Package ‘chimeraviz’

April 25, 2017

Type Package

Title Visualization tools for gene fusions

Version 1.0.0

Description chimeraviz manages data from fusion gene finders and provides useful visualization tools.

License Artistic-2.0

LazyData TRUE

Imports methods, readr, grid, Rsamtools, GenomeInfoDb, GenomicAlignments, RColorBrewer, graphics, AnnotationDbi, RCircos, org.Hs.eg.db, rmarkdown, graph, Rgraphviz, DT, plyr, BiocStyle, ArgumentCheck

Depends Biostrings, GenomicRanges, IRanges, Gviz, S4Vectors, ensembldb, AnnotationFilter

Suggests testthat, roxygen2, devtools, knitr

SystemRequirements bowtie, samtools, and egrep are required for some functionalities

RoxygenNote 6.0.1

VignetteBuilder knitr

biocViews Infrastructure, Alignment

Encoding UTF-8

URL https://github.com/stianlagstad/chimeraviz

BugReports https://github.com/stianlagstad/chimeraviz/issues

NeedsCompilation no

Author Stian Lågstad [aut, cre], Sen Zhao [ctb], Andreas M. Hoff [ctb], Bjarne Johannessen [ctb], Ole Christian Lingjærde [ctb], Rolf Skotheim [ctb]

Maintainer Stian Lågstad <stianlagstad@gmail.com>
R topics documented:

addFusionReadsAlignment ... 3
chimeraviz ... 4
chimeraviz-internals-fusionsToGeneLabelData 4
chimeraviz-internals-fusionsToLinkData 4
chimeraviz-internals-scaleListToInterval 5
createFusionReport ... 6
decideTranscriptCategory ... 6
downstreamPartnerGene .. 8
fetchReadsFromFastq ... 9
Fusion-class .. 10
fusionSpanningReadsCount .. 10
fusionSplitReadsCount .. 11
fusionToDataFrame ... 12
getEnsemblIds .. 12
getFusionByChromosome .. 13
getFusionByGeneName .. 14
getFusionById .. 15
getTranscriptsEnsembldb ... 15
importDefuse .. 16
importEricscript .. 17
importFunctionNonUCSC .. 18
importFusioncatcher ... 18
importFusionmap .. 19
importInfusion ... 19
importJaffa ... 20
importPrada ... 21
importSoapfuse .. 21
importStarfusion .. 22
PartnerGene-class ... 23
partnerGeneEnsemblId ... 23
partnerGeneJunctionSequence 24
plotCircle ... 25
plotFusion ... 26
plotFusionReads .. 27
plotFusionTranscript .. 29
plotFusionTranscriptsGraph 30
plotTranscripts .. 31
raw_cytobandhg19 .. 32
raw_cytobandhg38 .. 33
raw_defuse ... 33
raw_ericscript .. 34
raw_fusion5267reads .. 34
raw_fusioncatcher ... 34
raw_fusionmap ... 35
raw_Homo_sapiens.GRCh37.74 35
raw_infusion .. 35
raw_jaffa ... 36
raw_prada ... 36
raw_soapfuse ... 36
raw_starfusion .. 36
addFusionReadsAlignment

Add reads alignment to fusion object

Description

This function lets you add a fusion read alignment file to a fusion object. If you’ve mapped the reads supporting a fusion against the fusion junction sequence, and have the resulting bamfile, use this function to add the information (as a Gviz::GAlignmentPairs object) to the fusion object.

Usage

addFusionReadsAlignment(fusion, bamfile)

Arguments

fusion The fusion object to add a genomic alignment to.
bamfile The bam file containing the fusion reads plotted to the fusion sequence.

Value

An updated fusion object with fusion@fusionReadsAlignment set.

Examples

Load data
defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
Find the specific fusion we have aligned reads for
fusion <- getFusionById(fusions, 5267)
Get reference to the bamfile with the alignment data
bamfile5267 <- system.file("extdata", "5267readsAligned.bam", package="chimeraviz")
Add the bam file of aligned fusion reads to the fusion object
fusion <- addFusionReadsAlignment(fusion, bamfile5267)
chimeraviz-internals-fusionsToLinkData

Description
chimeraviz-internals-fusionsToLinkData
Create link data for RCircos from the given fusions.

Usage
.fusionsToLinkData(fusionList, minLinkWidth = 1, maxLinkWidth = 10)

Arguments
fusionList
A list of Fusion objects.

Value
A data frame with fusion gene label data compatible with RCircos::Gene.Name.Plot()
@examples
Apparently examples shouldn't be set on private functions
defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 3)
labelData <- chimeraviz::.fusionsToGeneLabelData(fusions)
This labelData can be used with RCircos::Gene.Connector.Plot() and RCircos::Gene.Name.Plot()

chimeraviz-internals-fusionsToGeneLabelData
Create gene label data for RCircos from the given fusions.

Description
chimeraviz-internals-fusionsToGeneLabelData
This function takes a list of Fusion objects and creates a data frame in the format that RCircos.Gene.Name.Plot() expects for gene label data.

Usage
.fusionsToGeneLabelData(fusionList)

Arguments
fusionList
A list of Fusion objects.

Value
A data frame with fusion gene label data compatible with RCircos.Gene.Name.Plot()
@examples
Apparently examples shouldn't be set on private functions
defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 3)
labelData <- chimeraviz::.fusionsToGeneLabelData(fusions)
This labelData can be used with RCircos::Gene.Connector.Plot() and RCircos::Gene.Name.Plot()
chimeraviz-internals-scaleListToInterval

Arguments

- **fusionList**: A list of Fusion objects.
- **minLinkWidth**: The minimum link line width. Default = 1
- **maxLinkWidth**: The maximum link line width. Default = 10

Value

A data frame with fusion link data compatible with RCircos::RCircos.Link.Plot()

@examples # Apparently examples shouldn’t be set on private functions defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz") fusions <- importDefuse(defuse833ke, "hg19", 3) linkData <- chimeraviz::.fusionsToLinkData(fusions) # This linkData can be used with RCircos::RCircos.Link.Plot()

chimeraviz-internals-scaleListToInterval

Scale a vector of numeric values to an interval.

Description

This function takes a vector of numeric values as well as an interval [newMin, newMax] that the numeric values will be scaled (normalized) to.

Usage

```
.scaleListToInterval(theList, newMin, newMax)
```

Arguments

- **theList**: A vector of numeric values.
- **newMin**: Minimum value for the new interval.
- **newMax**: Maximum value for the new interval.

Value

A data frame with fusion link data compatible with RCircos::RCircos.Link.Plot()

@examples # Apparently examples shouldn’t be set on private functions list012 <- c(0,1,2) .scaleListToInterval(list012, 1, 3) # [1] 1 2 3
createFusionReport
Create a Fusion Report

Description
This function will create a html report with an overplot and a sortable, searchable table with the fusion data.

Usage
createFusionReport(fusions, outputFilename, quiet = TRUE)

Arguments
- fusions: A list of Fusion objects.
- outputFilename: Output html-file filename.
- quiet: Parameter passed to rmarkdown::render() to toggle its output.

Value
Creates a html report with an overplot and a sortable, searchable table with the fusion data.

Examples
Load data
defuse833ke <- system.file("extdata", "defuse_833ke_resultsfiltered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 3)
Temporary file to store the report
outputFilename <- tempfile(pattern = "fusionReport", fileext = "html", tmpdir = tmpdir())
Create report
createFusionReport(fusions, outputFilename)

decideTranscriptCategory
Retrieves transcripts for partner genes in a Fusion object using Ensembldb

Description
This function will check where in the transcript (the GRanges object) the fusion breakpoint is located, and return either "exonBoundary", "withinExon", "withinIntron", or "intergenic".
Usage

decideTranscriptCategory(gr, fusion)

Arguments

gr The GRanges object containing the transcript to be checked.
fusion The fusion object used to check the transcript.

Value

Either "exonBoundary", "withinExon", "withinIntron", or "intergenic" depending on where in the transcript the breakpoint hits.

Examples

Load fusion data and choose a fusion object:
defuseData <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
Create edb object
edbSqliteFile <- system.file("extdata", "Homo_sapiens.GRCh37.74.sqlite", package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
Get all exons for all transcripts in the genes in the fusion transcript
allTranscripts <- ensembldb::exonsBy(edb, filter = list(AnnotationFilter::GeneIdFilter(list(partnerGeneEnsemblId(upstreamPartnerGene(fusion)), partnerGeneEnsemblId(downstreamPartnerGene(fusion))))), columns = c("gene_id", "gene_name", "tx_id", "tx_cds_seq_start", "tx_cds_seq_end", "exon_id")))
Extract one of the GRanges objects
gr <- allTranscripts[[1]]
Check where in the transcript the fusion breakpoint hits
decideTranscriptCategory(gr, fusion)
"exonBoundary"
Check another case
gs <- allTranscripts[[3]]
decideTranscriptCategory(gs, fusion)
"withinIntron"
Get the downstream fusion partner gene

Description

This getter retrieves the downstream PartnerGene object. This sets the downstream PartnerGene object of a Fusion object

Usage

downstreamPartnerGene(x)

```r
## S4 method for signature 'Fusion'
downstreamPartnerGene(x)
```

downstreamPartnerGene(object) <- value

```r
## S4 replacement method for signature 'Fusion'
downstreamPartnerGene(object) <- value
```

Arguments

- `x` The Fusion object you wish to retrieve the downstream PartnerGene object for.
- `object` The Fusion object you wish to set a new downstream PartnerGene object for.
- `value` The new PartnerGene object.

Value

The downstream PartnerGene object.

Examples

```r
# Load data
defuseData <- system.file(  
  "extdata",  
  "defuse_833ke_results.filtered.tsv",  
  package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)  
fusion <- fusions[[1]]  
# Get the downstream fusion partner gene  
downstreamPartnerGene(fusion)

# Load data
defuseData <- system.file(  
  "extdata",  
  "defuse_833ke_results.filtered.tsv",  
  package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)  
fusion <- fusions[[1]]  
# Set the downstream PartnerGene object to be the same as the upstream PartnerGene object  
downstreamPartnerGene(fusion) <- upstreamPartnerGene(fusion)
```
fetchReadsFromFastq

Fetch reads from fastq files

Description

This function will fetch read sequences from fastq files and put them into new fastq files.

Usage

```r
closeReadsFromFastq(reads, fastqFileIn1, fastqFileIn2, fastqFileOut1, fastqFileOut2)
```

Arguments

- `reads`: List of read IDs that is to be fetched.
- `fastqFileIn1`: First fastq file to search in.
- `fastqFileIn2`: Second fastq file to search in.
- `fastqFileOut1`: First fastq file with results.
- `fastqFileOut2`: Second fastq file with results.

Details

Note: This function runs (read only) bash commands on your system. Therefore the function will only work on a unix system.

Value

The files `fastqFileOut1` and `fastqFileOut2` populated with the specified reads.

Examples

```r
## Not run:
# fastq files that has the supporting reads
fastq1 <- system.file("extdata", "reads.1.fq", package="chimeraviz")
fastq2 <- system.file("extdata", "reads.2.fq", package="chimeraviz")
# Which read ids to extract
reads <- c(
  "13422259", "19375605", "29755061",
  "31632876", "32141428", "33857245")
# Extract the actual reads and put them in the tmp files "fastqFileOut1" and "fastqFileOut2"
fastqFileOut1 <- tempfile(pattern = "fq1", tmpdir = tempdir())
fastqFileOut2 <- tempfile(pattern = "fq2", tmpdir = tempdir())
fetchReadsFromFastq(reads, fastq1, fastq2,
  fastqFileOut1, fastqFileOut2)
# We now have the reads supporting fusion 5267 in the two files.

## End(Not run)
```
Fusion-class

An S4 class to represent a fusion event.

Description

The Fusion class represents a fusion event, holding data imported from a fusion tool.

Slots

id A unique id representing a fusion event. For deFuse data this will be the cluster id.
fusionTool Name of the fusion tool.
genomeVersion Name of the genome used to map reads.
spanningReadsCount The number of spanning reads supporting the fusion.
splitReadsCount The number of split reads supporting the fusion.
fusionReadsAlignment A Gviz::AlignmentsTrack object holding the fusion reads aligned to the fusion sequence.
geneA A PartnerGene object holding information of the upstream fusion partner gene.
geneB A PartnerGene object holding information of the downstream fusion partner gene.
inframe A logical value indicating whether or not the downstream fusion partner gene is inframe or not. Not all fusion-finders report this.
fusionToolSpecificData A list that will hold fields of importance for a specific fusion finder. This field is used because many fusion-finders report important values that are hard to fit into a standardized format. Examples of values that are added to this list is probability from de Fuse and EricScore from EricScript.

fusionSpanningReadsCount

Get the spanning reads count from a Fusion object

Description

This getter retrieves the spanning reads count from a Fusion object

Usage

fusionSpanningReadsCount(x)

S4 method for signature 'Fusion'
fusionSpanningReadsCount(x)

Arguments

x The Fusion object you wish to retrieve the spanning reads count for.

Value

The Fusion spanning reads count.
fusionSplitReadsCount

Examples

Load data
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
Get the spanning reads count
fusionSpanningReadsCount(fusion)

fusionSplitReadsCount Get the split reads count from a Fusion object

Description

This getter retrieves the split reads count from a Fusion object

Usage

fusionSplitReadsCount(x)

S4 method for signature 'Fusion'
fusionSplitReadsCount(x)

Arguments

x
The Fusion object you wish to retrieve the split reads count for.

Value

The Fusion split reads count.

Examples

Load data
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
Get the split reads count
fusionSplitReadsCount(fusion)
fusToDataFrame

Coerce Fusion object to data.frame

Description
This function is used in createFusionReport() to convert Fusion objects to a data.frame-format.

Usage
fusToDataFrame(fusion)

Arguments
fusion The Fusion object to coerce.

Value
A data.frame with the fusion object.

See Also
createFusionReport

Examples
Load data
defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
Find the fusion object to create a data frame from
fusion <- fusById(fusions, 5267)
Create the data frame
dfFusion <- fusToDataFrame(fusion)

getEnsemblIds

Get ensembl ids for a fusion object

Description
This function will get the ensembl ids from the org.Hs.eg.db package given the gene names of the fusion event.

Usage
getEnsemblIds(fusion)

Arguments
fusion The Fusion object we want to get ensembl ids for.
getFusionByChromosome

Value

The Fusion object with Ensembl ids set.

Examples

Import the filtered defuse results
defuse833keFiltered <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz"
)fusions <- importDefuse(defuse833keFiltered, "hg19", 1)
Get a specific fusion
fusion <- getFusionById(fusions, 5267)
See the ensembl ids:
partnerGeneEnsemblId(upstreamPartnerGene(fusion))
[1] "ENSG00000180198"
partnerGeneEnsemblId(downstreamPartnerGene(fusion))
[1] "ENSG00000162639"
Reset the fusion objects ensembl ids
partnerGeneEnsemblId(upstreamPartnerGene(fusion)) <- ""
partnerGeneEnsemblId(downstreamPartnerGene(fusion)) <- ""
Get the ensembl ids
fusion <- getEnsemblIds(fusion)
See that we now have the same ensembl ids again:
partnerGeneEnsemblId(upstreamPartnerGene(fusion))
[1] "ENSG00000180198"
partnerGeneEnsemblId(downstreamPartnerGene(fusion))
[1] "ENSG00000162639"

getFusionByChromosome

Find fusions that involve genes in the given chromosome.

Description

Helper function to retrieve the Fusion objects that involve genes in the given chromosome name.

Usage

getFusionByChromosome(fusionList, chr)

Arguments

fusionList A list of Fusion objects.
chr The chromosome name we're looking for fusions in.

Value

A list of Fusion objects.
getFusionByGeneName

Examples

defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
length(getFusionByChromosome(fusions, "chr1"))
[1] 1

defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
length(getFusionByChromosome(fusions, "chr1"))
[1] 1

getFusionByGeneName

Find fusions that includes the given gene.

Description

Helper function to retrieve the Fusion objects that has geneName as one of the partner genes.

Usage

getFusionByGeneName(fusionList, geneName)

Arguments

fusionList
 A list of Fusion objects.

 geneName
 The gene name we're looking for.

Details

Note: getFusionByGeneName(fusionList, "MT") will match both MT-ND5 and MT-ND4.

Value

A list of Fusion objects.

Examples

defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
length(getFusionByGeneName(fusions, "RCC1"))
[1] 1
getFusionById

Find a specific fusion object in a list by id

Description
Helper function to retrieve the Fusion object with the given id.

Usage
getFusionById(fusionList, id)

Arguments

- fusionList A list of Fusion objects.
- id The id (e.g. the cluster_id from a deFuse run) we’re looking for.

Value
A Fusion object.

Examples

defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
This should be the Fusion object:
fusion

[1] "Fusion object"
[1] "id: 5267"
[1] "Fusion tool: defuse"
[1] "Genome version: hg19"
[1] "Gene names: RCC1-HENMT1"
[1] "Chromosomes: chr1-chr1"
[1] "Strands: +,-"

getTranscriptsEnsemblDb

Retrieves transcripts for partner genes in a Fusion object using EnsemblDb

Description
This function will retrieve transcripts for both genes in a fusion. It will check all transcripts and decide for each transcript if the fusion breakpoint happens at 1) an exon boundary, 2) within an exon, or 3) within an intron. This is done because fusions happening at exon boundaries are more likely to produce biologically interesting gene products. The function returns an updated Fusion object, where the fusion@geneA@transcriptsX slots are set with transcript information.
Usage

getTranscriptsEnsembldb(fusion, edb)

Arguments

fusion
 The fusion object to find transcripts for.
edb
 The edb object used to fetch data from.

Value

An updated fusion object with transcript data stored.

Examples

Load fusion data and choose a fusion object:
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- getFusionById(fusions, 5267)

Create edb object
edbSqliteFile <- system.file(
 "extdata",
 "Homo_sapiens.GRCh37.74.sqlite",
 package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)

Add transcripts data to fusion object
fusion <- getTranscriptsEnsembldb(fusion, edb)

The transcripts are now accessible through fusion@geneA@transcripts and
fusion@geneB@transcripts .

importDefuse

Import results from a deFuse run into a list of Fusion objects.

Description

A function that imports the results from a deFuse run, typically from a results.filtered.tsv file, into a list of Fusion objects.

Usage

importDefuse(filename, genomeVersion, limit)

Arguments

filename
 Filename for the deFuse results .tsv file.

genomeVersion
 Which genome was used in mapping (hg19, hg38, etc.).

limit
 A limit on how many lines to read.
importEricscript

Value
A list of Fusion objects.

Examples

```r
defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 3)
# This should import a list of 3 fusions described in Fusion objects.
```

importEricscript

Import results from a EricScript run into a list of Fusion objects.

Description
A function that imports the results from a EricScript run into a list of Fusion objects.

Usage

```r
importEricscript(filename, genomeVersion, limit)
```

Arguments

- `genomeVersion`: Which genome was used in mapping (hg19, hg38, etc.).
- `limit`: A limit on how many lines to read.

Value
A list of Fusion objects.

Examples

```r
ericscriptData <- system.file("extdata", "ericscript_SRR1657556.results.total.tsv", package = "chimeraviz")
fusions <- importEricscript(ericscriptData, "hg19", 3)
# This should import a list of 3 fusions described in Fusion objects.
```
importFusioncatcher

importFunctionNonUCSC Alternative import function for Gviz::AlignmentsTrack

Description

This alternative import function for use with Gviz::AlignmentsTrack imports a bamfile with non-UCSC chromosome names.

Usage

importFunctionNonUCSC(file, selection)

Arguments

file The bamfile.
selection Which regions to get from the bamfile.

Value

A GRanges object with coverage data for the selection.

importFusioncatcher Import results from a Fusioncatcher run into a list of Fusion objects.

Description

A function that imports the results from a Fusioncatcher run, typically from a final-list-candidate-fusion-genes.txt file, into a list of Fusion objects.

Usage

importFusioncatcher(filename, genomeVersion, limit)

Arguments

filename Filename for the Fusioncatcher final-list-candidate-fusion-genes.txt results file.
genomeVersion Which genome was used in mapping (hg19, hg38, etc.).
limit A limit on how many lines to read.

Value

A list of Fusion objects.

Examples

fusioncatcher833ke <- system.file("extdata","fusioncatcher_833ke_final-list-candidate-fusion-genes.txt", package = "chimeraviz")
fusions <- importFusioncatcher(fusioncatcher833ke, "hg38", 3)
This should import a list of 3 fusions described in Fusion objects.
importFusionmap

Import results from a FusionMap run into a list of Fusion objects.

Description

A function that imports the results from a FusionMap run, typically from a InputFastq.FusionReport.txt file, into a list of Fusion objects.

Usage

```r
importFusionmap(filename, genomeVersion, limit)
```

Arguments

- `filename` Filename for the FusionMap PairedEndFusionReport.txt results file.
- `genomeVersion` Which genome was used in mapping (hg19, hg38, etc.).
- `limit` A limit on how many lines to read.

Value

A list of Fusion objects.

Examples

```r
fusionmapData <- system.file(  
  "extdata",  
  "FusionMap_01_TestDataset_InputFastq.FusionReport.txt",  
  package = "chimeraviz")
fusions <- importFusionmap(fusionmapData, "hg19", 3)  
# This should import a list of 3 fusions described in Fusion objects.
```

importInfusion

Import results from an InFusion run into a list of Fusion objects.

Description

A function that imports the results from an InFusion run into a list of Fusion objects.

Usage

```r
importInfusion(filename, genomeVersion, limit)
```

Arguments

- `filename` Filename for the jaffa_results.csv file.
- `genomeVersion` Which genome was used in mapping (hg19, hg38, etc.).
- `limit` A limit on how many lines to read.
importJaffa

Import results from a JAFFA run into a list of Fusion objects.

Description

A function that imports the results from a JAFFA run, typically from a jaffa_results.csv file, into a list of Fusion objects.

Usage

importJaffa(filename, genomeVersion, limit)

Arguments

filename Filename for the jaffa_results.csv file.

genomeVersion Which genome was used in mapping (hg19, hg38, etc.).

limit A limit on how many lines to read.

Value

A list of Fusion objects.

Examples

jaffaData <- system.file(
 "extdata",
 "jaffa_results.csv",
 package = "chimeraviz")
fusions <- importJaffa(jaffaData, "hg19", 3)
This should import a list of 3 fusions described in Fusion objects.
importPrada

Import results from a PRADA run into a list of Fusion objects.

Description
A function that imports the results from a PRADA run into a list of Fusion objects.

Usage
importPrada(filename, genomeVersion, limit)

Arguments
- filename: Filename for the PRADA results file.
- genomeVersion: Which genome was used in mapping (hg19, hg38, etc.).
- limit: A limit on how many lines to read.

Value
A list of Fusion objects.

Examples
```r
pradaData <- system.file(
  "extdata",
  "PRADA.acc.fusion.fq.TAF.tsv",
  package = "chimeraviz")
fusions <- importPrada(pradaData, "hg19", 3)
# This should import a list of 3 fusions described in Fusion objects.
```

importSoapfuse

Import results from a SOAPfuse run into a list of Fusion objects.

Description
A function that imports the results from a SOAPfuse run, typically from a final.Fusion.specific.for.genes file, into a list of Fusion objects.

Usage
importSoapfuse(filename, genomeVersion, limit)

Arguments
- filename: Filename for the SOAPfuse final-list-candidate-fusion-genes.txt results file.
- genomeVersion: Which genome was used in mapping (hg19, hg38, etc.).
- limit: A limit on how many lines to read.
importStarfusion

Value

A list of Fusion objects.

Examples

```r
soapfuse833ke <- system.file(  
  "extdata",  
  "soapfuse_833ke_final.Fusion.specific.for.genes",  
  package = "chimeraviz")
fusions <- importSoapfuse(soapfuse833ke, "hg19", 3)  
# This should import a list of 3 fusions described in Fusion objects.
```

importStarfusion

Import results from a STAR-Fusion run into a list of Fusion objects.

Description

A function that imports the results from a STAR-Fusion run, typically from a star-fusion.fusion_candidates.final.abridged file, into a list of Fusion objects.

Usage

```r
importStarfusion(filename, genomeVersion, limit)
```

Arguments

- `filename`: Filename for the STAR-Fusion star-fusion.fusion_candidates.final.abridged results file.
- `genomeVersion`: Which genome was used in mapping (hg19, hg38, etc.).
- `limit`: A limit on how many lines to read.

Value

A list of Fusion objects.

Examples

```r
starfusionData <- system.file(  
  "extdata",  
  "star-fusion.fusion_candidates.final.abridged.txt",  
  package = "chimeraviz")
fusions <- importStarfusion(starfusionData, "hg19", 3)  
# This should import a list of 3 fusions described in Fusion objects.
```
PartnerGene-class

An S4 class to represent a gene partner in a fusion

Description

The PartnerGene class represents one of the genes in a fusion event.

Slots

- name: Character containing name of the gene.
- ensemblId: Character containing ensembl id for the gene.
- chromosome: Character containing chromosome name.
- breakpoint: Numeric containing the fusion breakpoint.
- strand: Character containing gene strand.
- junctionSequence: Biostrings::DNAString containing the sequence right before/after the fusion breakpoint.
- transcripts: GenomicRanges::GRangesList containing three GenomicRanges::Granges() objects, one for each "transcript type". The transcript types are: 1) Transcripts where the fusion breakpoint hits an exon boundary, 2) transcripts where the fusion breakpoint is within an exon, 3) transcripts where the fusion breakpoint is within an intron.

partnerGeneEnsemblId

Get the Ensembl ID from a PartnerGene object

Description

This getter retrieves the Ensembl ID from a PartnerGene object.

This sets the Ensembl ID of a PartnerGene object.

Usage

```r
partnerGeneEnsemblId(x)
```

```r
## S4 method for signature 'PartnerGene'
partnerGeneEnsemblId(x)
```

```r
partnerGeneEnsemblId(object) <- value
```

```r
## S4 replacement method for signature 'PartnerGene'
partnerGeneEnsemblId(object) <- value
```

Arguments

- `x`: The PartnerGene object you wish to retrieve the Ensembl ID for.
- `object`: The PartnerGene object you wish to set a new Ensembl ID for.
- `value`: The new Ensembl ID.
Value

The upstream fusion partner gene Ensembl ID.

Examples

```r
# Load data
defuseData <- system.file(
  "extdata",
  "defuse_833ke_results.filtered.tsv",
  package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
# Get the Ensembl ID from the upstream fusion partner gene
partnerGeneEnsemblId(upstreamPartnerGene(fusion))

# Load data
defuseData <- system.file(
  "extdata",
  "defuse_833ke_results.filtered.tsv",
  package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
# Set the downstream PartnerGene object to be the same as the upstream PartnerGene object
partnerGeneEnsemblId(upstreamPartnerGene(fusion)) <- "test"
```

partnerGeneJunctionSequence

Get the junction sequence from a PartnerGene object

Description

This getter retrieves the junction sequence from a PartnerGene object

Usage

```r
partnerGeneJunctionSequence(x)
```

S4 method for signature 'PartnerGene'

```r
partnerGeneJunctionSequence(x)
```

Arguments

- `x` The PartnerGene object you wish to retrieve the junction sequence for.

Value

The upstream fusion partner gene junction sequence.
plotCircle

Examples

Load data
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
Get the junction sequence from the upstream fusion partner gene
partnerGeneJunctionSequence(upstreamPartnerGene(fusion))

plotCircle

Create a circle plot of the given fusions.

Description

This function takes a list of Fusion objects and creates a circle plot indicating which chromosomes
the fusion genes in the list consists of.

Usage

plotCircle(fusionList)

Arguments

fusionList A list of Fusion objects.

Details

Note that only a limited number of gene names can be shown in the circle plot due to the limited
resolution of the plot. RCircos will automatically limit the number of gene names shown if there
are too many. Also note that fusions involving mitochondrial DNA will not be shown in this plot.

Value

Creates a circle plot.

Examples

defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 3)
Temporary file to store the plot
pngFilename <- tempfile(
 pattern = "circlePlot",
 fileext = ".png",
 tmpdir = tmpdir())
Open device
png(pngFilename, width = 1000, height = 750)
Plot!
plotFusion(fusion, edb = NULL, bamfile, whichTranscripts = "exonBoundary", ylim = c(0, 1000), nonUCSC = TRUE, reduceTranscripts = FALSE)

plotFusionSeparate(fusion, edb, bamfile, whichTranscripts = "exonBoundary", ylim = c(0, 1000), nonUCSC = TRUE, reduceTranscripts = FALSE)

plotFusionTogether(fusion, edb, bamfile, whichTranscripts = "exonBoundary", ylim = c(0, 1000), nonUCSC = TRUE, reduceTranscripts = FALSE)

Arguments

fusion

The Fusion object to plot.

edb

The ensembldb object that will be used to fetch data.

bamfile

The bamfile with RNA-seq data.

whichTranscripts

This character vector decides which transcripts are to be plotted. Can be "exonBoundary", "withinExon", "withinIntron", "intergenic", or a character vector with specific transcript ids. Default value is "exonBoundary".

ylim

Limits for the coverage y-axis.

nonUCSC

Boolean indicating whether or not the bamfile used has UCSC- styled chromosome names (i.e. with the "chr" prefix). Setting this to true lets you use a bamfile with chromosome names like "1" and "X", instead of "chr1" and "chrX".

reduceTranscripts

Boolean indicating whether or not to reduce all transcripts into a single transcript for each partner gene.

Details

plotFusion() will dispatch to either plotFusionSeparate() or plotFusionTogether(). plotFusionSeparate() will plot the fusion gene partners in separate graphs shown next to each other, while plotFusionTogether() will plot the fusion gene partners in the same graph with the same x-axis. plotFusion() will dispatch to plotFusionTogether() if the fusion gene partners are on the same strand, same chromosome and are close together (<=50,000 bp apart).

Value

Creates a fusion plot.
Examples

Load data and example fusion event
defuse833ke <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz"
)
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
Load edb
edbSqliteFile <- system.file(
 "extdata",
 "Homo_sapiens.GRCh37.74.sqlite",
 package="chimeraviz"
)
edb <- ensembldb::EnsDb(edbSqliteFile)
bamfile with reads in the regions of this fusion event
bamfile5267 <- system.file(
 "extdata",
 "fusion5267and11759reads.bam",
 package="chimeraviz"
)
Temporary file to store the plot
pngFilename <- tempfile(
 pattern = "fusionPlot",
 fileext = ".png",
 tmpdir = tempdir())
Open device
png(pngFilename, width = 1000, height = 750)
Plot!
plotFusion(
 fusion = fusion,
 bamfile = bamfile5267,
 edb = edb,
 nonUCSC = TRUE)
Close device
dev.off()

plotFusionReads

Create a plot of the reads supporting the given fusion.

Description

This function takes a Fusion object and plots the reads supporting the fusion on top of the fusion sequence (fusion@junctionSequence), provided that addFusionReadsAlignment() has been run earlier in order to add fusion reads alignment data to the fusion object.

Usage

plotFusionReads(fusion, showAllNucleotides = TRUE, nucleotideAmount = 10)

Arguments

fusion The Fusion object to plot.
showAllNucleotides

Boolean indicating whether or not to show all nucleotides. If FALSE, then only nucleotideAmount amount of nucleotides will be shown on each end of the fusion junction. If TRUE, then the whole fusion junction sequence will be shown.

nucleotideAmount

The number of nucleotides to show on each end of the fusion junction sequence. Defaults to 10. Only applicable if showAllNucleotides is set to TRUE.

Details

Note that the package used for plotting, Gviz, is strict on chromosome names. If the plot produced doesn’t show the reads, the problem might be solved by naming the fusion sequence "chrNA".

Value

Creates a fusion reads plot.

See Also

addFusionReadsAlignment

Examples

Load data
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz"
)fusions <- importDefuse(defuseData, "hg19", 1)
Find the specific fusion we have aligned reads for
fusion <- getFusionById(fusions, 5267)
bamfile <- system.file(
 "extdata",
 "5267readsAligned.bam",
 package="chimeraviz"
)# Add the bam file of aligned fusion reads to the fusion object
fusion <- addFusionReadsAlignment(fusion, bamfile)
Temporary file to store the plot
pngFilename <- tempfile(
 pattern = "fusionPlot",
 fileext = ".png",
 tmpdir = tempdir())
Calculate image size based on supporting reads and length of junction sequence.
imageWidth <- (nchar(partnerGeneJunctionSequence(upstreamPartnerGene(fusion))) +
 nchar(partnerGeneJunctionSequence(downstreamPartnerGene(fusion)))) * 15
imageHeight <- (fusionSplitReadsCount(fusion)+fusionSpanningReadsCount(fusion)) * 20
Open device
png(pngFilename, width = imageWidth, height = imageHeight)
Now we can plot
plotFusionReads(fusion)
Close device
dev.off()
plotFusionTranscript Plot possible fusion transcripts based on annotation.

Description
This function takes a fusion object and an ensemblldb object and plots the reduced version of the fusion transcript. This transcript consist of the "mashed together" version of all possible fusion transcripts based on known annotations. See plotFusionTranscripts() for the not-reduced version of this plot. If a bamfile is specified, the fusion transcript will be plotted with coverage information.

Usage
plotFusionTranscript(fusion, edb = NULL, bamfile = NULL, whichTranscripts = "exonBoundary")

Arguments
- fusion: The Fusion object to plot.
- edb: The edb object that will be used to fetch data.
- bamfile: The bamfile with RNA-seq data.
- whichTranscripts: This character vector decides which transcripts are to be plotted. Can be "exonBoundary", "withinExon", "withinIntron", "intergenic", or a character vector with specific transcript ids. Default value is "exonBoundary".

Details
Note that the transcript database used (the edb object) must have the same seqnames as any bamfile used. Otherwise the coverage data will be wrong.

Value
Creates a fusion transcript plot.

Examples
```r
# Load data and example fusion event
defuse833ke <- system.file(  
  "extdata",  
  "defuse_833ke_results.filtered.tsv",  
  package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
# Load edb
edbSqliteFile <- system.file(  
  "extdata",  
  "Homo_sapiens.GRCH37.74.sqlite",  
  package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
# bamfile with reads in the regions of this fusion event
bamfile5267 <- system.file(  
  "extdata",  
  "defuse_833ke_results.filtered.BAM")
plotFusionTranscript(fusion, edb = NULL, bamfile = bamfile5267, whichTranscripts = "exonBoundary")
```
plotFusionTranscriptsGraph

Graph plot of possible fusion transcripts.

Description

This function takes a fusion object and a TranscriptDb object and plots a graph showing the possible fusion transcripts.

Usage

plotFusionTranscriptsGraph(fusion, edb = NULL,
whichTranscripts = "exonBoundary", rankdir = "TB")

Arguments

fusion
The Fusion object to plot.

edb
The edb object that will be used to fetch data.

whichTranscripts
This character vector decides which transcripts are to be plotted. Can be "exonBoundary", "withinExon", "withinIntron", "intergenic", or a character vector with specific transcript ids. Default value is "exonBoundary".

rankdir
Choose whether the graph should be plotted from left to right ("LR"), or from top to bottom ("TB"). This parameter is given to Rgraphviz::plot().

Value

Creates a fusion transcripts graph plot.
Examples

```r
# Load data and example fusion event
defuse833ke <- system.file(
  "extdata",
  "defuse_833ke_results.filtered.tsv",
  package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionByFid(fusions, 5267)
# Load edb
edbSqliteFile <- system.file(
  "extdata",
  "Homo_sapiens.GRCh37.74.sqlite",
  package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
# Temporary file to store the plot
pngFilename <- tempfile(
  pattern = "fusionPlot",
  fileext = ".png",
  tmpdir = tempdir())
# Open device
png(pngFilename, width = 500, height = 500)
# Plot!
plotFusionTranscriptsGraph(
  fusion = fusion,
  edb = edb)
# Close device
dev.off()
```

plotTranscripts
Plot transcripts for each partner gene in a fusion event.

Description

This function takes a fusion object and an ensembldb object and plots transcripts for both genes, showing which parts of each genes are included in the fusion event. If the bamfile parameter is set, then the coverage is plotted beneath the transcripts.

Usage

```r
plotTranscripts(fusion, edb = NULL, bamfile = NULL,
  whichTranscripts = "exonBoundary", nonUCSC = TRUE, ylim = c(0, 1000),
  reduceTranscripts = FALSE)
```

Arguments

- fusion: The Fusion object to plot.
- edb: The edb object that will be used to fetch data.
- bamfile: The bamfile with RNA-seq data.
- whichTranscripts: This character vector decides which transcripts are to be plotted. Can be "exonBoundary", "withinExon", "withinIntron", "intergenic", or a character vector with specific transcript ids. Default value is "exonBoundary".
nonUCSC Boolean indicating whether or not the bamfile used has UCSC-styled chromosome names (i.e. with the "chr" prefix). Setting this to true lets you use a bamfile with chromosome names like "1" and "X", instead of "chr1" and "chrX".

ylim Limits for the coverage y-axis.

reduceTranscripts Boolean indicating whether or not to reduce all transcripts into a single transcript for each partner gene.

Value

Creates a fusion transcripts plot.

Examples

```r
# Load data and example fusion event
defuse833ke <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
# Load edb
edbSqliteFile <- system.file("extdata", "Homo_sapiens.GRCh37.74.sqlite", package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
# bamfile with reads in the regions of this fusion event
bamfile5267 <- system.file("extdata", "fusion5267and11759reads.bam", package="chimeraviz")
# Temporary file to store the plot
pngFilename <- tempfile(pattern = "fusionPlot", fileext = ".png", tmpdir = tempdir())
# Open device
ggplot2::ggplot2::png(pngFilename, width = 500, height = 500)
# Plot!
plotTranscripts(
  fusion = fusion,
  edb = edb,
  bamfile = bamfile5267,
  nonUCSC = TRUE)
# Close device
ggplot2::ggplot2::dev.off()
```
Description

This data is used with RCircos in plotCircle().

Details

All _alt or _random entries has been manually removed, as has the chrM entry.

Description

This data is used with RCircos in plotCircle().

Description

Documentation for the deFuse example data.

defuse_833ke_results.filtered.tsv

This file has the results from a run of deFuse-0.7.0 on the 833ke cell line. The program was ran with the standard configuration, but with the parameter span_count_threshold=5 instead of the standard 3. The resulting results.filtered.tsv file was then manually filtered to only include 17 fusion events in the interest of saving computing time for tests and examples. The original results contained 171 fusion events.

reads_supporting_defuse_fusion_5267.*.fq

These two files, reads_supporting_defuse_fusion_5267.1.fq and reads_supporting_defuse_fusion_5267.2.fq, contains the reads that support the fusion event with cluster_id 5267.

5267readsAligned.bam

The bamfile 5267readsAligned.bam and the 5267readsAligned.bam.bai index file contains the reads supporting the fusion event with cluster_id 5267 aligned to the fusion sequence. It is used with plotFusionReads().
Description

Documentation for the EricScript example data.

ericscript_SRR1657556.results.total.tsv

This is example data thankfully provided by EricScript author Matteo Benelli.

Description

Documentation for the Fusion5267and11759 bamfile containing reads mapped to the region where the genes in the fusions with cluster_id=5267 and cluster_id=11759 is.

fusion5267and11759reads.bam

This file is the result of running these commands:

```
samtools view -b original_bamfile.bam "1:28831455-28866812" "1:109189912-109205148" "12:8608225-8677832" > fusion5267and11759reads.bam
samtools index fusion5267and11759reads.bam
```

where we extract the reads mapping to the region where we know the fusions with cluster_id=5267 and cluster_id=11759 from the deFuse example data is.

The original_bamfile.bam is from a study of the 833KE cell line by Andreas M. Hoff et al., documented in the paper [Identification of Novel Fusion Genes in Testicular Germ Cell Tumors](http://cancerres.aacrjournals.org/content/76/1/108.full).

Description

Documentation for the Fusioncatcher example data.

fusioncatcher_833ke_final-list-candidate-fusion-genes.txt

This file has the results from a run of Fusioncatcher-0.99.3e on the 833ke cell line. The program was ran with the standard configuration file and with the parameters ",-p 8 -z –keep-preliminary".
FusionMap data

Description

Documentation for the FusionMap example data.

FusionMap_01_TestDataset_InputFastq.FusionReport.txt

This is example data provided with the FusionMap version released 2015-03-31.

Homo_sapiens.GRCh37.74_subset.gtf

The Homo_sapiens.GRCh37.74.gtf file is a subset version of the Ensembl Homo_sapiens.GRCh37.74.gtf file, located here: ftp://ftp.ensembl.org/pub/release-74/gtf/homo_sapiens. This gtf file contains transcripts for the partner genes in two of the fusion transcripts from the deFuse example data provided with this package: The fusion transcript with cluster_id=5267, and the fusion transcript with cluster_id=11759.

The file is the result of running this command:

```
# grep "ENST00000402983\|ENST00000420055\|ENST00000483729\|ENST00000493676\|ENST00000382073\|ENST00000299665\|ENST00000382064" Homo_sapiens.GRCh37.74.gtf > Homo_sapiens.GRCh37.74_subset.gtf
```

The transcript names given in the command above are all transcripts available for the genes CLEC6A, CLEC4D, HENMT1, and RCC1 in Ensembl version 74.

Homo_sapiens.GRCh37.74.sqlite

The Homo_sapiens.GRCh37.74.sqlite file is the sqlite database that the Ensembldb package creates from the corresponding gtf file. It was created using this command:

```
# ensDbFromGtf( # gtf = "Homo_sapiens.GRCh37.74_subset.gtf", # organism = "Homo_sapiens", # genomeVersion = "GRCh37", # version = 74)
```

InFusion data

Description

Documentation for the InFusion example data.

infusion_fusions.txt

This is example data from the InFusion getting started page located at https://bitbucket.org/kokonech/infusion/wiki/Getting
raw_jaffa JAFFA data

Description
Documentation for the JAFFA example data.

jaffa_results.csv
This is example data from the described JAFFA example run documented at https://github.com/Oshlack/JAFFA/wiki/Example.

raw_prada PRADA data

Description
Documentation for the PRADA example data.

PRADA.acc.fusion.fq.TAF.tsv
This is example data thankfully provided by PRADA authors Siyuan Zheng and Roeland Verhaak.

raw_soapfuse SOAPfuse data

Description
Documentation for the SOAPfuse example data.

soapfuse_833ke_final.Fusion.specific.for.genes
This file has the results from a run of soapfuse-1.26 on the 833ke cell line. The program was ran with the standard configuration file.

raw_starfusion STAR-Fusion data

Description
Documentation for the STAR-Fusion example data.

star-fusion.fusion_candidates.final.abridged.txt
This example data was retrieved from the STAR-Fusion github page April 13.th 2016.
selectTranscript Select which transcript to use (for plotting) for a GenePartner object

Description
This function takes a GenePartner object and creates a transcript data.frame with transcript information, including only the transcripts given by the parameter whichTranscripts.

Usage
selectTranscript(genePartner, whichTranscripts = "exonBoundary")

Arguments
- genePartner: The GenePartner object to select a transcript for.
- whichTranscripts: This character vector decides which transcripts are to be plotted. Can be "exonBoundary", "withinExon", "withinIntron", "intergenic", or a character vector with specific transcript ids. Default value is "exonBoundary".

Details
selectTranscript() selects which transcript to create by this prioritization:
1. Exon boundary transcripts. 2. Within exon transcripts. 3. Within intron transcripts. 4. Intergenic transcripts.

Value
A data.frame with transcript data.

Examples
Load data and example fusion event
defuse833ke <- system.file("extdata","defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuse833ke, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
Load edb
edbSqliteFile <- system.file("extdata","Homo_sapiens.GRCh37.74.sqlite", package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
Get transcripts
fusion <- getTranscriptsEnsemblDb(fusion, edb)
Select transcript
transcriptsA <- selectTranscript(upstreamPartnerGene(fusion))
show,Fusion-method

Show method for the Fusion class.

Description

Show method for the Fusion class.

Usage

```r
## S4 method for signature 'Fusion'
show(object)
```

Arguments

- `object` A Fusion object

Value

Shows information about a Fusion object.

show,PartnerGene-method

Show method for the PartnerGene class.

Description

Show method for the PartnerGene class.

Usage

```r
## S4 method for signature 'PartnerGene'
show(object)
```

Arguments

- `object` A PartnerGene object

Value

Shows information about a PartnerGene object.
splitOnUtrAndAddFeature

Split GRanges object based on cds

Description

This function will look for ranges (exons) in the GRanges object that has the coding DNA sequence starting or stopping within it. If found, these exons are split, and each exon in the GRanges object will be tagged as either "protein_coding", "5utr", or "3utr". The returned GRanges object will have feature values set in mcols(gr)$feature reflecting this.

Usage

```r
splitOnUtrAndAddFeature(gr)
```

Arguments

- `gr` The GRanges object we want to split and tag with feature info.

Value

An updated GRanges object with feature values set.

Examples

```r
# Load fusion data and choose a fusion object:
defuseData <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- getFusionById(fusions, 5267)
# Create edb object
edbSqliteFile <- system.file("extdata", "Homo_sapiens.GRCh37.74.sqlite", package="chimeraviz")
edb <- ensembldb::EnsDb(edbSqliteFile)
# Get all exons for all transcripts in the genes in the fusion transcript
allTranscripts <- ensembldb::exonsBy(edb,
  filter = list(
    AnnotationFilter::GeneIdFilter(
      list(              
        partnerGeneEnsemblId(upstreamPartnerGene(fusion)),
        partnerGeneEnsemblId(downstreamPartnerGene(fusion))
      ))),
  columns = c(  
    "gene_id",
    "gene_name",
    "tx_id",
    "tx_cds_seq_start",
    "tx_cds_seq_end",
    "exon_id")
)
# Extract one of the GRanges objects
```
gr <- allTranscripts[[1]]
Check how many ranges there are here
length(gr)
Should be 9 ranges
Split the ranges containing the cds start/stop positions and add feature
values:
gr <- splitOnUtrAndAddFeature(gr)
Check the length again
length(gr)
Should be 11 now, as the range containing the cds_strat position and the
range containing the cds_stop position has been split into separate ranges

upstreamPartnerGene Get the upstream fusion partner gene

Description

This getter retrieves the upstream PartnerGene object.
This sets the upstream PartnerGene object of a Fusion object

Usage

upstreamPartnerGene(x)

S4 method for signature 'Fusion'
upstreamPartnerGene(x)

upstreamPartnerGene(object) <- value

S4 replacement method for signature 'Fusion'
upstreamPartnerGene(object) <- value

Arguments

x The Fusion object you wish to retrieve the upstream PartnerGene object for.
object The Fusion object you wish to set a new upstream PartnerGene object for.
value The new PartnerGene object.

Value

The upstream PartnerGene object.

Examples

Load data
defuseData <- system.file("extdata", "defuse_833ke_results.filtered.tsv", package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]
writeFusionReference

Get the upstream fusion partner gene
upstreamPartnerGene(fusion)

Load data
defuseData <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuseData, "hg19", 1)
fusion <- fusions[[1]]

Set the upstream PartnerGene object to be the same as the downstream PartnerGene object
upstreamPartnerGene(fusion) <- downstreamPartnerGene(fusion)

writeFusionReference

Write fusion junction sequence to a fasta file

Description

This function will write the fusion sequence to a fasta file, using Biostring::writeXStringSet()

Usage

writeFusionReference(fusion, filename)

Arguments

fusion The Fusion object we want to create a fasta file from.
filename The filename to write to.

Value

Writes the fusion junction sequence to the given filename.

Examples

Import the filtered defuse results
defuse833keFiltered <- system.file(
 "extdata",
 "defuse_833ke_results.filtered.tsv",
 package="chimeraviz")
fusions <- importDefuse(defuse833keFiltered, "hg19", 1)

Get a specific fusion
fusion <- getFusionById(fusions, 5267)

Create temporary file to hold the fusion sequence
fastaFileOut <- tempfile(pattern = "fusionSequence", tmpdir = tempdir())

Write fusion sequence to file
writeFusionReference(fusion, fastaFileOut)
Index

.getFusionById, 15
.getTranscriptsEnsemblDb, 15
.importDefuse, 16
.importEricscript, 17
.importFunctionNonUCSC, 18
.importFusioncatcher, 18
.importFusionmap, 19
.importInfusion, 19
.importJaffa, 20
.importPrada, 21
.importSoapfuse, 21
.importStarfusion, 22

 PartnerGene (PartnerGene-class), 23
 PartnerGene-class, 23
 partnerGeneEnsemblId, 23
 partnerGeneEnsemblId,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<- (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<-,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneJunctionSequence, 24
 partnerGeneJunctionSequence,PartnerGene-method
 (partnerGeneJunctionSequence),
 24

.plotCircle, 25
.plotFusion, 26
.plotFusionReads, 27
.plotFusionSeparate(plotFusion), 26
.plotFusionTogether(plotFusion), 26
.plotFusionTranscript, 29
.plotFusionTranscriptsGraph, 30
.plotTranscripts, 31

.raw_cytobandhg19, 32
.raw_cytobandhg38, 33
.raw_defuse, 33
.raw_ericscript, 34
.raw_fusion5267reads, 34
.raw_fusioncatcher, 34
.raw_fusionmap, 35
.raw_Homo_sapiens.GRCh37.74, 35

.addFusionReadsAlignment, 3
.chimeraviz, 4
.chimeraviz-internals-fusionsToGeneLabelData, 4
.chimeraviz-internals-fusionsToLinkData, 4
.chimeraviz-internals-scaleListToInterval, 5
.chimeraviz-package (chimeraviz), 4
.createFusionReport, 6
.decidetranscriptcategory, 6
.downstreamPartnerGene, 8
.downstreamPartnerGene,Fusion-method
 (downstreamPartnerGene), 8
.downstreamPartnerGene<-
 (downstreamPartnerGene), 8
.downstreamPartnerGene<-,Fusion-method
 (downstreamPartnerGene), 8
.fetchReadsFromFastq, 9
.Fusion (Fusion-class), 10
.Fusion-class, 10
.fusionSpanningReadsCount, 10
.fusionSpanningReadsCount,Fusion-method
 (fusionSpanningReadsCount), 10
.fusionSplitReadsCount, 11
.fusionSplitReadsCount,Fusion-method
 (fusionSplitReadsCount), 11
.fusionToDataFrame, 12
.getEnsemblIds, 12
.getFusionByChromosome, 13
.getFusionByGeneName, 14
.getTranscriptsEnsemblDb, 15
.importDefuse, 16
.importEricscript, 17
.importFunctionNonUCSC, 18
.importFusioncatcher, 18
.importFusionmap, 19
.importInfusion, 19
.importJaffa, 20
.importPrada, 21
.importSoapfuse, 21
.importStarfusion, 22

 PartnerGene (PartnerGene-class), 23
 PartnerGene-class, 23
 partnerGeneEnsemblId, 23
 partnerGeneEnsemblId,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<- (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<-,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneJunctionSequence, 24
 partnerGeneJunctionSequence,PartnerGene-method
 (partnerGeneJunctionSequence),
 24
.plotCircle, 25
.plotFusion, 26
.plotFusionReads, 27
.plotFusionSeparate(plotFusion), 26
.plotFusionTogether(plotFusion), 26
.plotFusionTranscript, 29
.plotFusionTranscriptsGraph, 30
.plotTranscripts, 31

.raw_cytobandhg19, 32
.raw_cytobandhg38, 33
.raw_defuse, 33
.raw_ericscript, 34
.raw_fusion5267reads, 34
.raw_fusioncatcher, 34
.raw_fusionmap, 35
.raw_Homo_sapiens.GRCh37.74, 35

.addFusionReadsAlignment, 3
.chimeraviz, 4
.chimeraviz-internals-fusionsToGeneLabelData, 4
.chimeraviz-internals-fusionsToLinkData, 4
.chimeraviz-internals-scaleListToInterval, 5
.chimeraviz-package (chimeraviz), 4
.createFusionReport, 6
.decidetranscriptcategory, 6
.downstreamPartnerGene, 8
.downstreamPartnerGene,Fusion-method
 (downstreamPartnerGene), 8
.downstreamPartnerGene<-
 (downstreamPartnerGene), 8
.downstreamPartnerGene<-,Fusion-method
 (downstreamPartnerGene), 8
.fetchReadsFromFastq, 9
.Fusion (Fusion-class), 10
.Fusion-class, 10
.fusionSpanningReadsCount, 10
.fusionSpanningReadsCount,Fusion-method
 (fusionSpanningReadsCount), 10
.fusionSplitReadsCount, 11
.fusionSplitReadsCount,Fusion-method
 (fusionSplitReadsCount), 11
.fusionToDataFrame, 12
.getEnsemblIds, 12
.getFusionByChromosome, 13
.getFusionByGeneName, 14
.getTranscriptsEnsemblDb, 15
.importDefuse, 16
.importEricscript, 17
.importFunctionNonUCSC, 18
.importFusioncatcher, 18
.importFusionmap, 19
.importInfusion, 19
.importJaffa, 20
.importPrada, 21
.importSoapfuse, 21
.importStarfusion, 22

 PartnerGene (PartnerGene-class), 23
 PartnerGene-class, 23
 partnerGeneEnsemblId, 23
 partnerGeneEnsemblId,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<- (partnerGeneEnsemblId), 23
 partnerGeneEnsemblId<-,PartnerGene-method
 (partnerGeneEnsemblId), 23
 partnerGeneJunctionSequence, 24
 partnerGeneJunctionSequence,PartnerGene-method
 (partnerGeneJunctionSequence),
 24
.plotCircle, 25
.plotFusion, 26
.plotFusionReads, 27
.plotFusionSeparate(plotFusion), 26
.plotFusionTogether(plotFusion), 26
.plotFusionTranscript, 29
.plotFusionTranscriptsGraph, 30
.plotTranscripts, 31

.raw_cytobandhg19, 32
.raw_cytobandhg38, 33
.raw_defuse, 33
.raw_ericscript, 34
.raw_fusion5267reads, 34
.raw_fusioncatcher, 34
.raw_fusionmap, 35
.raw_Homo_sapiens.GRCh37.74, 35
raw_infusion, 35
raw_jaffa, 36
raw_prada, 36
raw_soapfuse, 36
raw_starfusion, 36

selectTranscript, 37
show,Fusion-method, 38
show,PartnerGene-method, 38
splitOnUtrAndAddFeature, 39

upstreamPartnerGene, 40
upstreamPartnerGene,Fusion-method
 (upstreamPartnerGene), 40
upstreamPartnerGene<-
 (upstreamPartnerGene), 40
upstreamPartnerGene<-,Fusion-method
 (upstreamPartnerGene), 40

writeFusionReference, 41