Package ‘biosigner’
December 21, 2016

Type Package
Title Signature discovery from omics data
Version 1.2.4
Date 2016-11-05
Author Philippe Rinaudo <phd.rinaudo@gmail.com>, Etienne Thevenot
 <etienne.thevenot@cea.fr>
Maintainer Philippe Rinaudo <phd.rinaudo@gmail.com>, Etienne Thevenot
 <etienne.thevenot@cea.fr>
biocViews Classification, FeatureExtraction, Transcriptomics,
 Proteomics, Metabolomics, Lipidomics
Description Feature selection is critical in omics data analysis to extract
 restricted and meaningful molecular signatures from complex and high-dimension
 data, and to build robust classifiers. This package implements a new method to
 assess the relevance of the variables for the prediction performances of the
 classifier. The approach can be run in parallel with the PLS-DA, Random Forest,
 and SVM binary classifiers. The signatures and the corresponding 'restricted'
 models are returned, enabling future predictions on new datasets. A Galaxy
 implementation of the package is available within the Workflow4metabolomics.org
 online infrastructure for computational metabolomics.
Imports methods, e1071, randomForest, ropls, Biobase
Suggests BioMark, RUnit, BiocGenerics, BiocStyle, golubEsets,
 hu6800.db, knitr, rmarkdown
VignetteBuilder knitr
License CeCILL
LazyLoad yes
NeedsCompilation no
RoxygenNote 5.0.1

R topics documented:

biosigner-package .. 2
biosign ... 3
biosign-class .. 4
diaplasma ... 6
biosigner-package

Molecular signature discovery from omics data

Description

Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a new method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding ‘restricted’ models are returned, enabling future predictions on new datasets. A Galaxy implementation of the package is available within the Workflow4metabolomics.org online infrastructure for computational metabolomics.

Author(s)

Philippe Rinaudo <phd.rinaudo@gmail.com> and Etienne Thevenot <etienne.thevenot@cea.fr>. Maintainer: Philippe Rinaudo <phd.rinaudo@gmail.com>

Examples

```r
## loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example

featureSelV1 <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500

dataMatrix <- dataMatrix[, featureSelV1]
variableMetadata <- variableMetadata[featureSelV1, ]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

detach(diaplasma)
```
biosign

Builds the molecular signature.

Description
Main function of the 'biosigner' package. For each of the available classifiers (PLS-DA, Random Forest, and SVM), the significant features are selected and the corresponding models are built.

Usage
biosign(x, ...)
S4 method for signature 'ExpressionSet'
biosign(x, y, ...)
S4 method for signature 'data.frame'
biosign(x, ...)
S4 method for signature 'matrix'
biosign(x, y, methodVc = c("all", "plsda", "randomforest", "svm")[[1]], bootI = 50, pvalN = 0.05, permI = 1, fixRankL = FALSE, printL = TRUE, plotL = TRUE, .sinkC = NULL, ...)

Arguments
x Numerical data frame or matrix (observations x variables), or ExpressionSet object with non empty assayData and phenoData; NAs are allowed for PLS-DA but for SVM, samples with NA will be removed
... Currently not used.
y Two-level factor corresponding to the class labels, or a character indicating the name of the column of the pData to be used, when x is an ExpressionSet object
methodVc Character vector: Either one or all of the following classifiers: Partial Least Squares Discriminant Analysis (‘plsda’), or Random Forest (‘randomforest’), or Support Vector Machine (‘svm’)
bootI Integer: Number of bootstaps for resampling
pvalN Numeric: To speed up the selection, only variables which significantly improve the model up to two times this threshold (to take into account potential fluctuations) are computed
permI Integer: Random permutation are used to assess the significance of each new variable included into the model (forward selection)
fixRankL Logical: Should the initial ranking be computed with the full model only, or as the median of the ranks from the models built on the sampled dataset?
printL Logical: Should informations regarding the data set and the model be printed? [default = TRUE]
plotL Logical: Should the 'summary' plot be displayed? [default = TRUE]
.sinkC Character: Name of the file for R output diversion [default = NULL: no diversion]; Diversion of messages is required for the integration into Galaxy
Value

An S4 object of class 'biosign' containing the following slots: 1) 'methodVc' character vector: selected classifier(s) ('plsda', 'randomforest', and/or 'svm'), 2) 'accuracyMN' numeric matrix: balanced accuracies for the full models, and the models restricted to the 'S' and 'AS' signatures (predictions are obtained by using the resampling scheme selected with the 'bootI' and 'crossvalI' arguments), 3) 'tierMC' character matrix: contains the tier ('S', 'A', 'B', 'C', 'D', or 'E') of each feature for each classifier (features with tier 'S' have been found significant in all backward selections; features with tier 'A' have been found significant in all but the last selection, and so on), 4) modelLs list: selected classifier(s) trained on the subset restricted to the 'S' features, 5) signatureLs list: 'S' signatures for each classifier; and 6) 'AS' list: 'AS' signatures and corresponding trained classifiers, in addition to the dataset restricted to tiers 'S' and 'A' ('xMN') and the labels ('yFc')

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

See Also

predict.biosign, plot.biosign

Examples

```r
## loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl, ]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)
detach(diaplasma)
```

biosign-class

Class "biosign"

Description

The biosigner object class
Slots

- `methodVc` character vector: selected classifier(s) (‘plsd’, ‘randomforest’, or ‘svm’)
- `accuracyMN` numeric matrix: balanced accuracies for the full models, and the models restricted to the ‘S’ and ‘AS’ signatures
- `yFc` factor with two levels: response factor
- `modelLs` list: selected classifier(s) trained on the subset restricted to the ‘S’ features
- `signatureLs` list: ‘S’ signatures for each classifier
- `xSubMN` matrix: dataset restricted to the ‘S’ tier
- `AS` list: ‘AS’ signatures and corresponding trained classifiers, in addition to the dataset restricted to tiers ‘S’ and ‘A’ (‘xMN’) and the labels (‘yFc’)

Objects from the Class

Objects can be created by calls of the form `new("biosign", ...)` or by calling the `biosign` function

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

See Also

`biosign`

Examples

```r
## loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl, ]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

detach(diaplasma)
```
Description

Plasma samples from 69 diabetic patients were analyzed by reversed-phase liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap Exactive) in the negative ionization mode. The raw data were pre-processed with XCMS and CAMERA (5,501 features), corrected for signal drift, log10 transformed, and annotated with an in-house spectral database. The patient’s age, body mass index, and diabetic type are recorded. These three clinical covariates are strongly associated, most of the type II patients being older and with a higher bmi than the type I individuals.

Format

A list with the following elements:

- `dataMatrix`: a 69 samples x 5,501 features matrix of numeric type corresponding to the intensity profiles (values have been log10-transformed),
- `sampleMetadata`: a 69 x 3 data frame, with the patients’ diabetic type (`'type'`, factor), age (`'age'`, numeric), and body mass index (`'bmi'`, numeric),
- `variableMetadata`: a 5,501 x 8 data frame, with the median m/z (`'mzmed'`, numeric) and the median retention time in seconds (`'rtmed'`, numeric) from XCMS, the 'isotopes' (character), 'adduct' (character) and 'pcgroups' (numeric) annotations from CAMERA, and the names of the m/z and RT matching compounds from an in-house database of pure spectra from commercial metabolites (`'spiDb'`, character).

Value

List containing the `dataMatrix` matrix (numeric) of data (samples as rows, variables as columns), the `sampleMetadata` data frame of sample metadata, and the `variableMetadata` data frame of variable metadata. Row names of `dataMatrix` and `sampleMetadata` are identical. Column names of `dataMatrix` are identical to row names of `variableMetadata`. For details see the 'Format' section above.

Source

'diaplasma' dataset.

References

getAccuracyMN

getAccuracyMN

Accuracies of the full model and the models restricted to the signatures

Description

Balanced accuracies for the full models, and the models restricted to the 'S' and 'AS' signatures

Usage

getAccuracyMN(object, ...)

S4 method for signature 'biosign'
getAccuracyMN(object)

Arguments

object
An S4 object of class biosign, created by the biosign function.

... Currently not used.

Value

A numeric matrix containing the balanced accuracies for the full models, and the models restricted to the 'S' and 'AS' signatures (predictions are obtained by using the resampling scheme selected with the 'bootI' and 'crossvalI' arguments)

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl,]

signature selection for all 3 classifiers
a bootI = 5 number of bootstraps is used for this example
we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

individual boxplot of the selected signatures
getAccuracyMN(diaSign)
getSignatureLs

Description
List of 'S' (or 'S' and 'A') signatures for each classifier.

Usage

```r
getSignatureLs(object, tierC = c("S", "AS")[[1]], ...)
```

S4 method for signature 'biosign'

`getSignatureLs(object, tierC = c("S", "AS")[[1]])`

Arguments

- **object**: An S4 object of class `biosign`, created by the `biosign` function.
- **tierC**: Character: defines whether signatures from the 'S' tier only (default) or the ('S' and 'A') tiers should be returned.
- **...**: Currently not used.

Value
List of 'S' (or 'S' and 'A') signatures for each classifier.

Author(s)
Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

```r
## loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl, ]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)
```
individual boxplot of the selected signatures

getSignatureLs(diaSign)
detach(diaplasma)

plot, biosign-method
Plot method for 'biosign' signature objects

Description

Displays classifier tiers or individual boxplots from selected features

Usage

```r
## S4 method for signature 'biosign'
plot(x, y, tierMaxC = "S", typeC = c("tier", "boxplot")[[1]], file.pdfC = NULL, .sinkC = NULL, ...)
```

Arguments

- `x` An S4 object of class biosign, created by the biosign function.
- `y` Currently not used.
- `tierMaxC` Character: Maximum level of tiers to display: Either 'S' and 'A', (for boxplot), or also 'B', 'C', 'D', and 'E' (for tiers) by decreasing number of selections
- `typeC` Character: Plot type; either 'tier' [default] displaying the comparison of signatures up to the selected 'tierMaxC' or 'boxplot' showing the individual boxplots of the features selected by all the classifiers
- `file.pdfC` Character: Figure filename ending with '.pdf'; default is NULL (no saving; displaying instead)
- `.sinkC` Character: Name of the file for R output diversion [default = NULL: no diversion]; Diversion of messages is required for the integration into Galaxy
- `...` Currently not used.

Value

A plot is created on the current graphics device.

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)
Examples

```r
## loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl, ]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

## individual boxplot of the selected signatures
plot(diaSign, typeC = "boxplot")
detach(diaplasma)
```

predict, biosign-method

Predict method for 'biosign' signature objects

Description

This function predicts values based upon biosign classifiers trained on the 'S' signature

Usage

```r
## S4 method for signature 'biosign'
predict(object, newdata, tierMaxC = "S", ...)
```

Arguments

- **object**
 An S4 object of class biosign, created by biosign function.

- **newdata**
 Either a data frame or a matrix, containing numeric columns only, with column names identical to the 'x' used for model training with 'biosign'.

- **tierMaxC**
 Character: Maximum level of tiers to display: Either 'S' or 'A'.

- **...**
 Currently not used.

Value

Data frame with the predictions for each classifier as factor columns.
Examples

```r
## loading the diaplasma dataset
data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example
featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelVl]
variableMetadata <- variableMetadata[featureSelVl, ]

## training the classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes
set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)

## fitted values (for the subsets restricted to the 'S' signatures)
sFitDF <- predict(diaSign)

## confusion tables
print(lapply(sFitDF, function(predFc) table(actual = sampleMetadata[, "type"], predicted = predFc)))

## balanced accuracies
sapply(sFitDF, function(predFc) { conf <- table(sampleMetadata[, "type"], predFc)
conf <- sweep(conf, 1, rowSums(conf), "/")
mean(diag(conf))
})

## note that these values are slightly different from the accuracies
## returned by biosign because the latter are computed by using the 
## resampling scheme selected by the bootI or crossvalI arguments
getAccuracyMN(diaSign)["S", ]

detach(diaplasma)
```

show, biosign-method

Show method for 'biosign' signature objects

Description

Prints the selected features and the accuracies of the classifiers.
show.biosign-method

Usage

```r
## S4 method for signature 'biosign'
show(object)
```

Arguments

- **object**: An S4 object of class `biosign`, created by the `biosign` function.

Value

Invisible.

Author(s)

Philippe Rinaudo and Etienne Thevenot (CEA)

Examples

```r
## loading the diaplasma dataset

data(diaplasma)
attach(diaplasma)

## restricting to a smaller dataset for this example

featureSelV1 <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500
dataMatrix <- dataMatrix[, featureSelV1]
variableMetadata <- variableMetadata[featureSelV1,]

## signature selection for all 3 classifiers
## a bootI = 5 number of bootstraps is used for this example
## we recommend to keep the default bootI = 50 value for your analyzes

set.seed(123)
diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5)
diaSign
detach(diaplasma)
```
Index

*Topic **datasets***
 diaplasma, 6

*Topic **package***
 biosigner-package, 2

 biosign, 3, 5
 biosign, data.frame-method (biosign), 3
 biosign, ExpressionSet-method (biosign), 3
 biosign, matrix-method (biosign), 3
 biosign-class, 4
 biosigner (biosigner-package), 2
 biosigner-package, 2

 diaplasma, 6

 getAccuracyMN, 7
 getAccuracyMN, biosign-method (getAccuracyMN), 7
 getSignatureLs, 8
 getSignatureLs, biosign-method (getSignatureLs), 8

 plot, biosign-method, 9
 plot.biosign, 4
 plot.biosign (plot, biosign-method), 9
 predict, biosign-method, 10
 predict.biosign, 4
 predict.biosign (predict, biosign-method), 10

 show, biosign-method, 11
 show.biosign (show, biosign-method), 11