Package ‘bacon’

March 28, 2017

Type Package
Title Controlling bias and inflation in association studies using the empirical null distribution
Version 1.2.0
Author Maarten van Iterson [aut, cre], Erik van Zwet [ctb]
Maintainer Maarten van Iterson <mviterson@gmail.com>
Description Bacon can be used to remove inflation and bias often observed in epigenome- and transcriptome-wide association studies. To this end bacon constructs an empirical null distribution using a Gibbs Sampling algorithm by fitting a three-component normal mixture on z-scores.
License GPL (>= 2)
Depends R (>= 3.3), methods, stats, ggplot2, graphics, BiocParallel, ellipse
Suggests BiocStyle, knitr, rmarkdown, testthat, roxygen2
biocViews StatisticalMethod, Bayesian, Regression, GenomeWideAssociation, Transcriptomics, RNASeq, MethylationArray, BatchEffect, MultipleComparison
RoxygenNote 5.0.1
Collate 'BaconClass.R' 'BaconMethods.R' 'bacon.R' 'normmixture.R'
VignetteBuilder knitr
NeedsCompilation yes
URL https://github.com/mvaniterson/bacon
BugReports https://github.com/mvaniterson/bacon/issues

R topics documented:

- bacon .. 2
- Bacon-class .. 3
- bias .. 4
- dnormmix ... 5
- es .. 5
- estimates .. 6
- fit ... 7
Description

Gibbs Sampler Algorithm to fit a three component normal mixture to z-scores

Usage

```r
bacon(teststatistics = NULL, effectsizes = NULL, standarderrors = NULL,
      niter = 5000L, nburnin = 2000L, nbins = 1000, trim = 0.999,
      level = 0.05, verbose = FALSE, priors = list(sigma = list(alpha = 1.28,
                              beta = 0.36), mu = list(lambda = c(0, 3, -3), tau = c(1000, 100, 100)),
                              epsilon = list(gamma = c(90, 5, 5))))
```

Arguments

- `teststatistics`: numeric vector or matrix of test-statistics
- `effectsizes`: numeric vector or matrix of effect-sizes
- `standarderrors`: numeric vector or matrix of standard errors
- `niter`: number of iterations
- `nburnin`: length of the burnin period
- `nbins`: default 1000 else bin test-statistics
- `trim`: default 0.999 trimming test-statistics
- `level`: significance leve used to determine prop. null for starting values
- `verbose`: default FALSE
- `priors`: list of parameters of for the prior distributions

Value

object of class-Bacon

Author(s)

mvaniterson
References

Implementation is based on a version from Zhihui Liu https://macsphere.mcmaster.ca/handle/11375/9368

Examples

```r
## simulate some test-statistic from a normal mixture
## and run bacon
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
bc <- bacon(y)
## extract all estimated mixture parameters
estimates(bc)
## extract inflation
inflation(bc)
## extract bias
bias(bc)

## extract bias and inflation corrected test-statistics
head(tstat(bc))

## inspect the Gibbs Sampling output
traces(bc)
posteriors(bc)
fit(bc)

## simulate multiple sets of test-statistic from a normal mixture
## and run bacon
y <- matrix(rnormmix(10*2000, c(0.9, 0, 1, 0, 4, 1)), ncol=10)
bc <- bacon(y)
## extract all estimated mixture parameters
estimates(bc)
## extract only the inflation
inflation(bc)
## extract only the bias
bias(bc)
## extract bias and inflation corrected P-values
head(pval(bc))
## extract bias and inflation corrected test-statistics
head(tstat(bc))
```

Bacon-class

An S4 class container for storing Gibbs Sampler input and output

Description

An S4 class container for storing Gibbs Sampler input and output

Slots

- `teststatistics` numeric vector or matrix of test-statistics
- `effectsizes` numeric vector or matrix of effect-sizes
- `standarderrors` numeric vector or matrix of standard errors
- `traces` array of Gibbs Sampler traces
bias

Method to extract the estimated bias from the 'bacon'-object

Description

Method to extract the estimated bias from the 'bacon'-object

Usage

bias(object)

S4 method for signature 'Bacon'
bias(object)

Arguments

object 'bacon'-object

Value

vector or matrix of inflation

See Also

bacon

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
bias(bc)
dnormmix

Density of a k-component normal mixture

Usage

```r
dnormmix(x, theta)
```

Arguments

- `x`: like `dnorm(x, ...)`
- `theta`: parameters of the mixture proportion, mean and sd

Details

details follow

Value

density of a k-component normal mixture

Author(s)
mvaniterson

Examples

```r
n <- 2000
theta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)
hist(x, freq=FALSE, n=100)
curve(dnormmix(x, theta), add=TRUE, lwd=2)
```

es

Method to extract inflation- and bias-corrected effect-sizes

Description

Method to extract inflation- and bias-corrected effect-sizes

Usage

```r
es(object, corrected = TRUE)
```

```r
## S4 method for signature 'Bacon'
es(object, corrected = TRUE)
```
estimates

Arguments

object 'bacon'-object
corrected optional return uncorrected

Value

vector or matrix of effect-sizes

See Also

bacon

Examples

es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000,df=4)))
bc <- bacon(NULL, es, se)
head(es(bc))
Method to plot mixture fit

Usage

`fit(object, index = 1, ...)`

```r
## S4 method for signature 'Bacon'
fit(object, index = 1, ...)
```

Arguments

- `object`: 'bacon'-object
- `index`: if multiple sets of test-statistics were provided
- `...`: additional plotting parameters

Value

plot of the Gibbs Sampler mixture fit

See Also

`bacon`

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
fit(bc)
```

Method to extract the estimated inflation from the 'bacon'-object

Usage

`inflation(object)`

```r
## S4 method for signature 'Bacon'
inflation(object)
```

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
inflation(bc)
```
Arguments

object 'bacon'-object

Value

vector or matrix of inflation

See Also

bacon

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
inflation(bc)

Description

Perform fixed meta-analysis using inflation and bias corrected effect-sizes and standard errors

Usage

meta(object, corrected = TRUE, ...)

S4 method for signature 'b Bacon'
meta(object, corrected = TRUE, ...)

Arguments

object 'bacon'-object

corrected optional return uncorrected

... additional arguments

Details

TODO maybe add idea's from http://www.netstorm.be/home/meta_analysis#metaAnalysisU

Value

object of class 'bacon' with added fixed-effect meta-analysis test-statistics, effect-sizes and standard-errors

See Also

bacon
Examples

```r
es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000,df=4)))
bc <- bacon(NULL, es, se)
mbc <- meta(bc)
```

Description

simple ggplot2 plotting function for 'bacon'-object

Usage

```r
## S4 method for signature 'Bacon'
plot(x, y, type = c("hist", "qq"))
```

Arguments

- `x` : 'bacon'-object
- `y` : NULL
- `type` : hist or qq

Value

either qq-plot of P-values or histogram of Test-statistics

plotnormmix

plot normal mixtures

Description

plot normal mixtures

Usage

```r
plotnormmix(x, theta, ...)
```

Arguments

- `x` : vector of test statistics
- `theta` : parameters describing the mixture components
- `...` : arguments passed to hist

Details

details follow
Value

return plot with histogram of the data and mixture and individual components

Author(s)

mvaniterson

Examples

n <- 2000
theta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)
plotnormmix(x, theta)

Description

Method to plot posterior distribution

Usage

posteriors(object, thetas = c("sigma.0", "p.0"), index = 1,
 alphas = c(0.95, 0.9, 0.75), xlab = "", ylab = "", ...)

S4 method for signature 'Bacon'
posteriors(object, thetas = c("sigma.0", "p.0"),
 index = 1, alphas = c(0.95, 0.9, 0.75), xlab = "", ylab = "", ...)

Arguments

object 'bacon'-object
thetas which thetas to plot
index if multiple sets of test-statistics where provided
alphas significance level confidence ellipses
xlab optional xlab
ylab optional ylab
... additional plotting parameters

Value

plot of the Gibbs Sampler posterior probabilities

See Also

bacon
Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
#nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
posteriors(bc)
```

Description

Method to extract inflation- and bias-corrected P-values

Usage

```r
pval(object, corrected = TRUE)
## S4 method for signature 'Bacon'
pval(object, corrected = TRUE)
```

Arguments

- `object` : 'bacon'-object
- `corrected` : optional return uncorrected

Value

vector or matrix of P-values

See Also

```r
bacon
```

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
bc <- bacon(y, nbins=100) #nbins = 100 to speed up the calculations
head(pval(bc))
```
rnormmix

Description

sample from a normal mixture

Usage

```r
rnormmix(n, theta)
```

Arguments

- `n`: size
- `theta`: parameters

Details

details follow

Value

n samples from a normal mixture with parameters theta

Author(s)

mvaniterson

Examples

```r
n <- 2000
theta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)
```

se

Description

Method to extract inflation- and bias-corrected standard errors

Usage

```r
se(object, corrected = TRUE)
```

S4 method for signature 'Bacon'

```r
se(object, corrected = TRUE)
```
topTable

Arguments

- object: 'bacon'-object
- corrected: optional return uncorrected

Value

- vector or matrix of standard-errors

See Also

bacon

Examples

```r
es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000, df=4)))
bc <- bacon(NULL, es, se)
head(se(bc))
```
Examples

```r
es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8 * sqrt(4 / rchisq(2000, df=4)))
bc <- bacon(NULL, es, se)
mbc <- meta(bc)
topTable(mbc)
```

traces

Method to plot Gibbs sampling traces

Description

Method to plot Gibbs sampling traces

Usage

```r
traces(object, burnin = TRUE, index = 1)
```

```r
## S4 method for signature 'Bacon'
traces(object, burnin = TRUE, index = 1)
```

Arguments

- `object` : 'bacon'-object
- `burnin` : include burnin period default true
- `index` : if multiple sets of test-statistics where provided

Value

plot of the Gibbs Sampler traces

See Also

`bacon`

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
## nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
traces(bc)
```
tstat

Method to extract inflation- and bias-corrected test-statistics

Description

Method to extract inflation- and bias-corrected test-statistics

Usage

```r
tstat(object, corrected = TRUE)
```

```r
## S4 method for signature 'Bacon'
tstat(object, corrected = TRUE)
```

Arguments

- `object`: 'bacon'-object
- `corrected`: optional return uncorrected

Value

vector or matrix of test-statistics

See Also

`bacon`

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
#nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
head(tstat(bc))
```
Index

bacon, 2, 4, 6–8, 10, 11, 13–15
Bacon-class, 3
bias, 4
bias,Bacon-method (bias), 4
dnormmix, 5
es, 5
es,Bacon-method (es), 5
estimates, 6
estimates,Bacon-method (estimates), 6
fit, 7
fit,Bacon-method (fit), 7
inflation, 7
inflation,Bacon-method (inflation), 7
meta, 8
meta,Bacon-method (meta), 8
plot,Bacon-method, 9
plotnormmix, 9
posteriors, 10
posteriors,Bacon-method (posteriors), 10
pval, 11
pval,Bacon-method (pval), 11
rnormmix, 12
se, 12
se,Bacon-method (se), 12
topTable, 13
topTable,Bacon-method (topTable), 13
traces, 14
traces,Bacon-method (traces), 14
tstat, 15
tstat,Bacon-method (tstat), 15