Package ‘cellity’

April 25, 2017

Type Package
Title Quality Control for Single-Cell RNA-seq Data
Version 1.4.0
Date 2016-02-22
Author Tomislav Ilicic, Davis McCarthy
Maintainer Tomislav Ilicic <ti243@cam.ac.uk>
Description A support vector machine approach to identifying and filtering low quality cells from single-cell RNA-seq datasets.
License GPL (>= 2)
Depends R (>= 3.3)
Imports AnnotationDbi, e1071, graphics, grDevices, grid, mvoutlier, org.Hs.eg.db, org.Mm.eg.db, robustbase, stats, topGO, utils
Suggests BiocStyle, caret, knitr, testthat, rmarkdown
VignetteBuilder knitr
LazyData true
biocViews RNASeq, QualityControl, Preprocessing, Normalization, Visualization, DimensionReduction, Transcriptomics, GeneExpression, Sequencing, Software, SupportVectorMachine
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

- cellity-package ... 2
- assess_cell_quality_PCA 2
- assess_cell_quality_SVM 3
- extract_features ... 4
- extra_human_genes 5
- extra_mouse_genes 5
- feature_generation 6
- feature_info .. 6
- mES1_features .. 7
- mES1_labels .. 7
- multiplot ... 8
Description

cellity provides a support vector machine and PCA approaches to identifying and filtering low quality cells from single-cell RNA-seq datasets.

assess_cell_quality_PCA

ASSESS CELL QUALITY USING PCA AND OUTLIER DETECTION

Usage

assess_cell_quality_PCA(features, file = "")

Arguments

features Input dataset containing features (cell x features)
file Output file where plot is saved

Details

This function applies PCA on features and uses outlier detection to determine which cells are low and which are high quality

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

Examples

data(training_mES_features)
training_mES_features_all <- training_mES_features[[1]]
training_quality_PCA_allF <- assess_cell_quality_PCA(training_mES_features_all)
assess_cell_quality_SVM

Assess quality of a cell - SVM version

Description

Assess quality of a cell - SVM version

Usage

assess_cell_quality_SVM(training_set_features, training_set_labels, ensemble_param, test_set_features)

Arguments

training_set_features
 A training set containing features (cells x features) for prediction
training_set_labels
 Annotation of each individual cell if high or low quality (1 or 0 respectively)
ensemble_param
 Dataframe of parameters for SVM
test_set_features
 Dataset to predict containing features (cells x features)

Details

This function takes a training set + annotation to predict a test set. It requires that hyper-parameters have been optimised.

Value

Returns a dataframe indicating which cell is low or high quality (0 or 1 respectively)

data.frame with decision on quality of cells

Examples

data(param_mES_all)
data(training_mES_features)
data(training_mES_labels)
data(mES1_features)
data(mES1_labels)
mES1_features_all <- mES1_features[[1]]
training_mES_features_all <- training_mES_features[[1]]
mES1_quality_SVM <- assess_cell_quality_SVM(training_mES_features_all,
training_mES_labels[,2], param_mES_all, mES1_features_all)
extract_features

extract_features

Extracts biological and technical features for given dataset

Description

Extracts biological and technical features for given dataset

Usage

```r
evaluate_features(counts_nm, read_metrics, prefix = "", output_dir = "", common_features = NULL, GO_terms = NULL, extra_genes = NULL, organism = "mouse")
```

Arguments

- `counts_nm`: Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
- `read_metrics`: Dataframe with mapping statistics produced by python pipeline
- `prefix`: Prefix of output files
- `output_dir`: Output directory of files
- `common_features`: Subset of features that are applicable within one species, but across cell types
- `GO_terms`: DataFrame with gene ontology term IDs, that will be used in feature extraction
- `extra_genes`: Additional genes used for feature extraction
- `organism`: The target organism to generate the features for

Details

This function takes a combination of gene counts and mapping statistics to extract biological and technical features, which than can be used for quality data analysis

Value

a list with two elements, one providing all features, and one providing common features.

Examples

```r
data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))
sample_features <- extract_features(sample_counts_nm, sample_stats)
```
extra_human_genes

Description
This list contains human genes that are used for feature extraction of biological features.

Usage
extra_human_genes

Format
a list containing vectors of genes. Name indicates which GO category.

Value
NULL, but makes available a list with metadata.

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

extra_mouse_genes

Description
This list contains mouse genes that are used for feature extraction of biological features.

Usage
extra_mouse_genes

Format
a list containing vectors of genes. Name indicates which GO category.

Value
NULL, but makes available a list with metadata.

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute
feature_generation
Helper Function to create all features

Description

Helper Function to create all features

Usage

```r
feature_generation(counts_nm, read_metrics, GO_terms, extra_genes, organism)
```

Arguments

- `counts_nm`: Gene expression counts dataframe (genes x cells). Either normalised by library size or TPM values
- `read_metrics`: Dataframe with mapping statistics produced by python pipeline
- `GO_terms`: DataFrame with gene ontology term IDs, that will be used in feature extraction
- `extra_genes`: Additional genes used for feature extraction
- `organism`: The target organism to generate the features for

Value

Returns the entire set of features in a data.frame

feature_info
Information which genes and GO categories should be included as features. Also defines which features are cell-type independent (common features)

Description

This list contains metadata information that is used to extract features from in the function `extract_features`

Usage

```r
feature_info
```

Format

A list with 2 elements (GO_terms, common_features).

Value

NULL, but makes available a list with metadata

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05
mES1_features

Source
Wellcome Trust Sanger Institute

mES1_features
Real test dataset containing all and common features from the paper (mES1)

Description
This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage
mES1_features

Format
a list with 2 elements (all_features, common_features).

Value
NULL, but makes available a list with 2 dataframes

Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

mES1_labels
Real test dataset containing annotation of cells

Description
This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage
mES1_labels

Format
a dataframe with 2 columns (cell_names, label).

Value
NULL, but makes available a dataframe with cell annotations
Author(s)
Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source
Wellcome Trust Sanger Institute

multiplot
Internal multiplot function to combine plots onto a grid

Description
Internal multiplot function to combine plots onto a grid

Usage
multiplot(..., plotlist = NULL, file, cols = 6, layout = NULL)

Arguments

... individual plots to combine into a single plot
plotlist a vector with names of plots to use in the plot
file string giving filename to which pdf of plots is to be saved
cols integer giving number of columns for the plot
layout matrix defining the layout for the plots

Value
a plot object

normalise_by_factor
Internal function to normalize by library size

Description
Internal function to normalize by library size

Usage
normalise_by_factor(counts, norm_factor)

Arguments
counts matrix of counts
norm_factor vector of normalisation factors

Value
a matrix with normalized gene counts
Examples

data(sample_counts)
data(sample_stats)
sample_counts_nm <- normalise_by_factor(sample_counts, colSums(sample_counts))

param_mES_all

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for all features and our training data.

Usage

param_mES_all

Format

a dataframe with 3 columns (gamma, cost, class.weights).

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

param_mES_common

Parameters used for SVM classification

Description

This data frame has 3 columns: gamma, cost, class.weights and is optimised for common features and our training data.

Usage

param_mES_common

Format

a dataframe with 3 columns (gamma, cost, class.weights).
plot_pca

Value

NULL, but makes available a dataframe with parameters

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

plot_pca
Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Description

Plots PCA of all features. Colors high and low quality cells based on outlier detection.

Usage

```r
plot_pca(features, annot, pca, col, output_file)
```

Arguments

- **features**
 Input dataset containing features (cell x features)
- **annot**
 Matrix annotation of each cell
- **pca**
 PCA of features
- **col**
 color code indicating what color high and what low quality cells
- **output_file**
 where plot is stored

Details

This function plots PCA of all features + most informative features

Value

Plots of PCA
sample_counts

Description

This data frame contains genes (rows) and cells (columns) showing raw read counts

Usage

sample_counts

Format

a dataframe with genes x cells

Value

NULL, but makes available a dataframe with raw read counts

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

sample_stats

Description

This data frame contains read metrics (columns) and cells (rows)

Usage

sample_stats

Format

a dataframe with cells x metrics

Value

NULL, but makes available a dataframe with read statistics

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute
simple_cap

Converts all first letters to capital letters

Description

Converts all first letters to capital letters

Usage

simple_cap(x)

Arguments

x string

Value

a character vector in title case

sum_prop

Sums up normalised values of genes to groups.

Description

Supports TPM and proportion of mapped reads.

Usage

sum_prop(counts, genes_interest)

Arguments

counts Normalised gene expression count matrix
genres_interest dataframe of genes of interest to merge

Value

a vector of sums per group
training_mES_features

Original training dataset containing all and common features from the paper (training mES)

Description

This list contains 2 dataframes where each contains features per cell (cell X features) that can be used for classification.

Usage

`training_mES_features`

Format

a list with 2 elements (all_features, common_features).

Value

NULL, but makes available a list with 2 dataframes

Author(s)

Tomislav Ilicic & Davis McCarthy, 2015-03-05

Source

Wellcome Trust Sanger Institute

training_mES_labels

Original training dataset containing annotation of cells

Description

This data frame has 2 columns: First showing cell names, the second indicating if cell is of low (0) or high (1) quality

Usage

`training_mES_labels`

Format

a dataframe with 2 columns (cell_names, label).

Value

NULL, but makes available a dataframe with cell annotations
uni.plot

Description

Internal function to detect outliers from the mvoutlier package Modified slightly so that plots are not printed

Usage

`uni.plot(x, symb = FALSE, quan = 1/2, alpha = 0.025)`

Arguments

- `x` A matrix containing counts
- `symb` Symbols
- `quan` `quan`
- `alpha` `alpha`

Value

a list of outlier indicators
Index

assess_cell_quality_PCA, 2
assess_cell_quality_SVM, 3

cellity-package, 2
extra_human_genes, 5
extra_mouse_genes, 5
extract_features, 4

feature_generation, 6
feature_info, 6

mES1_features, 7
mES1_labels, 7

multiplot, 8

normalise_by_factor, 8

param_mES_all, 9
param_mES_common, 9

plot_pca, 10

sample_counts, 11
sample_stats, 11

simple_cap, 12
sum_prop, 12

training_mES_features, 13
training_mES_labels, 13

uni.plot, 14