Wang <wangny@vt.edu>

Examples

```r
data(NumericalMixMCF7HS27)
X <- NumericalMixMCF7HS27
dehconvResult <- two_source_deconv(X, lowper = 0.4, highper = 0.1, epsilon1 = 0.1, epsilon2 = 0.1, A = NULL, S1 = NULL, S2 = NULL)
```

BiologicalMixMCF7HS27
MCF7 and HS27 biologically mixed

Description

Expression data from MCF7 and HS27 biologically mixing

Usage

```r
data(BiologicalMixMCF7HS27)
```

Format

The format is: Formal class 'ExpressionSet' [package "Biobase"] with 7 slots ..@ experimentData : Formal class 'MIAME' [package "Biobase"] with 13 slots ..@ name : chr "" ..@ lab : chr "" ..@ contact : chr "" ..@ title : chr "" ..@ abstract : chr "" ..@ url : chr "" ..@ pubMedIds : chr "" ..@ samples : list() ..@ hybridizations : list() ..@ normControls
calc_E1

: list()@ preprocessing : list()@ other : list()@ __classVersion__ : Formal class 'Versions' [package "Biobase"] with 1 slots@ .Data: List of 2@ .Data: List of 1@ .Data: List of 4@ .Data: List of 4@ .Data: List of 1@ .Data: List of 2

Examples

```r
data(BiologicalMixMCF7HS27)
str(BiologicalMixMCF7HS27)
```

Description

A function used to calculate the E1 measurement when the real mixing matrix is provided

Usage

```r
calc_E1(A, Aest)
```

Arguments

- `A` real mixing matrix
- `Aest` estimated mixing matrix

Value

E1 measurement (numeric)

Author(s)

Niya Wang <wangny@vt.edu>
Examples

\[
A <- \text{matrix(runif(4),2,2)} \\
Aest <- \text{matrix(runif(4),2,2)} \\
E1 <- \text{calc_E1(A,Aest)} \quad \# \text{to calculate the similarity of two random 2x2 matrix}
\]

dimension_reduction
\textit{Dimension reduction function}

Description

When the number of input samples is larger than 2, this function is called to reduce the dimension to 2 by using PCA.

Usage

dimension_reduction(X)

Arguments

- \textit{X}
gene expression data matrix

Value

- \textit{X}
dimenMatrix
the dimension reduction matrix used to recover the mixing matrix for all the samples

Author(s)

Niya Wang (wangny@vt.edu)

Examples

\[
X <- \text{matrix(runif(5000),1000,5)} \\
\text{dimenResult <- dimension_reduction(X)}
\]

gene_expression_input
\textit{Detect whether the input gene expression data are valid}

Description

Check the input gene expression data to see whether they are nonempty, nonnegative, etc.

Usage

gene_expression_input(X)
marker_gene_selection

Arguments

- **X**: gene expression data matrix with row representing genes/probe sets, and column representing samples.

Value

- If the input is valid, the output will be the same as the input; otherwise, if the input contains NA, the corresponding rows will be deleted. If the input contains negative value, the algorithm will stop and give error information.

Author(s)

Niya Wang (wangny@vt.edu)

Examples

```r
gene_expression <- matrix(runif(2000),1000,2)
valid_gene_expression <- gene_expression_input(gene_expression)
```

Description

Select the marker genes in tumor and stroma in an unsupervised way.

Usage

```r
marker_gene_selection(X, lowper, highper, epsilon1, epsilon2)
```

Arguments

- **X**: gene expression data
- **lowper**: The percentage of genes the user wants to remove with lowest norm. The range should be between 0 and 1.
- **highper**: The percentage of genes the user wants to remove with highest norm. The range should be between 0 and 1.
- **epsilon1**: Influence the number of marker genes. With increasing of epsilon1, the number of marker genes in source 1 will increase. The value should be positive.
- **epsilon2**: Influence the number of marker genes. With increasing of epsilon1, the number of marker genes in source 2 will increase. The value should be positive.

Value

- **a1**: The slope of marker genes in source 1
- **a2**: The slope of marker genes in source 2
- **MG1**: The gene list of marker genes in source 1
- **MG2**: The gene list of marker genes in source 2
- **dimenMatrix**: Dimension reduction matrix
mixing_matrix_computation

Calculate and scale the mixing matrix

Description

Calculate the mixing matrix based on the output from marker_gene_selection(), and scale the mixing matrix to make the sum of proportions from tumor and stroma equal to 1. The pure expression levels of tumor and stroma are also computed.

Usage

mixing_matrix_computation(X, a1, a2, dimenMatrix)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Gene expression data matrix</td>
</tr>
<tr>
<td>a1</td>
<td>The slope of marker genes in source 1</td>
</tr>
<tr>
<td>a2</td>
<td>The slope of marker genes in source 2</td>
</tr>
<tr>
<td>dimenMatrix</td>
<td>The dimention reduction matrix used to recover mixing matrix for all the samples</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aest</td>
<td>estimated mixing matrix</td>
</tr>
<tr>
<td>Sest</td>
<td>estimated pure gene expression of two sources</td>
</tr>
</tbody>
</table>

Author(s)

Niya Wang (wangny@vt.edu)

Examples

```r
a1<- matrix(runif(2),2,1)
a2<- matrix(runif(2),2,1)
X <- 1000*matrix(runif(20000),10000,2)
dimenMatrix <- NULL
Deconv <- mixing_matrix_computation(X, a1, a2, dimenMatrix)
```
NumericalMixingMatrix

mixing matrix of data NumericalMixMCF7HS27

Description
real mixing matrix of data NumericalMixMCF7HS27

Usage
data(NumericalMixingMatrix)

Format
The format is: num [1:2, 1:2] 0.775 0.15 0.225 0.85 - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:2] "V1" "V2"

Examples
data(NumericalMixingMatrix)
str(NumericalMixingMatrix)

NumericalMixMCF7HS27

MCF7 and HS27 numerically mixed

Description
Expression data from MCF7 and HS27 numerically mixing

Usage
data(NumericalMixMCF7HS27)

Format
The format is: Formal class 'ExpressionSet' [package "Biobase"] with 7 slots ..@ experimentData :
Formal class 'MIAME' [package "Biobase"] with 13 slots@ name : chr ""@ lab : chr ""@ contact : chr ""@ title : chr ""@ abstract : chr ""@ url : chr ""@ pubMedIds : chr ""@ samples : list()@ hybridizations : list()@ normControls :
list()@ preprocessing : list()@ other : list()@ __classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slots@ .Data:List of 2$: int [1:3] 1 0 0$: int [1:3] 1 1 0 ..@ assayData :<environment: 0x000000000e86a5d0> ..@ phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots@ varMetadata :'data.frame': 0 obs. of 1 variable:$ labelDescription: chr(0)$ data :
'data.frame': 2 obs. of 0 variables$ @ dimLabels : chr [1:2] "sampleNames" "sampleColumns"@ __classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slots@ .Data:List of 1$: int [1:3] 1 1 0 ..@ featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots@ varMetadata :'data.frame': 0 obs. of 1 variable:$ labelDescription: chr(0)$ data :
'data.frame': 22215 obs. of 0 variables$ @ dimLabels : chr [1:2] "featureNames" "featureColumns"@ __classVersion__:Formal class 'Versions' [package "Biobase"] with 1 slots@ .Data:List of 1$: int [1:3]
Examples

```r
data(NumericalMixMCF7HS27)
str(NumericalMixMCF7HS27)
```

Description

pure MCF7 and HS27 expression data

Usage

```r
data(PureMCF7HS27)
```

Format

The format is: Formal class 'ExpressionSet' with 7 slots ..@ experimentData ..@ MIAME with 13 slots ..@ name ..@ lab ..@ contact ..@ title ..@ abstract ..@ url ..@ pubMedIds ..@ samples ..@ hybridizations ..@ normControls ..@ preprocessing ..@ other ..@ assayData ..@ phenoData ..@ featureData ..@ annotation ..@ protocolData

```r
str(PureMCF7HS27)
```

Main function to call other subfunction to deconvolute the mixed expression data.

Description

This is the main function that is to call all the other subfunctions and realize the deconvolution of mixed expression data. When the real mixing matrix exist, it will also compare the estimated mixing matrix and real mixing matrix and give the E1 measurement.

Usage

two_source_deconv(ExpressionData, lowper = 0.4, highper = 0.1, epsilon1 = 0.01, epsilon2 = 0.01, A = NULL, S1=NULL, S2=NULL, return = 0)

Arguments

- **ExpressionData** gene expression data matrix/ExpressionSet object
- **lowper** The percentage of genes the user wants to remove with lowest norm. The range should be between 0 and 1.
- **highper** The percentage of genes the user wants to remove with highest norm. The range should be between 0 and 1.
- **epsilon1** Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 1 will increase. The value should be positive.
- **epsilon2** Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 2 will increase. The value should be positive.
- **A** real mixing matrix if existing
- **S1** Pure expression profile of first source if existing
- **S2** Pure expression profile of second source if existing
- **return** if it is equal to 0, do not return estimated S; otherwise, return the estimated S.

Value

- **Aest** estimated mixing matrix
- **E1** E1 measurement between real and estimated mixing matrix

Author(s)

Niya Wang (wangny@vt.edu)

Examples

data(PureMCF7HS27)
str(PureMCF7HS27)
data(NumericalMixMCF7HS27)
X <- NumericalMixMCF7HS27
deconvResult <- two_source_deconv(X, lowper = 0.4, highper = 0.1, epsilon1 = 0.1, epsilon2 = 0.1, A = NULL, S1=NULL, S2=NULL, return = 0)
Index

*Topic datasets
 BiologicalMixMCF7HS27, 2
 NumericalMixingMatrix, 7
 NumericalMixMCF7HS27, 7
 PureMCF7HS27, 8

*Topic methods
 UNDO-package, 2

*Topic package
 UNDO-package, 2

BiologicalMixMCF7HS27, 2
calc_E1, 3

dimension_reduction, 4
gene_expression_input, 4
marker_gene_selection, 5
mixing_matrix_computation, 6

NumericalMixingMatrix, 7
NumericalMixMCF7HS27, 7

PureMCF7HS27, 8
two_source_deconv, 9

UNDO (UNDO-package), 2
UNDO-package, 2