Package ‘bacon’

April 25, 2017

Type Package

Title Controlling bias and inflation in association studies using the empirical null distribution

Version 1.4.0

Author Maarten van Iterson [aut, cre], Erik van Zwet [ctb]

Maintainer Maarten van Iterson <mviterson@gmail.com>

Description Bacon can be used to remove inflation and bias often observed in epigenome- and transcriptome-wide association studies. To this end bacon constructs an empirical null distribution using a Gibbs Sampling algorithm by fitting a three-component normal mixture on z-scores.

License GPL (>= 2)

Depends R (>= 3.3), methods, stats, ggplot2, graphics, BiocParallel, ellipse

Suggests BiocStyle, knitr, rmarkdown, testthat, roxygen2

biocViews StatisticalMethod, Bayesian, Regression, GenomeWideAssociation, Transcriptomics, RNASeq, MethylationArray, BatchEffect, MultipleComparison

RoxygenNote 6.0.1

Collate 'BaconClass.R' 'BaconMethods.R' 'bacon.R' 'normmixture.R'

VignetteBuilder knitr

NeedsCompilation yes

R topics documented:

bacon ... 2
Bacon-class ... 3
bias ... 4
dnormmix .. 4
es ... 5
estimates ... 6
fit ... 6
inflation .. 7
meta ... 8
plot,Bacon-method .. 9
Gibbs Sampler Algorithm to fit a three component normal mixture to z-scores

Usage

```
bacon(teststatistics = NULL, effectsizes = NULL, standarderrors = NULL, niter = 5000L, nburnin = 2000L, nbins = 1000, trim = 0.999, level = 0.05, verbose = FALSE, priors = list(sigma = list(alpha = 1.28, beta = 0.36), mu = list(lambda = c(0, 3, -3), tau = c(1000, 100, 100)), epsilon = list(gamma = c(90, 5, 5))))
```

Arguments

- `teststatistics`: numeric vector or matrix of test-statistics
- `effectsizes`: numeric vector or matrix of effect-sizes
- `standarderrors`: numeric vector or matrix of standard errors
- `niter`: number of iterations
- `nburnin`: length of the burnin period
- `nbins`: default 1000 else bin test-statistics
- `trim`: default 0.999 trimming test-statistics
- `level`: significance leve used to determine prop. null for starting values
- `verbose`: default FALSE
- `priors`: list of parameters of for the prior distributions

Value

object of class-Bacon

Author(s)

mvaniterson

References

Implementation is based on a version from Zhihui Liu https://macsphere.mcmaster.ca/handle/11375/9368
Examples

```r
##simulate some test-statistic from a normal mixture
##and run bacon
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
b <- bacon(y)
##extract all estimated mixture parameters
estimates(bc)
##extract inflation
inflation(bc)
##extract bias
bias(bc)

##extract bias and inflation corrected test-statistics
head(tstat(bc))

##inspect the Gibbs Sampling output
traces(bc)
posteriors(bc)
fit(bc)

##simulate multiple sets of test-statistic from a normal mixture
##and run bacon
y <- matrix(rnormmix(10*2000, c(0.9, 0, 1, 0, 4, 1)), ncol=10)
b <- bacon(y)
##extract all estimated mixture parameters
estimates(bc)
##extract only the inflation
inflation(bc)
##extract only the bias
bias(bc)
##extract bias and inflation corrected P-values
head(pval(bc))
##extract bias and inflation corrected test-statistics
head(tstat(bc))
```

Description

An S4 class container for storing Gibbs Sampler input and output

Slots

- `teststatistics` numeric vector or matrix of test-statistics
- `effectsizes` numeric vector or matrix of effect-sizes
- `standarderrors` numeric vector or matrix of standard errors
- `traces` array of Gibbs Sampler traces
- `estimates` vector or matrix of parameter estimates
- `priors` list of parameters of for the prior distributions
- `niter` number of iterations
- `nburnin` length of the burnin period
bias

Method to extract the estimated bias from the 'bacon'-object

Description

Method to extract the estimated bias from the 'bacon'-object

Usage

bias(object)

S4 method for signature 'Bacon'

bias(object)

Arguments

object 'bacon'-object

Value

vector or matrix of inflation

See Also

bacon

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
bias(bc)

dnormmix

density of a k-component normal mixture

Description

density of a k-component normal mixture

Usage

dnormmix(x, theta)

Arguments

x x like dnorm(x, ...)
theta parameters of the mixture proportion, mean and sd
Details
details follow

Value
density of a k-component normal mixture

Author(s)
mvaniterson

Examples

```r
n <- 2000	hetaeta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)
hist(x, freq=FALSE, n=100)
curve(dnormmix(x, theta), add=TRUE, lwd=2)
```

Method to extract inflation- and bias-corrected effect-sizes

Description
Method to extract inflation- and bias-corrected effect-sizes

Usage
```
es(object, corrected = TRUE)
```

S4 method for signature 'Bacon'
es(object, corrected = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>'bacon'-object</td>
</tr>
<tr>
<td>corrected</td>
<td>optional return uncorrected</td>
</tr>
</tbody>
</table>

Value
vector or matrix of effect-sizes

See Also

`bacon`

Examples
```
es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000, df=4)))
bc <- bacon(NULL, es, se)
head(es(bc))
```
estimates

Method to extract the estimated parameters from the 'bacon'-object

Description

Method to extract the estimated parameters from the 'bacon'-object

Usage

estimates(object)

S4 method for signature 'Bacon'
estimates(object)

Arguments

object 'bacon'-object

Value

vector or matrix of estimates

See Also

bacon

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
estimates(bc)

fit

Method to plot mixture fit

Description

Method to plot mixture fit

Usage

fit(object, index = 1, ...)

S4 method for signature 'Bacon'
fit(object, index, col = "grey75", border = "grey75", ...)

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
fit(bc)
Arguments

object 'bacon'-object
index if multiple sets of test-statistics were provided
... additional plotting parameters
col line color default 'grey75'
border border color 'grey75'

Value

plot of the Gibbs Sampler mixture fit

See Also

bacon

Examples

y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
nbin = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
fit(bc)

inflation Method to extract the estimated inflation from the 'bacon'-object

Description

Method to extract the estimated inflation from the 'bacon'-object

Usage

inflation(object)

S4 method for signature 'Bacon'
inflation(object)

Arguments

object 'bacon'-object

Value

vector or matrix of inflation

See Also

bacon
Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
inflation(bc)
```

meta

fixed meta-analysis

Description

Perform fixed meta-analysis using inflation and bias corrected effect-sizes and standard errors

Usage

```r
meta(object, corrected = TRUE, ...)
```

```r
## S4 method for signature 'Bacon'
meta(object, corrected = TRUE, ...)
```

Arguments

- **object** 'bacon'-object
- **corrected** optional return uncorrected
- **...** additional arguments

Details

TODO maybe add idea’s from http://www.netstorm.be/home/meta_analysis#metaAnalysisU

Value

object of class `bacon` with added fixed-effect meta-analysis test-statistics, effect-sizes and standard-errors

See Also

bacon

Examples

```r
es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000,df=4)))
bc <- bacon(NULL, es, se)
mbc <- meta(bc)
```
plot,Bacon-method

Description

simple ggplot2 plotting function for 'bacon'-object

Usage

S4 method for signature 'Bacon'
plot(x, y, type = c("hist", "qq"))

Arguments

x 'bacon'-object
y NULL
type hist or qq

Value

either qq-plot of P-values or histogram of Test-statistics

plotnormmix

plot normal mixtures

Description

plot normal mixtures

Usage

plotnormmix(x, theta, ...)

Arguments

x vector of test statistics
theta parameters describing the mixture components
... arguments passed to hist

Details

details follow

Value

return plot with histogram of the data and mixture and individual components

Author(s)
mvaniterson
Examples

```r
n <- 2000
theta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)
plotnormmix(x, theta)
```

Method to plot posterior distribution

Description

Method to plot posterior distribution

Usage

```r
posteriors(object, thetas = c("sigma.0", "p.0"), index = 1, 
alphas = c(0.95, 0.9, 0.75), xlab = "", ylab = "", ...)
```

```r
## S4 method for signature 'Bacon'
posteriors(object, thetas = c("sigma.0", "p.0"), 
index = 1, alphas = c(0.95, 0.9, 0.75), xlab = "", ylab = "", ...)
```

Arguments

- `object` : 'bacon'-object
- `thetas` : which thetas to plot
- `index` : if multiple sets of test-statistics where provided
- `alphas` : significance level confidence ellipses
- `xlab` : optional xlab
- `ylab` : optional ylab
- `...` : additional plotting parameters

Value

plot of the Gibbs Sampler posterior probabilities

See Also

- `bacon`

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
posteriors(bc)
```
Method to extract inflation- and bias-corrected P-values

Description

Method to extract inflation- and bias-corrected P-values

Usage

```
pval(object, corrected = TRUE)
```

```r
## S4 method for signature 'Bacon'
pval(object, corrected = TRUE)
```

Arguments

- **object** 'bacon'-object
- **corrected** optional return uncorrected

Value

vector or matrix of P-values

See Also

`bacon`

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
b <- bacon(y, nbins=100) #nbins = 100 to speed up the calculations
d => pval(bc)
```

Sample from a normal mixture

Description

sample from a normal mixture

Usage

```
rnormmix(n, theta, shuffle = TRUE)
```

Arguments

- **n** size
- **theta** parameters
- **shuffle** shuffle return vectors or keep nulls and alternative ordered (null, alts)
Details

details follow

Value

n samples from a normal mixture with parameters theta

Author(s)

mvaniterson

Examples

n <- 2000
theta <- c(0.8, 0, 1, 0, 4, 1)
x <- rnormmix(n, theta)

se

Method to extract inflation- and bias-corrected standard errors

Usage

se(object, corrected = TRUE)

S4 method for signature 'Bacon'
se(object, corrected = TRUE)

Arguments

object 'bacon'-object
corrected optional return uncorrected

Value

vector or matrix of standard-errors

See Also

bacon

Examples

es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
se <- replicate(6, 0.8*sqrt(4/rchisq(2000,df=4)))
bc <- bacon(NULL, es, se)
head(se(bc))
Description

Extract top features after meta analysis

Usage

topTable(object, number = 10, adjust.method = "bonf", sort.by = c("pval", "eff.size"))

S4 method for signature 'Bacon'
topTable(object, number = 10, adjust.method = "bonf", sort.by = c("pval", "eff.size"))

Arguments

 object 'bacon'-object
 number return specified number of top features, n=-1 return all features
 adjust.method P-value multiple testing adjustment method default bonferroni
 sort.by order results by pval or eff.size

Value

table with top features

See Also

 bacon

Examples

 es <- replicate(6, rnormmix(2000, c(0.9, 0, 1, 0, 4, 1)))
 se <- replicate(6, 0.8*sqrt(4/rchisq(2000,df=4)))
 bc <- bacon(NULL, es, se)
 mbc <- meta(bc)
topTable(mbc)

traces

Method to plot Gibbs sampling traces

Description

Method to plot Gibbs sampling traces
Usage
traces(object, burnin = TRUE, index = 1)
S4 method for signature 'Bacon'
traces(object, burnin = TRUE, index = 1)

Arguments
 object 'bacon'-object
 burnin include burnin period default true
 index if multiple sets of test-statistics where provided

Value
 plot of the Gibbs Sampler traces

See Also
 bacon

Examples
 y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
 ##nbins = 100 to speed up the calculations
 bc <- bacon(y, nbins=100)
 traces(bc)

tstat
 Method to extract inflation- and bias-corrected test-statistics

Description
 Method to extract inflation- and bias-corrected test-statistics

Usage
 tstat(object, corrected = TRUE)
 ## S4 method for signature 'Bacon'
tstat(object, corrected = TRUE)

Arguments
 object 'bacon'-object
 corrected optional return uncorrected

Value
 vector or matrix of test-statistics
See Also

bacon

Examples

```r
y <- rnormmix(2000, c(0.9, 0, 1, 0, 4, 1))
##nbins = 100 to speed up the calculations
bc <- bacon(y, nbins=100)
head(tstat(bc))
```
Index

bacon, 2, 4–8, 10–15
Bacon-class, 3
bias, 4
bias, Bacon-method (bias), 4
dnormmix, 4
es, 5
es, Bacon-method (es), 5
estimates, 6
estimates, Bacon-method (estimates), 6
fit, 6
fit, Bacon-method (fit), 6
inflation, 7
inflation, Bacon-method (inflation), 7
meta, 8
meta, Bacon-method (meta), 8
plot, Bacon-method, 9
plotnormmix, 9
posteriors, 10
posteriors, Bacon-method (posteriors), 10
pval, 11
pval, Bacon-method (pval), 11
rnormmix, 11
se, 12
se, Bacon-method (se), 12
topTable, 13
topTable, Bacon-method (topTable), 13
traces, 13
traces, Bacon-method (traces), 13
tstat, 14
tstat, Bacon-method (tstat), 14