Package ‘beadarraySNP’

March 22, 2017

Type Package
Title Normalization and reporting of Illumina SNP bead arrays
Version 1.40.0
Date 2014-10-10
Author Jan Oosting
Maintainer Jan Oosting <j.oosting@lumc.nl>
Depends methods, Biobase (>= 2.14), quantsmooth
Suggests aCGH, affy, limma, snapCGH, beadarray, DNAcopy
Description Importing data from Illumina SNP experiments and performing copy number calculations and reports.
License GPL-2
biocViews CopyNumberVariation, SNP, GeneticVariability, TwoChannel, Preprocessing, DataImport

NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>alterCN</td>
</tr>
<tr>
<td>backgroundCorrect.SNP</td>
</tr>
<tr>
<td>backgroundEstimate</td>
</tr>
<tr>
<td>BeadstudioQC</td>
</tr>
<tr>
<td>calculateLOH</td>
</tr>
<tr>
<td>calculateQCarray</td>
</tr>
<tr>
<td>compareGenotypes</td>
</tr>
<tr>
<td>copynumberConversion</td>
</tr>
<tr>
<td>createCNSummary</td>
</tr>
<tr>
<td>dist.GT</td>
</tr>
<tr>
<td>GenomicReports</td>
</tr>
<tr>
<td>GetBeadStudioSampleNames</td>
</tr>
<tr>
<td>getDNAindex</td>
</tr>
<tr>
<td>heterozygosity</td>
</tr>
<tr>
<td>heterozygousSNPs</td>
</tr>
<tr>
<td>Illumina Genomic data</td>
</tr>
<tr>
<td>interactiveCNselect</td>
</tr>
<tr>
<td>normalizeBetweenAlleles.SNP</td>
</tr>
<tr>
<td>normalizeBetweenSubsamples.SNP</td>
</tr>
</tbody>
</table>
Description

Changes one of the levels of a cn.sum data structure

Usage

```r
alterCN(cn.sum, opa, value, updown)
```

Arguments

- `cn.sum`: cn.sum structure to change
- `opa`: opa panel within the structure
- `value`: the predicted value to change
- `updown`: the value has a higher (TRUE) or lower (FALSE) cn value

Details

The state in the cn.sum structure that has a predicted value of `value` will have it's associated inferred copy number increased (updown is TRUE) or decreased (updown is FALSE). The function makes sure that the copynumber values within a OPA panel have the same order as the predicted values.
Description
Perform background correction on Illumina Golden Gate bead arrays

Usage
backgroundCorrect.SNP(object, method=c("none", "subtract", "half", "minimum", "edwards", "normexp", "rma"), offset = 0)

Arguments
- object: SnpSetIllumina object
- method: character, method of correction
- offset: numeric, constant to add after correction

Details
Code has been ported from the limma package. The matrices Gb and Rb should be available in the arrayData slot of the object.

Value
This function returns an SnpSetIllumina object with background corrected values in the G and R.

Author(s)
Jan Oosting, based on limma package by G. Smyth

See Also
SnpSetIllumina-class, backgroundCorrect, backgroundEstimate, normalizeBetweenAlleles.SNP, normalizeWithinArrays.SNP

Examples
Not run: data.bg<-backgroundCorrect.SNP(data.raw,"subtract")
backgroundEstimate

Estimate background intensities from foreground intensity

Description

Background intensity from Illumina Golden Gate bead arrays are estimated based on several data models.

Usage

```r
backgroundEstimate(object, method = c("minimum", "mode", "intmin", "anglemode"), maxmode = 3000, bincount = 40, maxangle = 0.3, subsample = "OPA")
```

Arguments

- `object`: SnpSetIllumina object
- `method`: character, data model to use
- `maxmode`: numeric, maximum intensity for mode for `method = "mode"`
- `bincount`: numeric, for `method = "intmin"`, see details
- `maxangle`: numeric in radians, maximum theta for mode for `method = "anglemode"`
- `subsample`: factor or column name in `featureData` slot

Details

The Illumina software does not provide background values in the output. Some models can be used to estimate background from the raw data intensities.

- **minimum**: The allele specific minimum intensity is used.
- **mode**: This model assumes that the first mode of the density of the intensities is determined by the zero-allele in the data, see ref. The signal intensity of the zero-allele should be zero, therefore this is considered the background value.
- **intmin**: This model assumes there is crosstalk between the alleles, and background increases with the intensity of the other allele. The range between 0 and the maximum of the other allele is divided in `bincount` bins, and the minimum for this allele is determined for probes where the other allele falls in a bin. A linear fit is determined though the minimum values to obtain a gradually increasing value.
- **anglemode**: This model finds the density modes closest to 0 and π for polar transformed intensities, and uses this to determine background.

Value

This function returns an `SnpSetIllumina` object. The Rb and Gb matrices in the `assayData` slot contain estimated background values.

Author(s)

Jan Oosting

See Also

`SnpSetIllumina-class`, `backgroundCorrect.SNP`
BeadstudioQC Quality control of Beadstudio report files

Description
When data has been imported using a Beadstudio samplesheet and reportfile, these functions can be used to generate quality measures

Usage
BeadstudioQC(object, QClist = list(), arrayType = "Sentrix96")
pdfBeadstudioQC(QClist, basename = "beadstudio", by = 10)

Arguments
- object: SnpSetIllumina object.
- QClist: list, result of previous call to BeadstudioQC
- arrayType: character, type of array
- basename: character, prefix for PDF files. This name will be added before the Barcode of the chip
- by: integer, number of samples in barplot, see reportSamplePanelQC

Value
The BeadstudioQC function generates a list of QCillumina objects. The pdfBeadstudioQC function generates a pdf-file for each QCillumina object in the list.

Author(s)
J. Oosting

See Also
pdfQC, calculateQCarray

calculateLOH Determine LOH in experiment

Description
Using pairings of normal and tumor samples the LOH pattern is determined

Usage
calculateLOH(object, grouping, NorTum = "NorTum", ...)
calculateLair(object, grouping = NULL, NorTum = "NorTum", min.intensity = NULL, use.homozygous.avg = FALSE)
calculateQCarray

Arguments

object SnpSetIllumina object
grouping Factor to show which samples belong together (are of the same individual)
NorTum character vector or factor. Elements containing "N" are considered to be the normal sample
min.intensity numeric
use.homozygous.avg logical
... extra arguments for link(heterozygousSNPs)

Details

The heterozygous SNPs of the normal sample are inspected for changes. SNPs where the genotype of the test sample are homozygous are set to TRUE.

Value

For calculateLOH a SnpSetIllumina object with loh and nor.gt matrices in assayData. loh is a logical matrix, and nor.gt is a character matrix containing the genotypes of the corresponding normal sample. For calculateLair a SnpSetIllumina object with lair matrix in assayData. Lair is the lesser allele intensity ratio. If a corresponding normal sample is found, it is taken as reference. Else the genotypes of normal samples are taken as a reference.

Author(s)

Jan Oosting

See Also

SnpSetIllumina-class

calculateQCarray Retrieve QC information from a SnpSetIllumina object

Description

Retrieves QC and identifying information of Illumina Sentrix arrays.

Usage

calculateQCarray(object, QCobject = NULL, arrayType="Sentrix96")

Arguments

object SnpSetIllumina object. Should contain information of a single Sentrix array and a single type of OPA panel
QCobject QCIIllumina-class object: If set the information in the object is amended with data from the SnpSetIllumina object
arrayType character, see arrayType
compareGenotypes

Details
Sample summary values are mapped to the physical layout of the Sentrix array using the Row and Col columns of the phenoData slot. These will be available when `read.SnpSetIllumina` is used to create SnpSetIllumina objects. Use successive calls to `calculateQArray` to process Sentrix arrays with multiple probe panels. If data is read using a samplesheet that defines manifest files it is possible to handle data with multiple manifests and/or multiple Sentrix arrays.

Value
A `QCIllumina` object, when multiple arrays were combined a list of `QCIllumina` objects.

Author(s)
Jan Oosting

See Also
`link{QCIllumina-class}`, `link{reportSamplePanelQC}`, `link{plotQC}`

Examples
```r
## Not run: QC<-calculateQArray(data.raw1)
## Not run: QC<-calculateQArray(data.raw2,QC)
```

Description
Pairwise comparison of genotypes between unaffected and affected tissue from the same subject.

Usage
```r
compareGenotypes(genotypeT, genotypeN)
```

Arguments
- `genotypeT` character or logical vector, genotypes of affected tissue
- `genotypeN` character or logical vector with same length as `genotypeT`, genotypes of unaffected, normal tissue

Details
Heterozygous probes have one the following values. TRUE, 'H' or 'AB'. All other values are considered homozygous. The primary purpose of the method is to find probes with loss of heterozygosity (LOH), where the unaffected probe is heterozygous and the affected is called homozygous.
Value

A vector with the same length as the arguments where each element can have one of four values

'\texttt{u}' Uninformative: both affected and normal are homozygous

'\texttt{i}' Informative: both affected and unaffected heterozygous

'\texttt{l}' Loss: unaffected heterozygous, affected homozygous

'\texttt{a}' Artefact: unaffected homozygous, affected heterozygous

Author(s)
Jan Oosting

See Also

\texttt{heterozygousSNPs}

Examples

data(chr17.260)
compareGenotypes(exprs(chr17.260)[,"514TV"],exprs(chr17.260)[,"514NP"])

\texttt{copynumberConversion} \hspace{2cm} \textit{Conversion to Copynumber analysis objects}

Description

SnpSetIllumina objects are converted to other objects for numerical analysis

Usage

convert2aCGH(object,normalizedTo=2,doLog=TRUE,organism="hsa")
convert2SegList(object,normalizedTo=2,doLog=TRUE,organism="hsa")

Arguments

- \texttt{object} \hspace{1cm} SnpSetIllumina object
- \texttt{normalizedTo} \hspace{1cm} numeric, 'normal' copynumber datavalue for object
- \texttt{doLog} \hspace{1cm} logical, perform logarithmic transformation (log2)
- \texttt{organism} \hspace{1cm} character, organism used in object. Currently 'hsa' and 'mmu' are recognized. Used to convert sex chromosomes to their proper numerical representation

Details

These functions produce objects that can be used by the analysis functions in the aCGH or snapCGH packages. The SnpSetIllumina intensity values are stored in a linear scale. Both types of objects assume a logarithmic scale, so by default the values are transformed to a log2 scale centered around 0.
createCNSummary

Summarization of Copy number states

Description
Create a summary object of the genomic copy number states in a sample of segmented data.

Usage
createCNSummary(object, sample, dnaIndex=1, subsample = "OPA")

Arguments
- **object**: SNPSetIllumina object after segmentation
- **sample**: SampleName or index of the sample for which to create the summary
- **dnaIndex**: Measured DNA index of the sample
- **subsample**: factor or column name in featureData slot

Details
The segments within a sample are assigned a copy number value. When the inferred slot in assayData is empty, all segments will be set to 2. Otherwise the values are recovered from the inferred slot. Gender is taken into account for the sex chromosomes.

Value
list with the following elements
- **dnaIndex**: same as parameter dnaIndex
- **CN.total.nrm**: Total expected copynumber for a 'normal' specimen ~ 2*featurecount
- **states**: data.frame with columns opa, count, intensity, copynumber

This list can be used as the cn.sum argument for plotGoldenGate4OPA, alterCN, getDNAindex and setRealCN

Author(s)
Jan Oosting
dist.GT

See Also

segmentate, alterCN, plotGoldenGate4OPA

dist.GT dist.GT

Description

Calculate distance matrix based of differences in genotype calls

Usage

dist.GT(object)

Arguments

object SnpSetIllumina object

Details

Calculates distances between samples as percentage of differences in genotype

Value

‘dist.GT’ returns an object of class ‘dist’

Author(s)

Jan Oosting

See Also

dist, hclust

Examples

data(chr17.260)
plot(hclust(dist.GT(chr17.260)))
Genomic reports

Description

Create reports for all samples in a dataset.

Usage

reportChromosomesSmoothCopyNumber(snpdata, grouping, normalizedTo=2, smooth.lambda=2, ridge.kappa=0, plotLOH=c("none", "marker", "line", "NorTum"), sample.colors = NULL, ideo.bleach=0.25, ...)
reportSamplesSmoothCopyNumber(snpdata, grouping, normalizedTo=2, smooth.lambda=2, ridge.kappa=0, plotLOH=c("none", "marker", "line", "NorTum"), sample.colors= NULL, ...)
reportGenomeGainLossLOH(snpdata, grouping, plotSampleNames=FALSE, distance.min, upcolor="red", downcolor="blue", lohcolor="grey", hetcolor="lightgrey", lohwidth=1, segment=101, orientation="V","H"), ...)
reportChromosomeGainLossLOH(snpdata, grouping, plotSampleNames=FALSE, distance.min, upcolor="red", downcolor="blue", lohcolor="grey", hetcolor="lightgrey", proportion=0.2, plotLOH=TRUE, segment=101, ...)
reportGenomeIntensityPlot(snpdata, normalizedTo=NULL, subsample=NULL, smoothing="mean", "quant", dot.col="black", smooth.col="red", ...)

Arguments

snpdata SnpSetIllumina object.
grouping factor, elements with same value are plotted together. Defaults to groups of 4 in order of the samples in the object.
normalizedTo numeric, a horizontal line is drawn at this position.
smooth.lambda smoothing parameter for quantsmooth.
ridge.kappa smoothing parameter for quantsmooth.
plotLOH indicate regions or probes with LOH, see details.
sample.colors vector of color.
plotSampleNames logical.
sizeSampleNames numeric, margin size for sample names.
distance.min numerical.
upcolor color.
downcolor color.
lohcolor color.
hetcolor color.
lohwidth numerical, relative width of the LOH part of the sample.
segment integer.
orientation ["V","H"], vertical or horizontal orientation of plot.
proportion: numerical, proportion of the plot to use for idiogram annotation.
subsample: character, or factor of length of features.
smoothing: Type of smoothing per chromosome.
dot.col: color.
smooth.col: color.
ideo.bleach: numeric [0,1].
...: arguments are forwarded to plot or getChangedRegions.

Details

The first function creates plots for each group and each chromosome in the dataset. The second function creates full genome plot for each group in the dataset. Beware that a lot of plots can be created, and usually you should prepare for that, by redirecting the plots to pdf or functions that create picture files like jpg, png, bmp.

Value

These functions are executed for their side effects.

Author(s)

Jan Oosting

See Also

quantsmooth, prepareGenomePlot, pdfChromosomesSmoothCopyNumber, pdfSamplesSmoothCopyNumber

Examples

data(chr17.260)
chr17nrm <- standardNormalization(chr17.260)
par(mfrow = c(4,2), mar = c(2,4,2,1))
reportChromosomesSmoothCopyNumber(chr17nrm, grouping=pData(chr17.260)$Group, smooth.lambda = 4)

GetBeadStudioSampleNames

Extract samplenames from a report file

Description

Extract the samplenames from a report file that was created as a final report from Illumina Beadstudio.

Usage

GetBeadStudioSampleNames(reportfile)

Arguments

reportfile: character, name of report file.
`getDNAindex`

Details

This function will read the report file, and extract the sample names from the Sample ID column.

Value

character vector

Author(s)

Jan Oosting

See Also

`read.SnpSetIllumina`

`getDNAindex`

Calculate the DNA index based on assigned copy number values to probes

Description

Calculate the DNA index based on assigned copy number values to probes.

Usage

`getDNAindex(cn.sum)`

Arguments

- `cn.sum` list with elements dnaIndex, CN.total.nrm, states, see `createCNSummary`

Value

scalar. DNA index of an unaffected sample is 1

Author(s)

Jan Oosting

See Also

`createCNSummary`, `plotGoldenGate4OPA`
heterozygosity

Find regions of homozygous SNPs

Description
Analyze affected material without corresponding unaffected material in order to find regions that contain stretches of homozygous SNPs as an indication of loss of heterozygosity (LOH)

Usage
heterozygosity(genotype, decay = 0.8, threshold = 0.1)

Arguments
- genotype: character or logical vector, genotypes of affected tissue
- decay: numeric in range (0,1)
- threshold: numeric in range (0,1)

Details
The method calculates how long the stretch of homozygous SNPs is for each element delay and threshold can be set to skip individual heterozygous probes in a longer stretch of homozygous probes. The default setting tolerate 1 erroneous heterozygous SNP every 10 homozygous SNPs. Set threshold at 1 to stop discarding heterozygous SNPs

Value
A numeric vector with the same length as genotype is returned. Higher values, of 15 and higher, indicate regions of LOH

Author(s)
Jan Oosting

See Also
compareGenotypes, heterozygousSNPs

Examples
data(chr17.260)
plot(heterozygosity(exprs(chr17.260)[,"514TV"]))
heterozygousSNPs

Retrieve heterozygous SNPs

Description
Heterozygous SNPs are determined based on quality score criteria

Usage
heterozygousSNPs(object, threshold=0.9, useQuality=TRUE, relative=TRUE, percentile=FALSE)

Arguments
object class SnpSetIllumina
threshold numeric (0:1) minimum quality score to be called heterozygous
useQuality logical, use quality score
relative logical, use quality score relative to GTS, see details
percentile logical, use percentage of probes above threshold

Details
This function presumes that the specificity for determining heterozygity is more important than the sensitivity, and will therefore only call probes heterozygous if that can be done with high certainty. The Illumina genotyping software calculates two quality measures: gen train score (GTS) and gen call score (GCS). The GTS is a measure for how well clusters can be recognized in a training set. This value is probe specific, and the same for all samples in an experiment. The GCS is a probe-specific, sample specific value that measures how close a probe in a sample is to the clusters determined in the training step. This value is always lower than the GTS for a probe.

read.SnpSetIllumina will put GCS into the callProbability element of the assaydata slot and the GTS into the featureData slot. The function uses these locations to retrieve the necessary information.

If relative is FALSE then the raw GCS values are compared to the threshold. In this case a threshold of around 0.5 should be used. If relative is TRUE then GCS/GTS is compared to the threshold and threshold should be around 0.9.

With percentile=TRUE the threshold quantile is calculated for each sample, and only probes with higher scores can be called heterozygous. A threshold of around 0.2 seems to work fine usually.

Value
This function returns a logical matrix with same dimensions as object.

Note
The purpose of the function is to separate heterozygous probes from non-heterozygous probes. In tumor samples the determination of the genotype can be difficult, because of aneuploidy and the fact that a sample is often a mixture of normal and tumor cells.

Author(s)
Jan Oosting
interactiveCNselect

See Also

SnpSetIllumina-class

Examples

data(chr17.260)
plot(heterozygosity(heterozygousSNPs(chr17.260[,"514TV"])),col="red",pch="x")
points(heterozygosity(exprs(chr17.260)[,"514TV"]))

Illumina Genomic data Illumina example data

Description

These datasets are subsets of an experiment to test the applicability of paraffin embedded material in Illumina SNP arrays

Usage

data(chr17.260)
data(QC.260)

Format

chr17.260 is a SnpSetIllumina object with data from chromosome 17 of 24 samples. QC.260 is a QCIllumina object with summary data of 96 samples of a single SAM array

interactiveCNselect Interactive assignment of copynumbers to genomic segments

Description

This function plots the genomic view of a sample, and allows the assignment of a discrete copy number to each segment

Usage

interactiveCNselect(object, sample = 1, dnaIndex)

Arguments

object class SnpSetIllumina after segmentation
sample Sample identifier within object
dnaIndex numeric, measured DNA index of the sample (1=normal)
Details

The user can interactively assign discrete, integer copy number values to each segment. This is done by either clicking in the lower part of a panel to decrease the copy number, or in the higher part of a panel to increase the copy number. The order of copy number values is always maintained; a segment with a lower raw value cannot get a higher copy number assigned than a segment with a higher raw copy number value.

Value

list, see createCNSummary

Author(s)

Jan Oosting

See Also

segmentate, alterCN, plotGoldenGate4OPA createCNSummary

Description

Perform between Allele normalization on Illumina Golden Gate bead arrays

Usage

normalizeBetweenAlleles.SNP(object,method=c("quantile"),subsample="OPA")

Arguments

object class SnpSetIllumina
method char, type of normalization
subsample factor with length number of features in object or char, column name in featureData slot

Details

This function performs a quantile normalization between the Red and Green channels for each sample. The rationale for this procedure stems from the fact that the allele frequencies within each channel are always very similar, even in the presence of genomic abnormalities.

Value

This function returns an SnpSetIllumina object.

Author(s)

Jan Oosting
normalizeBetweenSubsamples.SNP

See Also
SnpSetIllumina-class, normalizeWithinArrays.SNP, backgroundCorrect.SNP

Examples

data(chr17.260)
data.nrm<-normalizeBetweenAlleles.SNP(chr17.260)

normalizeBetweenSubsamples.SNP

Normalization between subsamples

Description
Quantile normalization between subsamples within a single SnpSetIllumina object

Usage
normalizeBetweenSubsamples.SNP(object, subsample = "OPA")

Arguments

object class SnpSetIllumina

subsample factor with length number of features in object or char, column name in featureData slot

Details
Perform quantile normalization of the red and green channel between subsamples. This can be used in situations where multiple different assays that cover the same genomic regions (or whole genome) have been done on the same biological specimen. This function was introduced for version 5 Golden Gate Linkage analysis that consist of 4 assays of ~ 1500 probes. Where previous versions of this assay each targeted a number of chromosomes, in version 5 each assay covers the whole genome.

Value
This function returns an SnpSetIllumina object.

Author(s)
Jan Oosting

See Also
SnpSetIllumina-class, normalizeBetweenAlleles.SNP, normalizeWithinArrays.SNP, backgroundCorrect.SNP

Examples

data(chr17.260)
data.nrm<-normalizeBetweenSubsamples.SNP(chr17.260)
normalizeLoci.SNP

locus normalization

Description
Perform locus normalization on Illumina Golden Gate bead arrays

Usage
normalizeLoci.SNP(object, method=c("normals","paired","alleles"), NorTum="NorTum", Gender="Gender", Subject="Subject", normalizeTo=2, trig=FALSE)

Arguments
- object: object class SnpSetIllumina
- method: character. If "normals" then all normal samples in the dataset are used as the invariant set. If "paired" then affected samples are normalized to their paired normal samples. "alleles" fits a linear model between the B-allele ratio and the signal intensity and normalizes for that
- NorTum: logical or character vector or name of column in pData slot. depicts the normal, unaffected samples in the dataset. In a character vector these should have the value "N"
- Gender: logical or character vector or name of column in pData slot. depicts the female samples in the dataset and is used to normalize the sex chromosomes. In a character vector these should have value "F"
- Subject: factor or name of or column in pData slot. This factor is used to pair the samples when method is "paired"
- normalizeTo: normalizeTo numeric. The average copy number of the sample.
- trig: Logical, use geometric distance of intensity. Otherwise use addition of intensities

Details
This function is usually performed in the last step of normalization in order to obtain calculated copy numbers.

Value
This function returns an SnpSetIllumina object.

Author(s)
Jan Oosting

See Also
SnpSetIllumina, normalizeWithinArrays.SNP, normalizeBetweenAlleles.SNP
Examples

```r
data(chr17.260)
data.nrm<-normalizeLoci.SNP(chr17.260)
```

normalizeWithinArrays.SNP

Within Array normalization

Description

Perform within array normalization on Illumina Golden Gate bead arrays.

Usage

```r
normalizeWithinArrays.SNP(object, callscore=0.5, normprob=0.5, quantilepersample=FALSE,
relative=FALSE, fixed=FALSE, useAll=FALSE, subsample="OPA",
Q.scores="callProbability")
```

Arguments

- `object`: class SnpSetIllumina.
- `callscore`: numeric with range 0:1, threshold for probe inclusion.
- `normprob`: numeric with range 0:1, target quantile for normalization. The default is to divide the sample intensities by the median of the selected subset.
- `quantilepersample`: logical. If `TRUE` then the threshold is determined for each sample, else it is experiment wide. This is only relevant when `fixed` is `FALSE`.
- `relative`: logical. If `TRUE` then the ratio of GCS and GTS is used, else only the GCS is used as the quality score.
- `fixed`: logical. If `TRUE` then `callscore` is the fixed threshold for the quality score, else the probes above the quantile `callscore` are used.
- `useAll`: logical. If `TRUE` then all probes in the dataset are eligible as the invariant set, else only the heterozygous SNPs.
- `subsample`: factor or column name in featureData slot, the levels of the factor are treated separately.
- `Q.scores`: name of assayData() element, or numeric matrix of appropriate size. Quality scores to select high quality SNPs

Details

The function uses high quality heterozygous SNPs as an invariant set with the assumption that these have the highest probability of coming from unaffected regions of the genome. Most of the arguments are used to determine the quality of the call.

Value

This function returns a SnpSetIllumina object.
pdfChromosomesSmoothCopyNumber

Author(s)
Jan Oosting

See Also
SnpSetIllumina, normalizeLoci.SNP, backgroundCorrect.SNP, normalizeBetweenAlleles.SNP

Examples

 data(chr17.260)
 data.nrm <- normalizeWithinArrays.SNP(chr17.260)

 pdfChromosomesSmoothCopyNumber
 reportWrappers

Description
Functions that help create pdf reports

Usage

 pdfChromosomesSmoothCopyNumber(object, filename, ...)
 pdfSamplesSmoothCopyNumber(object, filename, ...)
 pdfChromosomeGainLossLOH(object, filename, ...)

Arguments

 object SnpSetIllumina object
 filename filename of output pdf file
 ... arguments for report functions

Details
These functions set up and perform reporting to pdf files.

Value
This function is used for its side effects

Author(s)
Jan Oosting

See Also

 reportChromosomesSmoothCopyNumber, reportSamplesSmoothCopyNumber, reportChromosomeGainLossLOH

Examples

 ## Not run: data(chr17.260)
 ## Not run: data.nrm<-standardNormalization(chr17.260)
 ## Not run: pdfChromosomesSmoothCopyNumber(data.nrm, "Chr17.pdf", grouping=pData(data.nrm)$Group, smooth.lambda=4)
pdfQC

Description
Create PDF file with experimental quality control plots

Usage
pdfQC(object, filename = "arrayQC.pdf", by = 10)

Arguments
object QCIllumina object, or list of QCIllumina objects
filename character, output pdf filename
by number of samples in barplot, see reportSamplePanelQC

Details
This function creates a pdf file with QC information. The first page contains 8 plotQC panels showing the spatial distribution of intensities on a SAM plate. The following page(s) contain the output of reportSamplePanelQC

Value
A PDF file is produced

Author(s)
Jan Oosting

See Also
plotQC, reportSamplePanelQC, QCIllumina-class

plotGoldenGate4OPA

Plot Golden Gate genomic view

Description
Plots a full genome view based on 4 subsamples of Illumina Golden Gate data

Usage
plotGoldenGate4OPA(object, cn.sum = NULL, sample = 1, plotRaw = FALSE, main = NULL, interact = FALSE)
plotGenomePanels(object, cn.sum = NULL, sample = 1, plotRaw = FALSE, main = NULL, interact = FALSE)
plotQC

Arguments

object class SnpSetIllumina
cn.sum list containing genomic states, see createCNSummary
sample identifier to select the sample within the object
plotRaw logical, plot raw data points
main character, Title of plot
interact logical, plot should be usable for interactive copy number determination interactiveCNselect
allLair logical, TRUE: plot all LAIR values, FALSE: only plot LAIR values from probes that are heterozygous in the paired normal sample
panels list, vectors of chromosomes for each panel
...
extra arguments are forwarded to plot

Details

prepare interactive selection

Value

list, see createCNSummary

Author(s)

Jan Oosting

See Also

segmentate, alterCN, interactiveCNselect createCNSummary

plotQC Spatial plots of array QC information

Description

Plots array wide summary information using the layout of the physical medium

Usage

plotQC(object, type)

Arguments

object object that contains QC information, e.g. QCIllumina-class
type character, the type of information to plot, currently the following types are supported: "intensityMed", "greenMed", "redMed", "validn", "annotation" and "samples"

Value

The function is used for its side effects
PolarTransforms

Author(s)
Jan Oosting

See Also
pdfQC, reportSamplePanelQC

Examples

data(QC.260)
plotQC(QC.260,"greenMed")

table

PolarTransforms Polar transformations

Description
Perform polar transforms on Illumina Golden Gate bead arrays

Usage
RG2polar(object,trig=FALSE)
polar2RG(object,trig=FALSE)

Arguments
 object SnpSetIllumina object
 trig Logical, use geometric distance intensity. Otherwise use addition of intensities

Details
RG2polar transforms the R and G matrices to theta and intensity matrices. Note that the intensity value is the sum of R and G and not the geometric distance to the origin.
polar2RG performs the reverse transformation

Value
This function returns an SnpSetIllumina object.

Author(s)
Jan Oosting

See Also
SnpSetIllumina-class

Examples

data(chr17.260)
data.polar<-RG2polar(chr17.260)
plot(assayData(data.polar)$theta,assayData(data.polar)$intensity)
QCaccessors Accessor methods for QC objects

Description
These generic functions set and retrieve properties of quality control objects like QC\texttt{Illumina-class}.

Usage

arrayType(object)
arrayType(object)<- value
arrayID(object)
arrayID(object)<- value

Arguments

object Object, possibly derived from class QC\texttt{Illumina-class}.
value character.

Details
Currently the following types of arrays are supported
"Sentrix96": Sentrix array, 12 columns, 8 rows
"Sentrix16": Sentrix array, 2 columns, 8 rows
"Slide12": Slide with 12 samples

Value
arrayType and arrayID return a character value

Author(s)
Jan Oosting

QC\texttt{Illumina-class} Class “QC\texttt{Illumina}”

Description
Container of QC information on arrays that contain multiple samples.

Objects from the Class
Objects can be created by calls of the form \texttt{new(“QC\texttt{Illumina}”, arrayType, arrayID, intensityMed, greenMed, redMed, intensityMode, greenMode, redMode, validn, annotation, samples)} but are usually created by \texttt{calculateQCarray}.
Slots

arrayType: character, Type of array. See arrayType
arrayID: character, Array ID
intensityMed: numeric matrix, Median of intensity of samples
greenMed: numeric matrix, Median of green values
redMed: numeric matrix, Median of red values
callrate: numeric matrix, callrate of genotyping
hetPerc: numeric matrix, Percentage of heterozygotes
ptpdiff: numeric matrix, point-to-point difference, local estimate of variability
validn: numeric matrix, Number of valid probe values in samples
annotation: character matrix, Annotation of samples
samples: character matrix, Sample IDs

Methods

arrayID signature(object = "QCIlumina"): Returns type of array
arrayID<- signature(object = "QCIlumina"): Sets type of array. Currently only "Sentrix" is supported
arrayType signature(object = "QCIlumina"): Returns ID of array
arrayType<- signature(object = "QCIlumina"): Sets ID/Barcode of array
initialize signature(.Object = "QCIlumina")
plotQC signature(object = "QCIlumina") character: plots spatial overview of QC information, type is one of c("intensityMed", "greenMed", "redMed", "validn", "annotation", "samples")

Author(s)

Jan Oosting

See Also

calculateQCarray

read.SnpSetIllumina

Read Experimental Data, Featuredata and Phenodata into an 'SnpSetIllumina' Object

Description

A SnpSetIllumina object is created from the textfiles created by the Illumina GenCall or BeadStudio software.

Usage

read.SnpSetIllumina(samplesheet, manifestpath=NULL, reportpath=NULL, rawdatapath=NULL, reportfile=NULL, briefOPAinfo=TRUE, readTIF=FALSE, nochecks=FALSE, sepreport="\t", essentialOnly=FALSE, ...)
Arguments

- **samplesheet**: a data.frame or filename, contains the sample sheet
- **manifestpath**: a character string for the path containing the manifests / OPA definition files, defaults to path of samplesheet
- **reportpath**: a character string for the path containing the report files, defaults to path of samplesheet
- **rawdatapath**: a character string for the path containing the intensity data files, defaults to path of samplesheet
- **reportfile**: a character string for the name of BeadStudio reportfile
- **briefOPAinfo**: logical, if TRUE then only the SNP name, Illumina code, chromosome and basepair position are put into the featureData slot of the result, else all information from the OPA file is put into the featureData slot
- **readTIF**: logical, uses beadarray package and raw TIF files to read data
- **nochecks**: logical, limited validity checks on beadstudio report files. See details
- **sepreport**: character, field separator character for beadstudio report files
- **essentialOnly**: logical, if TRUE then only the essential columns from a reportfile are included into the result. See details
- ... arguments are forwarded to `readIllumina` and can be used to perform bead-level normalization

Details

The text files from Illumina software are imported to a SnpSetIllumina object. Both result files from GenCall and BeadStudio can be used. In both cases the sample sheets from the experiments are used to select the proper data from the report or data files. The following columns from the sample sheet file are used for this purpose: ‘Sample_Name’, ‘Sentrix_Position’, and ‘Pool_ID’. The values in columns ‘Sample_Plate’, ‘Pool_ID’, and ‘Sentrix_ID’ should be the same for all samples in the file, as this is the case for processed experiments. The contents of the sample sheet are put into the phenoData slot.

Zero values in the raw data signals are set to NA

Ideally the OPA manifest file containing SNP annotation should be available, these files are provided by Illumina. Columns ‘IllCode’, ‘CHR’, and ‘MapInfo’ are put into the featureData slot.

GenCall Data

In order to process experiments that were genotyped using the GenCall software, the arrays should be scanned with the setting `<SaveTextFiles>true</SaveTextFiles>` in the Illumina configuration file Settings.XML. 3 Types of files need to be present in the same folder: The sample sheet, .csv files containing signal intensity data, and the report file that contains the genotype information. For each sample in the sample sheet there should be a .csv file with the following file mask: `[sam_id]_R00[yy]_C00[xx].csv`, where `sam_id` is the Illumina ID for the SAM, and `xx` and `yy` are the column and row number respectively. From the report files the file with mask `[Pool_ID]_LocusByDNA[_ExpName].csv` is used. ‘Pool_ID’ is the OPA panel used, and ‘_ExpName’ is optional.

BeadStudio Data

To process experiments that were processed with BeadStudio, only two files are needed. The sample sheet and the Final Report file. The sample sheet must contain the same columns as for GenCall, the report file should contain the following columns: ‘SNP Name’, ‘Sample ID’, ‘GC Score’, ‘Allele1 - AB’, ‘Allele2 - AB’, ‘GT Score’, ‘X Raw’, and ‘Y Raw’. ‘SNP Name’ and
removeLowQualityProbes

'Sample ID' are used to form rows and columns in the experimental data, 'GC Score' is put in the callProbability matrix, 'Allele1 - AB' and 'Allele2 - AB' are combined into the call matrix, 'GT Score' is added to the featureData slot, 'X Raw' is put in the R matrix and 'Y Raw' in the G matrix. Other columns in the report file are added as matrices in the assayData slot, or columns in the featureData slot if values are identical for all samples in the reportfile. When nochecks is TRUE then only the 'SNP Name' and 'Sample ID' columns are required. The resulting object is now of class MultiSet

Sample sheets

To help generate a sample sheet for BeadStudio data a Sample_Map.txt file can be converted to a sample sheet with the Sample_Map2Samplesheet function. For Beadstudio reportfiles it is also possible to set samplesheet=NULL. In this case the phenoData slot will be fabricated from the sample names in the reportfile.

Manifest/OPA/annotation files

For BeadStudio reportfiles it is not necessary to have a Manifest file if the columns 'Chr' and 'Position' are available in the report file. Currently this is the only way to import data from Infinium arrays, because Illumina does not supply Manifest files for these arrays.

Value

This function returns an SnpSetIllumina object, or a MultiSet object when nochecks is TRUE.

Author(s)

Jan Oosting

See Also

SnpSetIllumina-class, Sample_Map2Samplesheet, readIllumina

Examples

read a SnpSetIllumina object using example textfiles in data directory
datadir <- system.file("testdata", package="beadarraySNP")
SNPdata <- read.SnpSetIllumina(paste(datadir,"4samples_opa4.csv",sep="/"),datadir)

removeLowQualityProbes

Quality control of SnpSetIllumina objects

Description

Remove probes form a SnpSetIllumina object that show a low quality throughout the experiment

Usage

removeLowQualityProbes(object, cutoff = 0.25)

Arguments

object SnpSetIllumina object
cutoff numeric
Details
Probes that have a median value below cutoff * median value for the whole experiment are deleted from the object.

Value
SnpSetIllumina object

Author(s)
Jan Oosting

removeLowQualitySamples

Quality control of SnpSetIllumina objects

Description
Remove samples from a SnpSetIllumina object that show a low quality

Usage
removeLowQualitySamples(object, min.intensity = 1500, min.gt = 100, subsample = "OPA")

Arguments
object SnpSetIllumina-class object
min.intensity numeric. Samples that show a median intensity below this value in either Red or Green channel are removed
min.gt numeric. Samples that have less than this amount of valid genotypes are removed
subsample factor or column name in featureData slot of object

Value
This function returns an SnpSetIllumina object.

Author(s)
Jan Oosting

Examples
data(chr17.260)
chr17.260<-removeLowQualitySamples(chr17.260,min.gt=10)
renameOPA

Change the linkage panel in a dataset

Description

Change the linkage panel in a dataset

Usage

renameOPA(snpdata, newOPA)

Arguments

- snpdata: SnpSetIllumina object
- newOPA: character, new linkage panel

Details

In order to combine different versions of the linkage panels, this function makes it possible to map the equivalent SNPs in both datasets.

Value

SnpSetIllumina object

Author(s)

Jan Oosting

reportGenotypeSegmentation

plot genomic view

Description

Create a figure that can be used for interactive work

Usage

reportGenotypeSegmentation(object, plotRaw = TRUE, subsample = NULL, panels = 0, minProbes = 10, maxY = 2, ...)

Arguments

- object: class SnpSetIllumina after segmentation
- plotRaw: logical
- subsample: factor
- panels: number of panels on a page
- minProbes: minimum number of probes for a chromosome within a panel
- maxY: maximum value on vertical scale within panels
- ...: arguments are forwarded to plot
reportSamplePanelQC-methods

Value

this function is used for its side effects

Author(s)

Jan Oosting

Description

Show raw intensity values for green and red channel for all samples in an experiment

Usage

reportSamplePanelQC(object, by=10, legend=TRUE, ...)

Arguments

object QCIllumina object
by numeric, number of samples in each plot
legend logical, create a final plot with a common legend for the barplots
... arguments are forwarded to barplot

Examples

data(QC.260)
par(mfrow=c(2,2))
reportSamplePanelQC(QC.260,by=8)

Sample_Map2Samplesheet

Convert Beadstudio Sample Map file to samplesheet

Description

Create a samplesheet that can be used to import Illumina beadstudio data

Usage

Sample_Map2Samplesheet(samplemapfile, saveas = "")

Arguments

samplemapfile character, name of the SampleMap file
saveas character, optional, name of samplesheet file that can be used directly by read.SnpSetIllumina
segmentate

Details

During the creation of a final reportfile from Beadstudio there is an option to create Map files. The Sample_Map.txt file can be used to create an initial samplesheet for use in the read.SnpSetIllumina function.

Value

A data.frame with the samplesheet

Author(s)

J. Oosting

See Also

read.SnpSetIllumina

Description

Use snapCGH package to perform segmentation

Usage

segmentate(object, method = c("DNACopy", "HMM", "BioHMM", "GLAD"), normalizedTo = 2, doLog = TRUE, doMerge = FALSE, useLair = FALSE, subsample = "OPA", alpha = 0.01)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>class SnpSetIllumina</td>
</tr>
<tr>
<td>method</td>
<td>char, type of segmentation</td>
</tr>
<tr>
<td>normalizedTo</td>
<td>numeric</td>
</tr>
<tr>
<td>doLog</td>
<td>logical, perform transformation before segmentation, see convert2seglist</td>
</tr>
<tr>
<td>doMerge</td>
<td>logical, perform merging of close states</td>
</tr>
<tr>
<td>useLair</td>
<td>logical, Also segmentate on lair</td>
</tr>
<tr>
<td>subsample</td>
<td>factor</td>
</tr>
<tr>
<td>alpha</td>
<td>numeric, probability threshold to distinguish segments</td>
</tr>
</tbody>
</table>

Value

SnpSetIllumina object with elements observed, states and predicted set in the AssayData slot

Author(s)

Jan Oosting
setRealCN

Integrate state information into SNP object

Description
Set calculated values of copy numbers in inferred element of AssayData slot

Usage
setRealCN(object, sample, cn.sum, subsample="OPA")

Arguments
- object: class SnpSetIllumina
- sample: sample identifier
- cn.sum: list, see createCNSummary
- subsample: "OPA"

Value
SnpSetIllumina object with inferred element of AssayData slot set

Author(s)
Jan Oosting

See Also
segmentate, alterCN, plotGoldenGate4OPA createCNSummary

smoothed.intensity

Smooth intensity data

Description
Create a table of smoothed intensity values

Usage
smoothed.intensity(snpdata, smooth.lambda = 4, tau = 0.5)

Arguments
- snpdata: SnpSetIllumina object
- smooth.lambda: smoothing parameter
- tau: quantile to smooth

Value
Numerical matrix with same dimensions as data
SnpsSetIllumina

Author(s)
Jan Oosting

See Also
SnpsSetIllumina-class

Description
Container for high-throughput assays and experimental metadata. SnpsSetIllumina class is derived from eSet, and requires matrices R, G, call, callProbability as assay data members.

It supports featureData. Several visualization methods use columns CHR and MapInfo. The CHR column is used to handle sex chromosomes in a specific way. The OPA column is the default way to specify subsamples.

Extends
Directly extends class eSet.

Creating Objects
new('SnpsSetIllumina', phenoData = [AnnotatedDataFrame], experimentData = [MIAME], annotation = [character], call = [matrix], callProbability = [matrix], G = [matrix], R = [matrix], featureData = [data.frameOrNULL], ...)

SnpsSetIllumina instances are usually created through new("SnpsSetIllumina", ...). Arguments to new include call (a matrix of genotypic calls, with features (SNPs) corresponding to rows and samples to columns), callProbability, G, R, phenoData, experimentData, and annotation. phenoData, experimentData, and annotation can be missing, in which case they are assigned default values.

Slots
Inherited from Biobase:eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow(phenoData). assayData must contain a matrix call with rows representing features (e.g., SNPs) and columns representing samples, a matrix callProbability describing the certainty of the call, and matrices R and G to describe allele specific intensities. The contents of these matrices are not enforced by the class. The assayData matrices Gb, Rb, intensity, theta are optional, but are either results or input for several methods of the class. Additional matrices of identical size may also be included in assayData. Class:AssayData.

phenoData: See eSet.

experimentData: See eSet.

annotation: See eSet.

featureData: annotation for SNPs, usually will contain a CHR and a MapInfo column for genomic localization.
Methods

Class-specific methods:

```
exprs(SnpSetIllumina), exprs(SnpSetIllumina, matrix) <- Access and set elements named
call in the AssayData slot.
combine(SnpSetIllumina, SnpSetIllumina): performs union-like combination in both dimen-
sions of SnpSetIllumina objects.
fData(SnpSetIllumina), fData(SnpSetIllumina, data.frame) <- Access and set the pData in
the featureData slot.
calculateGSR(SnpSetIllumina) calculate ratio of Gentrain score and Gencall score. Creates
GSR matrix in assayData. Should be performed before combining datasets.
calculateSmooth(object, smoothType) calculate smoothed data, creates smoothed matrix in
assayData. smoothType can only be "quantsmooth" at the moment
sortGenomic(SnpSetIllumina) order the data by chromosome and position on the chromosome.
```

Derived from `eSet`:

```
sampleNames(SnpSetIllumina) and sampleNames(SnpSetIllumina) <- See `eSet`.
featureNames(SnpSetIllumina), featureNames(SnpSetIllumina, value) <- See `eSet`.
dims(SnpSetIllumina): See `eSet`.
phenoData(SnpSetIllumina), phenoData(SnpSetIllumina, value) <- See `eSet`.
varLabels(SnpSetIllumina), varLabels(SnpSetIllumina, value) <- See `eSet`.
varMetadata(SnpSetIllumina), varMetadata(SnpSetIllumina, value) <- See `eSet`.
pData(SnpSetIllumina), pData(SnpSetIllumina, value) <- See `eSet`.
varMetadata(SnpSetIllumina), varMetadata(SnpSetIllumina, value) See `eSet`.
experimentData(SnpSetIllumina), experimentData(SnpSetIllumina, value) <- See `eSet`.
pubMedIds(SnpSetIllumina), pubMedIds(SnpSetIllumina, value) See `eSet`.
abstract(SnpSetIllumina): See `eSet`.
annotation(SnpSetIllumina), annotation(SnpSetIllumina, value) <- See `eSet`.
storageMode(eSet), storageMode(eSet, character) <- See `eSet`.
featureData(SnpSetIllumina), featureData(SnpSetIllumina, AnnotatedDataFrame) <- See
`eSet`.
object[(index)]: Conducts subsetting of matrices and phenoData and featureData components.
```

Standard generic methods:

```
initialize(SnpSetIllumina): Object instantiation, used by new; not to be called directly by the
user.
validObject(SnpSetIllumina): Validity-checking method, ensuring that call, callProbability,
G, and R are members of assayData. checkValidity(SnpSetIllumina) imposes this valid-
ity check, and the validity checks of Biobase::class.eSet.
show(SnpSetIllumina) See `eSet`.
dim(SnpSetIllumina), ncol See `eSet`.
SnpSetIllumina[(index)]: See `eSet`.
SnpSetIllumina$, SnpSetIllumina$ <- See `eSet`.
```
SnpSetSegments-class

Author(s)
J. Oosting, based on Biobase eSet class

See Also
eSet

Description
The SnpSetSegments class is a direct descendant of the SnpSetIllumina class, with an extra slot to define the genomic segments in each sample.

Objects from the Class
Objects can be created by calls of the form `new("SnpSetSegments", assayData, phenoData, experimentData, annotation, protocolData, call, callProbability, G, R, cn.segments, featureData, extraData, ...)`.

Slots
- `cn.segments`: Object of class "list"
- `assayData`: Object of class "AssayData" see "SnpSetIllumina"
- `phenoData`: Object of class "AnnotatedDataFrame" see "SnpSetIllumina"
- `featureData`: Object of class "AnnotatedDataFrame" see "SnpSetIllumina"
- `experimentData`: Object of class "MIAME" see "SnpSetIllumina"
- `annotation`: Object of class "character" see "SnpSetIllumina"
- `protocolData`: Object of class "AnnotatedDataFrame" see "SnpSetIllumina"
- `.__classVersion__`: Object of class "Versions" "VersionedBiobase"

Extends

Methods
- `cn.segments` signature(object = "SnpSetSegments"): ...
- `cn.segments<-` signature(object = "SnpSetSegments", value = "list"): ...
- `initialize` signature(.Object = "SnpSetSegments"): ...

Note
This class is under development, and not usable in the current form

Author(s)
Jan Oosting
standardNormalization

References
Corver et.al. Can Res dec 2008

See Also
segmentate

Examples
showClass("SnpSetSegments")

data(chr17.260)
data.nrm<-standardNormalization(chr17.260)

Description
Performs all steps in normalization at best settings as determined in ref.

Usage
standardNormalization(snpdata)

Arguments
snpdata SnpSetIllumina object with raw data

Details
The function performs in the following steps
snpdata<-normalizeBetweenAlleles.SNP(snpdata)
snpdata<-normalizeWithinArrays.SNP(snpdata,callscore = 0.8, relative = TRUE, fixed = FALSE, quantilepersample = TRUE)
snpdata<-normalizeLoci.SNP(snpdata,normalizeTo = 2)

Value
A SnpSetIllumina object with the G, R and intensity elements in assayData normalized to obtain values close to 2 on a linear scale for unaffected material.

Author(s)
Jan Oosting

See Also
normalizeBetweenAlleles.SNP,normalizeWithinArrays.SNP,normalizeLoci.SNP

Examples
data(chr17.260)
data.nrm<-standardNormalization(chr17.260)
Index

*Topic** classes
 QCIllumina-class, 25
 SnpSetIllumina, 34
 SnpSetSegments-class, 36

*Topic** datasets
 Illumina Genomic data, 16

*Topic** file
 read.SnpSetIllumina, 26

*Topic** hplot
 BeadstudioQC, 5
 pdfChromosomesSmoothCopyNumber, 21
 plotGoldenGate4OPA, 22
 plotQC, 23
 reportGenotypeSegmentation, 30
 reportSamplePanelQC-methods, 31

*Topic** iplot
 interactiveCNselect, 16
 plotGoldenGate4OPA, 22

*Topic** manip
 alterCN, 2
 backgroundCorrect.SNP, 3
 backgroundEstimate, 4
 BeadstudioQC, 5
 calculateLOH, 5
 calculateQCaray, 6
 compareGenotypes, 7
 copynumberConversion, 8
 createCNSummary, 9
 dist.GT, 10
 GenomicReports, 11
 GetBeadStudioSampleNames, 12
 getDNAindex, 13
 heterozygosity, 14
 heterozygousSNPs, 15
 interactiveCNselect, 16
 normalizeBetweenAlleles.SNP, 17
 normalizeBetweenSubsamples.SNP, 18
 normalizeLoci.SNP, 19
 normalizeWithinArrays.SNP, 20
 PolaTransforms, 24
 QCaccessors, 25
 read.SnpSetIllumina, 26
 removeLowQualityProbes, 28
 removeLowQualitySamples, 29
 renameOPA, 30
 Sample_Map2Samplesheet, 31
 segmentate, 32
 setRealCN, 33
 smoothed.intensity, 33
 standardNormalization, 37

*Topic** methods
 reportSamplePanelQC-methods, 31
 [,SnpSetIllumina-method
 (SnpSetIllumina), 34
 alterCN, 2, 10, 17, 23, 33
 arrayID (QCaccessors), 25
 arrayID, QCIllumina-method
 (QCIllumina-class), 25
 arrayID<-, QCaccessors, 25
 arrayID<-, QCIllumina-method
 (QCIllumina-class), 25
 arrayType, 6, 26
 arrayType (QCaccessors), 25
 arrayType, QCIllumina-method
 (QCIllumina-class), 25
 arrayType<-, QCaccessors, 25
 arrayType<-, QCIllumina-method
 (QCIllumina-class), 25
 AssayData, 34
 backgroundCorrect, 3
 backgroundCorrect.SNP, 3, 4, 18, 21
 backgroundEstimate, 3, 4
 BeadstudioQC, 5
 calculateGSR (SnpSetIllumina), 34
 calculateGSR, SnpSetIllumina-method
 (SnpSetIllumina), 34
 calculateLair (calculateLOH), 5
 calculateLOH, 5
 calculateQCaray, 5, 6, 25, 26
 calculateSmooth (SnpSetIllumina), 34
 calculateSmooth, SnpSetIllumina, character-method
 (SnpSetIllumina), 34
 chr17.260 (Illumina Genomic data), 16
class:SnpSetIllumina (SnpSetIllumina), 34
cn.segments (SnpSetSegments-class), 36
cn.segments, SnpSetSegments-method (SnpSetSegments-class), 36
cn.segments<- (SnpSetSegments-class), 36
cn.segments<-, SnpSetSegments, list-method (SnpSetSegments-class), 36
combine, SnpSetIllumina, ANY-method (SnpSetIllumina), 34
combine, SnpSetIllumina, SnpSetIllumina-method (SnpSetIllumina), 34
compareGenotypes, 7, 14
convert2aCGH (copynumberConversion), 8
convert2SegList (copynumberConversion), 8
copynumberConversion, 8
createCNSummary, 3, 9, 13, 17, 23, 33
dist, 10
dist.GT, 10
eSet, 34–36
exprs, SnpSetIllumina-method (SnpSetIllumina), 34
exprs<-, SnpSetIllumina, matrix-method (SnpSetIllumina), 34
fData, SnpSetIllumina-method (SnpSetIllumina), 34
fData<-, SnpSetIllumina, data.frame-method (SnpSetIllumina), 34
featureData, SnpSetIllumina-method (SnpSetIllumina), 34
featureData<-, SnpSetIllumina-method (SnpSetIllumina), 34
GenomicReports, 11
GetBeadStudioSampleNames, 12
getDNAindex, 13
hclust, 10
heterozygosity, 14
heterozygousSNPs, 8, 14, 15
Illumina Genomic data, 16
initialize, QCIIllumina-method (QCIIllumina-class), 25
initialize, SnpSetIllumina-method (SnpSetIllumina), 34
initialize, SnpSetSegments-method (SnpSetSegments-class), 36
interactiveCNselect, 3, 16, 23
MultiSet, 28
normalizeBetweenAlleles.SNP, 3, 17, 18, 19, 21, 37
normalizeBetweenSubsamples.SNP, 18
normalizeLoci.SNP, 19, 21, 37
normalizeWithinArrays.SNP, 3, 18, 19, 20, 37
pdfBeadstudioQC (BeadstudioQC), 5
dfChromsomeGainLossLOH (pdfChromosomesSmoothCopyNumber), 21
pdfChromosomesSmoothCopyNumber, 12, 21
dFHQ, 5, 22, 24
dfSamplesSmoothCopyNumber, 12
dfSamplesSmoothCopyNumber (pdfChromosomesSmoothCopyNumber), 21
plotGenomePanels (plotGoldenGate4OPA), 22
plotGoldenGate4OPA, 10, 13, 17, 22, 33
plotQC, 22, 23
plotQC, QCIIllumina-method (QCIIllumina-class), 25
polar2RG (PolarTransforms), 24
PolarTransforms, 24
prepareGenomePlot, 12
QC.260 (Illumina Genomic data), 16
QCaccessors, 25
QCIIllumina, 5
QCIIllumina (QCIIllumina-class), 25
QCIIllumina-class, 25
quantsmooth, 11, 12
read.SnpSetIllumina, 7, 13, 26, 31, 32
readIllumina, 27, 28
removeLowQualityProbes, 28
removeLowQualitySamples, 29
renameOPA, 30
reportChromosomeGainLossLOH, 21
reportChromosomeGainLossLOH (GenomicReports), 11
reportChromosomesSmoothCopyNumber, 21
reportChromosomesSmoothCopyNumber (GenomicReports), 11
reportGenomeGainLossLOH (GenomicReports), 11
reportGenomeIntensityPlot (GenomicReports), 11
reportGenotypeSegmentation, 30
reportSamplePanelQC, 5, 22, 24
reportSamplePanelQC
 (reportSamplePanelQC-methods), 31
reportSamplePanelQC,QCIIllumina-method
 (reportSamplePanelQC-methods), 31
reportSamplePanelQC-methods, 31
reportSamplesSmoothCopyNumber, 21
reportSamplesSmoothCopyNumber
 (GenomicReports), 11
RG2polar (PolarTransforms), 24
Sample_Map2Samplesheet, 28, 31
segmentate, 9, 10, 17, 23, 32, 33, 37
setRealCN, 3, 33
smoothed.intensity, 33
SnpSetIllumina, 19, 21, 34, 36
SnpSetIllumina-class (SnpSetIllumina), 34
SnpSetSegments-class, 36
sortGenomic (SnpSetIllumina), 34
sortGenomic, SnpSetIllumina-method
 (SnpSetIllumina), 34
standardNormalization, 37
Versioned, 36
VersionedBiobase, 36