Package ‘birte’

November 20, 2016

Version 1.10.0
Date 2015-06-16
Title Bayesian Inference of Regulatory Influence on Expression (biRte)
Author Holger Froehlich, contributions by Benedikt Zacher
Maintainer Holger Froehlich <frohlich@bit.uni-bonn.de>
Depends R(>= 3.0.0), RcppArmadillo (>= 0.3.6.1), Rcpp
Imports MASS, limma(>= 3.22.0), glmnet, Biobase, nem, graphics, stats, utils
Reference H. Froehlich, biRte: Bayesian Inference of Context Specific Regulator Activities and Transcriptional Networks, Bioinformatics, 2015, in press.
Suggests knitr
Enhances Rgraphviz
LinkingTo RcppArmadillo, Rcpp
NeedsCompilation yes
SystemRequirements BLAS, LAPACK
Materials Please enable BLAS and LAPACK for armadillo library (see http://arma.sourceforge.net/faq.html). The file config.hpp can be found under library/RcppArmadillo/include/armadillo_bits.
Description Expression levels of mRNA molecules are regulated by different processes, comprising inhibition or activation by transcription factors and post-transcriptional degradation by microRNAs. biRte uses regulatory networks of TFs, miRNAs and possibly other factors, together with mRNA, miRNA and other available expression data to predict the relative influence of a regulator on the expression of its target genes. Inference is done in a Bayesian modeling framework using Markov-Chain-Monte-Carlo. A special feature is the possibility for follow-up network reverse engineering between active regulators.
License GPL (>= 2)
biocViews Microarray, Sequencing, GeneExpression, Transcription, Network, Bayesian, Regression, NetworkInference
LazyLoad yes
VignetteBuilder knitr
Description

Given a most likely configuration of active regulators identified by biRte, this method fits a conventional ridge regression model to explain gene expression. This function is required, if one would like to use MAP based prediction of gene expression instead of Bayesian predictions (see `birtePredict`). To fit the ridge regression model the R-package `ridge` is employed, which provides an efficient tuning of the regularization hyperparameter.

Usage

```r
birteFitRidge(model, mRNA.train, ref.cond=1)
```

Arguments

- `model`: output of `birteRun`
- `mRNA.train`: vector of gene expression values
- `ref.cond`: condition to consider

Details

In order to make predictions with the fitted ridge regression model (`birtePredict`) store it into a slot "fit.ridge" of the object returned by `birteRun` and `birteLimma`, respectively.

Value

an object of class "cv.glmnet" (see `cv.glmnet`)

Author(s)

Holger Froehlich
birtePredict

Examples

artificial data
data(humanNetworkSimul)
sim = simulateData(affinities2)
limmamRNA = limmaAnalysis(sim$dat.mRNA, design=NULL, "treated - control")

burnin and sampling size is much too small in reality
result = birteLimma(dat.mRNA=sim$dat.mRNA, data.regulators=NULL,
limmamRNA=limmamRNA,
affinities=affinities2, niter=100, nburnin=100, thin=2)
fit.ridge = birteFitRidge(result, sim$dat.mRNA[,1])

birtePredict

Prediction of gene expression via biRte.

Description

Given a biRte model, this function makes posterior inference about gene expression data.

Usage

birtePredict(model, test.genes, method=c("Bayes", "MAP"), knock.out=NULL)

Arguments

model output of birteRun

test.genes Set of gene IDs. Gene IDs should be contained into the defined regulator-target
gene network. Note that expression data is generally not required to be available
for these genes.

method Bayes: estimate expectation of posterior predictive distribution. MAP: Use pre-
viously fitted ridge regression model (birteFitRidge), which has to be stored
into a slot "fit.ridge".

knock.out optionally: A character vector of those regulators, which should be removed
from the network before making predictions, hence simulating a knock.out

Value

#conditions x #replicates matrix containing data.frame objects with

gene gene, for which predictions are made

mean expected expression

sd SD of predictions (only for method="Bayes")

Author(s)

Holger Froehlich
Examples

```r
# artificial data
data(humanNetworkSimul)
sim = simulateData(affinities2)
limmamRNA = limmaAnalysis(sim$dat.mRNA, design=NULL, "treated - control")

# burnin and sampling size is much too small in reality
result = birteLimma(dat.mRNA=sim$dat.mRNA, data.regulators=NULL, limmamRNA=limmamRNA, affinities=affinities2, niter=100, nburnin=100, thin=2)
est = birtePredict(result, rownames(sim$dat.mRNA))
```

birteRun

Main interface for Bayesian Inference of Regulatory Influence on Expression (biRte).

Description

The function estimates regulator activities via MCMC sampling. The function assumes experimental data of two conditions to be given. If desired, influences on mRNA log fold changes can be estimated rather than on expression levels itself.

Besides miRNA, mRNA and TF expression data, biRte also allows to integrate other data types (e.g. CNV data - data type 'other').

birteLimma is a convenience function, which allows to directly pass results from a previous limma analysis (see `limmaAnalysis`) to birteRun. When working with relative expression levels (log fold changes) birteLimma allows to deal with arbitrary complex statistical designs, including e.g. time as a covariate.

Usage

```r
birteRun(dat.mRNA, mRNA.Sigma=NULL, nrep.mRNA=c(5, 5),
df.mRNA=sum(nrep.mRNA)-2,
data.regulators=NULL, sigma.regulators=NULL,
nrep.regulators=NULL, diff.regulators=NULL,
init.regulators=NULL, theta.regulators=NULL,
reg.interactions=FALSE, affinities, use.affinities=FALSE,
niter=100000, nburnin=100000, thin=50,
potential_swaps=NULL, only_switches=FALSE, only.diff.TFs=TRUE,
explain.LFC=TRUE, model=c("no-plug-in", "all-plug-in"))
```

```r
birteLimma(dat.mRNA, limmamRNA,
data.regulators=NULL, limma.regulators=NULL,
fdr.regulators=NULL, lfc.regulators=NULL,
init.regulators=NULL, theta.regulators=NULL,
reg.interactions=FALSE, affinities, use.affinities=FALSE,
niter=100000, nburnin=100000, thin=50,
potential_swaps=NULL, only_switches=FALSE, only.diff.TFs=TRUE,
explain.LFC=TRUE, model=c("no-plug-in", "all-plug-in"))
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat.mRNA</td>
<td>mRNA expression data matrix. IMPORTANT: Replicates must be ordered according to nrep.mRNA</td>
</tr>
<tr>
<td>mRNA.Sigma</td>
<td>gene expression variances (array data). IMPORTANT: Names have to match the row names in dat.mRNA. If mRNA.Sigma = NULL, birte.run tries to deduce variances from a limma analysis (see <code>limmaAnalysis</code>)</td>
</tr>
<tr>
<td>nrep.mRNA</td>
<td>number of replicates per condition.</td>
</tr>
<tr>
<td>df.mRNA</td>
<td>residual degrees of freedom of linear model for mRNA data.</td>
</tr>
<tr>
<td>data.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). Each component contains one data matrix. IMPORTANT: Samples in data matrices have to be grouped according to conditions. That means first there are all samples from the first condition, then those from the second condition, etc.</td>
</tr>
<tr>
<td>sigma.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). Each component contains one named vector of expression variances (array data) or dispersion parameters (RNAseq data). IMPORTANT: Names have to fit to the row names of the data matrix.</td>
</tr>
<tr>
<td>nrep.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). Each component contains the number of replicates per condition</td>
</tr>
<tr>
<td>diff.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). Each component is a character vector with differentially expressed regulators. Has to be subset of row names of the data matrix</td>
</tr>
<tr>
<td>init.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). Each component is a matrix of #conditions x length(affinities[[regulator type]]): initial states for regulators. In case this matrix is not provided (i.e. NULL) initial states are assumed to be 0. IMPORTANT: column names have to match names(affinities[[regulator type]])</td>
</tr>
<tr>
<td>theta.regulators</td>
<td>list with at most 3 components (miRNA, TF, other). If single numbers are provided, each component contains the expected fraction of active regulators. If vectors are provided, each vector entry corresponds to the individual probability of a specific regulator to be active. Accordingly, vectors should be named in agreement with the regulator-target gene network. If affinities$other corresponds to interaction terms between regulators, theta.regulators can also be provided as a #regulators x #regulators matrix.</td>
</tr>
<tr>
<td>reg.interactions</td>
<td>If TRUE, entries of affinities$other are interpreted as interaction terms between regulators.</td>
</tr>
<tr>
<td>affinities</td>
<td>Regulator-target gene interactions. This is a list with at most three components (TF, miRNA, other). Each of these lists again contains a weighted adjacency list representation. See <code>humanNetworkSimul</code> for an example. IMPORTANT: gene names used in this network have to match with row names of dat.mRNA. Moreover, regulator names have to fit to row names of the corresponding data matrices.</td>
</tr>
<tr>
<td>use.affinities</td>
<td>Should weights given in the bipartite regulator-target gene graph given a specific meaning? If yes, it is assumed that weights correspond to quantitative influences of regulators on their targets.</td>
</tr>
</tbody>
</table>
birteRun

niter
Number of MCMC iterations (AFTER burnin).

nburnin
Number of MCMC iterations UNTIL burnin is assumed to be finished.

thin
Thinning of Markov chain: only use every thin’s sample for posterior computation.

potential_swaps
Pre-computed potential swaps (OPTIONAL, see get_potential_swaps).

only_switches
Should only switches be performed?

only.diff.TFs
Should, in case of TF expression data, only the information for differentially expressed TFs be considered? Note that this makes fewer assumption about the relation of mRNA and protein expression data, but typically leads to less conservative results (i.e. more TFs predicted to be active).

limmamRNA
results of limma analysis for mRNA data according to `limmaAnalysis`

limma.regulators
list with at most 3 components (miRNA, TF, other). Each component contains the results of a limma analysis for regulator data according to `limmaAnalysis`

lfc.regulators
list with at most 3 components (miRNA, TF, other). Each component contains the log fold change cutoff for differential expression. It is assumed to be 0, if not provided.

fdr.regulators
list with at most 3 components (miRNA, TF, other). Each component contains the FDR cutoff for differential expression (DEFAULT: 0.05).

explain.LFC
If yes, biRte tries to explain mRNA log fold changes rather than expression levels itself.

model
If "no-plug-in", for marginal log likelihoods are considered for regulator specific expression data. Otherwise, (posterior) variance estimates are used directly.

Value

The function returns a list containing the following entries:

post
#regulators x #conditions matrix containing the marginal probability for each regulator to influence mRNA expression.

map
#regulators x #conditions matrix containing the regulator configuration with highest joint probability.

coef
matrix of #conditions x #replicates: Each entry is itself a matrix (embedded into a list) of #coefficients x #effective samples. The data contains the expected regression coefficients.

log_lik_trace
(Marginal) log-likelihood trace of MCMC sampling.

eff_sample_size
effective sample size after burnin and thinning

contains.interactions
TRUE, if affinities$other corresponds to interaction terms between regulators, FALSE otherwise

explain.LFC
TRUE, if model explains mRNA log fold change, FALSE otherwise

nburnin
number of burnin iterations - as provided as an argument

affinities
original regulator-target gene network

C_cnt
number of conditions

design
design matrix effectively used for model training

param
estimated parameters for mRNA precision (i.e. inverse variance) distribution
Author(s)

Holger Froehlich

Examples

artificial data
data(humanNetworkSimul)
sim = simulateData(affinities2)
limmamRNA = limmaAnalysis(sim$dat.mRNA, design=NULL, "treated - control")
limmamiRNA = limmaAnalysis(sim$dat.miRNA, design=NULL, "treated - control")
limmaTF = limmaAnalysis(sim$dat.TF, design=NULL, "treated - control")

burnin and sampling size is much too small in reality
result = birteLimma(dat.mRNA=sim$dat.mRNA,
data.regulators=list(miRNA=sim$dat.miRNA, TF=sim$dat.TF),
limmamRNA=limmamRNA, limma.regulators=list(miRNA=limmamiRNA, TF=limmaTF),
affinities=affinities2, niter=100, nburnin=100, thin=2)
plotConvergence(result)
pred = birtePredict(result, rownames(sim$dat.mRNA))
MSE.Bayes = mean((pred[[1]][[1]]$mean - limmamRNA$pvalue.tab[rownames(sim$dat.mRNA),"logFC"]^2)
MSE.Bayes

real data
library(Biobase)
data(EColiOxygen)

prepare network
affinities = list(TF=sapply(names(EColiNetwork$TF), function(tf){
 w = rep(1, length(EColiNetwork$TF[[tf]]));
names(w)= EColiNetwork$TF[[tf]]; w}))

prepare data
mydat = exprs(EColiOxygen)
colnames(mydat) = make.names(pData(EColiOxygen)$GenotypeVariation,
pData(EColiOxygen)$GrowthProtocol, sep=".")
mydat = cbind(mydat[,colnames(mydat) == "wild.type.aerobic"],
exprs(EColiOxygen)[,colnames(mydat) == "wild.type.anaerobic"])

more realistic sampling
Not run:
result = birteRun(dat.mRNA=mydat,
nrep.mRNA=c(3,4), affinities=affinities, niter=10000, nburnin=10000)
plotConvergence(result)
End(Not run)

Description

This list contains the TF-target graph used in the vignette.

Usage

EColiNetwork
Format
A list containing the target gene sets of 160 TFs.

Value
A list containing the target gene sets of 160 TFs.

Source
This TF-target graph was taken from (R. Castelo and A. Roverato, 2009). It is a pre-filtered version of RegulonDB 6.1.

References

EColiOxygen

Example data set from E. Coli to sample TF activities.

Description
This data set gives expression values for three experiments of the E. Coli K12 strain under aerobic and three experiments under anaerobic growth. It is used in the vignette to illustrate application of birta to TFs only.

Usage
EColiOxygen

Format
ExpressionSet

Value
ExpressionSet

Source
The original data comes from (Covert et al., 2004) The normalized data set used here is taken from the qpgraph package by R. Castelo and A. Roverato.

References
estimateNetwork

Estimate network between active regulators using Nested Effects Models (NEMs).

Description

Given a biRte model, this function makes posterior inference about possible upstream-downstream relationships between active regulators. This is done based on observed differential expression of putative target genes. The idea is that regulator A acts upstream of regulator B, if differentially expressed targets of B are a subset of those of A.

Usage

```r
estimateNetwork(model, thresh=0.1, select=c("marginal", "MAP"), method="pairwise", de.genes, bootstrap=0, typeII=0.1)
```

Arguments

- `model`
 biRte model
- `thresh`
 cutoff for marginal posterior probabilities
- `select`
 "marginal": select regulators based on marginal posterior probabilities; "MAP": select regulators based on MAP configuration
- `method`
 algorithm used for NEM based network inference, see `nem`
- `de.genes`
 set of differentially expressed genes
- `bootstrap`
 optional: number of bootstrap replicates to draw (non-parameteric bootstrap)
- `typeII`
 assumed type-II error rate

Value

nem-model

Author(s)

Holger Froehlich

Examples

```r
# see vignette
```
getPotentialSwaps Calculate swap partner for TF-/miRNA-target graph. This function is usually only called internally, but may be used to speed up repetitive calls to `birteRun`.

Description

Calculates for TF-/miRNA-target graph all potential swap partner.

Usage

```r
getPotentialSwaps(genesets, perc.overlap.cutoff=0.8, integer.id=TRUE)
```

Arguments

- `genesets`: Each entry corresponds to a regulator (miRNA, TF, other) and contains its target genes.
- `perc.overlap.cutoff`: Percentage cutoff of minimal overlap between two miRNAs or TFs to be possible swap partner.
- `integer.id`: If TRUE, the swap partner are not output as characters, but as integer indices.

Value

A list object, where each element corresponds to one regulator.

Author(s)

Holger Froehlich

Examples

```r
# artificial data
data(humanNetworkSimul)
genesets = c(sapply(affinities2$TF, names),
             sapply(affinities2$miRNA, names), sapply(affinities2$other, names))
swaps = getPotentialSwaps(genesets)
```

humanNetworkSimul Subset of regulator-target gene network for human

Description

The human regulatory network was constructed as follows: For miRNA target gene prediction we used MiRmap (Vejnar and Zdobnov, 2012) and converted the reported scores into z-scores. P-values were then calculated based on the observed approximate normality of z-scores under the null hypothesis and corrected for multiple testing via the FDR method under dependencies of tests (Benjamini and Yekutieli, 2001). In consequence we arrived at 356 miRNAs regulating between 1 and 318 target genes (median: 5).
A TF-target gene network was compiled by computing TF binding affinities to promoter sequences of all human genes according to the TRAP model (Roider et al., 2007) via the author’s R implementation. Upstream sequences of genes were retrieved here from the ENSEMBL database via biomaRt (Durinck et al., 2009). We assumed that promoter sequences were located in the range 0 - 2Kbp upstream to the transcription start site of a gene. 556 TRANSFAC (Wingender, 2008; public version) as well as 130 JASPAR (Bryne et al., 2008; accessed Dec. 2011) TFBS matrices were used. As significant we considered those TFBS, for which a FDR < 5% was reported (Benjamini-Yekutieli method).

In a subsequent step from each significant TFBS we extracted the set of TFs, for which the corresponding TFBS matrix had been defined by parsing the original TRANSFAC and JASPAR files, respectively. Ambiguities were corrected via manual curation with the help of the commercial MetaCore software. In consequence we arrived at a TF-target gene network of 344 TFs regulating between 1 and 19,392 target genes (median: 155).

For simulation purposes we randomly selected subset of 999 human genes together with the set of corresponding regulators. After network simplification (simplify) we arrived at 13 miRNA and 111 TF clusters.

Usage

humanNetworkSimul

Format

affinities2 TF and miRNA target gene network. For miRNAs scores from z-scores derived from MiRmap are reported. For TFs -log10(p-values).

details

• affinities2
 – TFTF-target gene graph – list object
 – miRNAmiRNA-target gene graph – list object

Both, the TF-target and the miRNA target gene graphs are given in form of a weighted adjacency list representation.

Value

see above

Note

The object ’affinities2’ may be extended by one further component ’other’ containing additional regulatory information (e.g. CNVs, predefined interaction terms between regulators).

References

limmaAnalysis

Simple limma analysis on expression data with one contrast.

Description

This is a convenience function, which can be used to perform a limma analysis with one contrast. Subsequently results may be passed to `birteLimma`.

Usage

```r
limmaAnalysis(dat, design=NULL, contrast)
```

Arguments

dat
A matrix or ExpressionSet containing the expression values.

design
A design matrix. If no design matrix is provided, the method tries to infer a design matrix by taking column names as a factor. That means the design matrix is constructed according to ~0 + factor(colnames(dat)).

contrast
Contrast for the linear model. Currently only one contrast is supported. If more contrasts are desired separate biRte analyses should be run for each of them.

Value

Returns a list containing the following entries:

- `pvalue.tab`
 Containing the result of the `topTable` function from limma.

- `lm.fit`
 Linear fit to the model, i.e. output of function `eBayes`.

- `design`
 The design used.

- `contrast`
 The contrasts used.

Author(s)

Holger Froehlich

References

Examples

```r
# see birte.run
```
plotConvergence

Plot the marginal log-likelihood of the model along MCMC samples (after thinning).

Description
Plot the marginal log-likelihood of the model along MCMC samples (after thinning).

Usage
plotConvergence(res, title="")

Arguments
- res: The output of birte.run (a list object).
- title: Optional title of the plot.

Value
none

Author(s)
Holger Froehlich

See Also
birteRun

Examples
see birteRun

proposeInteractions
Propose possible regulator-regulator interactions that could be worthwhile to be tested into the biRtE model.

Description
The purpose is to identify interesting interactions terms for our model. Assuming the design matrix
to be binary, the interaction term between two variables X1 and X2 is 1, if X1=1 AND X2=1 (zero,
otherwise). The function computes the relative overlap between all pairs of variables X1 and X2
via the Tanimoto-Jaccard index. Variable pairs with cutoff.lower < Tanimoto-Jaccard < cutoff.upper
are considered interesting candidates.

Usage
proposeInteractions(affinities, cutoff.lower=0.1, cutoff.upper=0.8)
simplify

Arguments

affinities original regulator-target gene network
cutoff.lower lower range for Tanimoto-Jaccard index
cutoff.upper upper range for Tanimoto-Jaccard index

Value

A list of the same format as affinities$TF and affinities$miRNA: Each list entry corresponds to the intersection of two target gene sets.

Author(s)

Holger Froehlich

Examples

artificial data
data(humanNetworkSimul)
affinities.int = proposeInteractions(affinities2)

simplify(affinities, cutoff=0.9)

Description

Several regulators (specifically TFs) might have extremely overlapping target genes. In order to identify clusters of highly similar regulators (mainly TFs) we implemented a network simplification algorithm in biRte: We construct the biadjacency matrix of the complete bipartite regulator target-gene graph and then calculate a single linkage clustering of regulators based on the Tanimoto-Jaccard similarity of their target genes. The dendrogram is cut at a defined height (default: 0.1) to identify resulting groups. The algorithm is meant to simplify the inference of active regulators, because the resulting regulator clusters have more dissimilar target gene profiles.

Usage

simplify(affinities, cutoff=0.9)

Arguments

affinities original regulator-target gene network
cutoff cut dendrogram at height 1 - cutoff (i.e. similarity cutoff)

Value

clustered / simplified network

Author(s)

Holger Froehlich
simulateData

Examples

artificial data
data(humanNetworkSimul)
affinities2 = simplify(affinities2)

simulateData

Simulate expression data.

Description

The function draws expression data from a multivariate normal distribution with block structured
covariance matrix. First, data is drawn for a control condition (no active regulators). Then data is
generated for the situation that a certain fraction of regulators is turned 'on' (treatment condition).
Regulator activity states are sampled from a Bernoulli distribution.

Usage

simulateData(affinities, nrep = 5, miRNAExpressions = TRUE, fn.targets = 0.1,
fp.targets = 0.2, exp.nTF = 5, exp.nmiR = 5, exp.interact = 5)

Arguments

affinities regulator-target gene network (see humanNetworkSimul)
nrep number of replicates per condition
miRNAExpressions Should miRNA expression data be simulated?
fn.targets fraction of false negative target predictions (i.e. missing edges per regulator in
 the bipartite regulator-gene graph)
fp.targets fraction of false positive target predictions
exp.nTF expected number of active TFs
exp.nmiR expected number of active miRNAs
exp.interact expected number of active interaction terms

Details

If active interaction terms should be simulated, a set of possible interaction terms has to be defined
in affinities$other.

Value

dat.mRNA mRNA data – active regulators are expected to induce a log FC of 1
dat.miRNA miRNA data – active miRNAs are expected to show a log FC of 1
dat.TF TF expression data – active miRNAs are expected to show a log FC of 0.5
miRNAstates simulated miRNA activities in treatment condition
TFstates simulated TF activities in treatment condition
inter.states simulated regulator interaction activities in treatment condition
suggestThreshold

Author(s)

Holger Froehlich

Examples

```r
data(humanNetworkSimul)
sim = simulateData(affinities2)
```

Description

The algorithm fits a mixture of a beta(1, beta) and beta(alpha,1) distribution to observed marginal regulator activities. Based on this mixture a cutoff is chosen such that the expected false positive rate is below a defined threshold.

Usage

```r
suggestThreshold(prob, fpr=0.001)
```

Arguments

- `prob`: marginal probability obtained from `birteRun`
- `fpr`: threshold for accepted false positive rate

Value

a cutoff for marginal activity probabilities

Author(s)

Holger Froehlich

References

Examples

```r
dest = 0.2*rbeta(100, 1, 10) + 0.8*rbeta(100, 5, 1)
thresh = suggestThreshold(freq)
```
Description

This data set gives expression values for the 160 TF of the TF-target graph EColiNetwork used in the vignette.

Usage

TFexpr

Format

ExpressionSet. Rownames in the assayData correspond to entries in TF-target graph.

Value

ExpressionSet. Rownames in the assayData correspond to entries in TF-target graph.

Source

See EColiOxygen and EColiNetwork (see reference for details).

References

Index

«Topic datasets
 EColiNetwork, 7
 EColiOxygen, 8
 humanNetworkSimul, 10
 TFexpr, 17

affinities2 (humanNetworkSimul), 10
birteFitRidge, 2, 3
birteLimma, 2, 12
birteLimma (birteRun), 4
birtePredict, 2, 3
birteRun, 2, 3, 4, 10, 13, 16

cv.glmnet, 2

EColiNetwork, 7
EColiOxygen, 8
estimateNetwork, 9

getPotentialSwaps, 10

humanNetworkSimul, 5, 10, 15

limmaAnalysis, 4–6, 12

nem, 9

plotConvergence, 13
proposeInteractions, 13

simplify, 11, 14
simulateData, 15
suggestThreshold, 16

TFexpr, 17