Package ‘arrayMvout’

November 20, 2016

Title multivariate outlier detection for expression array QA

Version 1.32.0

Author Z. Gao, A. Asare, R. Wang, V. Carey

Description This package supports the application of diverse quality metrics to AffyBatch instances, summarizing these metrics via PCA, and then performing parametric outlier detection on the PCs to identify aberrant arrays with a fixed Type I error rate

Depends R (>= 2.6.0), tools, methods, utils, parody, Biobase, affy, lumi

Suggests MAQCsubset, mvoutData, lumiBarnes, affyPLM, affydata, hgu133atagcdf

Imports simpleaffy, mdqc, affyContam,

Maintainer V. Carey <stvjc@channing.harvard.edu>

License Artistic-2.0

LazyLoad yes

biocViews Infrastructure, Microarray, QualityControl

NeedsCompilation no

R topics documented:

ArrayOutliers .. 1
ArrayOutliers-methods .. 3
arrOutStruct-class .. 4

Index

ArrayOutliers Multivariate outlier detection based on PCA of QA statistics

Description

Multivariate outlier detection based on PCA of QA statistics
ArrayOutliers

Usage

ArrayOutliers (data, alpha, alphaSeq = c(0.01, 0.05, 0.1), ...)
qcoutput = NULL, plmoutput = NULL, degoutput = NULL, prscale = TRUE,
pc2use = 1:3)

Arguments

data an (affy) AffyBatch instance with at least 11 samples
alpha false positive rate for outlier detection, adjusting for multiple comparisons ac-
cording to Caroni and Prescott’s adaptation of Rosner (1983); full report based
on this choice of alpha
alphaSeq vector of alpha candidates to be quickly tried for short report

Details

Additional parameters may be supplied

cqOutput optional result of simpleaffy qc() to speed computations
plmOutput optional result of affyPLM fitPLM() to speed computations
degOutput optional result of affy AffyRNAdeg() to speed computations
prscale scaling option for prcomp
pc2use selection of principal components to use for outlier detection

Data elements afxsubDEG, afxsubQC, s12cDEG, s12cQC are precomputed RNA degradation and
simpleaffy qc() results; s12c is an AffyBatch with digital contamination of some samples.
Data elements maqcQA and itnQA are affymetrix QC statistics on large collections of arrays. Data
element ilmQA is a derived from a LumiBatch of the Illumina-submitted MAQC raw data, 19
arrays. (Conveyed by Leming Shi, personal communication). Data element spikQA is a 12x9
matrix of QA parameters obtained for 12 arrays from U133A spikein dataset, with first 2 arrays
digitally contaminated as described in Asare et al.
Data element fig3map gives the indices of the points labeled A-H in Figure 3 of the manuscript by
Asare et al. associated with this package.

Value

an instance of arrOutStruct class, a list with a partition of samples into two data frames (inl and
outl) with QA summary statistics

Author(s)

Z. Gao et al.

Examples

library(simpleaffy)
setQCEnvironment("hgu133acdf") # no CDF corresponding to tag array
if (require("mvoutData")) {
 data(s12c)
 data(s12cQC)
 data(s12cDEG)
library(affyPLM)
s12cPset = fitPLM(s12c)
ao = ArrayOutliers(s12c, alpha=0.05, qcOut=s12cQC, plmOut=s12cPset, degOut=s12cDEG)
ao
}
if (require("lumiBarnes")) {
 library(lumiBarnes)
 data(lumiBarnes)
 ArrayOutliers(lumiBarnes, alpha=0.05)
 lb2 = lumiBarnes
 exprs(lb2)[1:20000,1:2] = 10000*exprs(lb2)[1:20000,1:2]
 ArrayOutliers(lb2, alpha=0.05)
 }
 data(maqcQA) # affy
 ArrayOutliers(maqcQA[,,-c(1:2)], alpha=.05)
 ArrayOutliers(maqcQA[,,-c(1:2)], alpha=.01)
 data(ilmQA) # illumina
 ArrayOutliers(data.frame(ilmQA), alpha=.01)
 data(itnQA) # 507 arrays from ITN
 ArrayOutliers(itnQA, alpha=.01)
Class "arrOutStruct" container for ArrayOutliers output

Objects from the Class

Objects can be created by calls of the form `new("arrOutStruct", ...)`. This class just extends `list` but has specialized `show` and `plot` methods.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2. Class `AssayData`, by class "list", distance 2.

Methods

- `plot` signature(x = "arrOutStruct", y = "ANY"): a biplot of QA statistics
- `show` signature(object = "arrOutStruct"): summary report

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

```r
data(maqcQA)
f1 = ArrayOutliers(maqcQA[-c(1:2)], alpha=0.01)
names(f1)
f1
```
Index

*Topic **classes**
 arrOutStruct-class, 4

*Topic **methods**
 ArrayOutliers-methods, 3

*Topic **models**
 ArrayOutliers, 1

afxsubDEG(ArrayOutliers), 1
afxsubQC(ArrayOutliers), 1
ArrayOutliers, 1
ArrayOutliers, AffyBatch, numeric, ANY-method
 (ArrayOutliers-methods), 3
ArrayOutliers, ANY, missing, missing-method
 (ArrayOutliers-methods), 3
ArrayOutliers, data.frame, numeric, ANY-method
 (ArrayOutliers-methods), 3
ArrayOutliers, LumiBatch, numeric, ANY-method
 (ArrayOutliers-methods), 3
ArrayOutliers-methods, 3
arrOutStruct-class, 4
AssayData, 4

fig3map(ArrayOutliers), 1
ILM1 (ArrayOutliers), 1
ilmQA (ArrayOutliers), 1
itnQA (ArrayOutliers), 1

list, 4

maqcQA (ArrayOutliers), 1

plot, arrOutStruct, ANY-method
 (arrOutStruct-class), 4

s12c (ArrayOutliers), 1
s12cDEG (ArrayOutliers), 1
s12cQC (ArrayOutliers), 1
show, arrOutStruct-method
 (arrOutStruct-class), 4
spikQA (ArrayOutliers), 1

vector, 4