Package ‘cleaver’

January 21, 2017

Version 1.12.0
Date 2015-02-02
Title Cleavage of Polypeptide Sequences
Maintainer Sebastian Gibb <mail@sebastiangibb.de>
Depends R (>= 3.0.0), methods, Biostrings (>= 1.29.8)
Imports S4Vectors, IRanges
Suggests testthat (>= 0.8), knitr, BiocStyle (>= 0.0.14), BRAIN,
 UniProt.ws (>= 2.1.4)
Description In-silico cleavage of polypeptide sequences. The cleavage
 rules are taken from:
License GPL (>= 3)
URL https://github.com/sgibb/cleaver/
BugReports https://github.com/sgibb/cleaver/issues/
LazyLoad yes
VignetteBuilder knitr
biocViews Proteomics
NeedsCompilation no
Author Sebastian Gibb [aut, cre]

R topics documented:

 cleaver-package .. 2
 cleave ... 2

Index 9
Description

This package cleaves polypeptide sequences. It provides three functions: `cleave`, `cleavageRanges` and `cleavageSites`.

Details

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

https://github.com/sgibb/cleaver/

See Also

cleave, cleavageRanges and cleavageSites.

cleave

Description

This functions cleave polypeptide sequences. Use cleavageSites to find the cleavage sites, cleavageRanges to find the cleavage ranges and cleave to get the cleavage products.

Usage

```r
## S4 method for signature 'character'
cleave(x, enzym = "trypsin", missedCleavages = 0,
       custom = NULL, unique = TRUE)
```

```r
## S4 method for signature 'AAString'
```
clease(x, enzym = "trypsin", missedCleavages = 0,
 custom = NULL, unique = TRUE)

S4 method for signature 'AAStringSet'
clease(x, enzym = "trypsin", missedCleavages = 0,
 custom = NULL, unique = TRUE)

S4 method for signature 'character'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
 custom = NULL)

S4 method for signature 'AAString'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
 custom = NULL)

S4 method for signature 'AAStringSet'
cleavageRanges(x, enzym = "trypsin", missedCleavages = 0,
 custom = NULL)

S4 method for signature 'character'
cleavageSites(x, enzym = "trypsin", custom = NULL)

S4 method for signature 'AAString'
cleavageSites(x, enzym = "trypsin", custom = NULL)

S4 method for signature 'AAStringSet'
cleavageSites(x, enzym = "trypsin", custom = NULL)

Arguments

x polypeptide sequences.
enzym character, cleavage rule.
missedCleavages numeric, number of missed cleavages.
custom character, of length 1 or 2. Could be used to define own cleavage rules. The first element would be the pattern and the optional second element would be an exception (non-cleavage) pattern. Perl-like regular expressions are supported, see gregexpr for details. If custom is set the enzym is ignored.
unique logical, if TRUE all duplicated cleavage products per peptide are removed.

Details

The cleavage rules are taken from: http://web.expasy.org/peptide_cutter/peptidecutter_enzymes.html

Cleavage rules (cleavage between P1 and P1’):

<table>
<thead>
<tr>
<th>Rule name</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>arg-c proteinase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>asp-n endopeptidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>bnps-skatole-c</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>caspase1</td>
<td>F,W,Y,L</td>
<td>-</td>
<td>H,A,T</td>
<td>D</td>
<td>not P.E.D.Q</td>
</tr>
<tr>
<td>caspase2</td>
<td>D</td>
<td>V</td>
<td>A</td>
<td>D</td>
<td>not P.E.D.Q</td>
</tr>
<tr>
<td>Enzyme name</td>
<td>P4</td>
<td>P3</td>
<td>P2</td>
<td>P1</td>
<td>P1'</td>
</tr>
<tr>
<td>--------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>cleave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>caspase3</td>
<td>D</td>
<td>M</td>
<td>Q</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase4</td>
<td>L</td>
<td>E</td>
<td>V</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase5</td>
<td>L,W</td>
<td>E</td>
<td>H</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase6</td>
<td>V</td>
<td>E</td>
<td>H,I</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase7</td>
<td>D</td>
<td>E</td>
<td>V</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase8</td>
<td>I,L</td>
<td>E</td>
<td>T</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase9</td>
<td>L</td>
<td>E</td>
<td>H</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>caspase10</td>
<td>I</td>
<td>E</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>chymotrypsin-high</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F,Y</td>
<td>not P</td>
</tr>
<tr>
<td>chymotrypsin-low</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>not M,P</td>
</tr>
<tr>
<td>clostripain</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>cnbr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M</td>
<td>-</td>
</tr>
<tr>
<td>enterokinase</td>
<td>D,E</td>
<td>D,E</td>
<td>D,E</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>factor xa</td>
<td>A,F,G,I,L,T,V,M</td>
<td>D,E</td>
<td>G</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>formic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>glutamyl endopeptidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>granzyme-b</td>
<td>I</td>
<td>E</td>
<td>P</td>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>hydroxylamine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N</td>
<td>G</td>
</tr>
<tr>
<td>iodosobenzoic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>lycsc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>lycsn</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K</td>
<td>-</td>
</tr>
<tr>
<td>neutrophil elastase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A,V</td>
<td>-</td>
</tr>
<tr>
<td>ntcb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>pepsin1.3</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>not R</td>
</tr>
<tr>
<td>pepsin</td>
<td>-</td>
<td>-</td>
<td>not H,K,R</td>
<td>not P</td>
<td>F,L,W,Y</td>
</tr>
<tr>
<td>proteinase k</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>A,E,F,I,L,T,V,W,Y</td>
<td>-</td>
</tr>
<tr>
<td>staphylococcal peptidase i</td>
<td>-</td>
<td>-</td>
<td>not E</td>
<td>E</td>
<td>-</td>
</tr>
<tr>
<td>thermolysin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>not D,E</td>
<td>A,F,I,L,M,V</td>
</tr>
<tr>
<td>trypsin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>K,R</td>
<td>not P</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M</td>
<td>R</td>
</tr>
</tbody>
</table>

Exceptions:

<table>
<thead>
<tr>
<th>Rule name</th>
<th>Enzyme name</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P1'</th>
<th>P2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>trypsin</td>
<td>-</td>
<td>-</td>
<td>C,D</td>
<td>K</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>K</td>
<td>H,Y</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>C</td>
<td>R</td>
<td>K</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>H,R</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
cleave

arg-c proteinase Arg-C proteinase
asp-n endopeptidase Asp-N endopeptidase
bnps-skatole-c BNPS-Skatole
caspase1 Caspase 1
caspase2 Caspase 2
caspase3 Caspase 3
caspase4 Caspase 4
caspase5 Caspase 5
caspase6 Caspase 6
caspase7 Caspase 7
caspase8 Caspase 8
caspase9 Caspase 9
caspase10 Caspase 10
chymotrypsin-high Chymotrypsin-high specificity (C-term to [FYW], not before P)
chymotrypsin-low Chymotrypsin-low specificity (C-term to [FYWML], not before P)
clostripain Clostripain (Clostridiopeptidase B)
cnbr CNBr
enterokinase Enterokinase
factor xa Factor Xa
formic acid Formic acid
glutamyl endopeptidase Glutamyl endopeptidase
granzyme-b Granzyme B
hydroxylamine Hydroxylamine
iodosobenzoic acid Iodosobenzoic acid
lysc LysC
lysn LysN
neutrophil elastase Neutrophil elastase
ntcb NTCB (2-nitro-5-thiocyanobenzoic acid)
pepsin1.3 Pepsin (pH == 1.3)
pepsin Pepsin (pH > 2)
proline endopeptidase Proline-endopeptidase
proteinase k Proteinase K
staphylococcal peptidase i Staphylococcal Peptidase I
thermolysin Thermolysin
thrombin Thrombin
trypsin Trypsin

Value

cleave If x is a character it returns a list of the same length as x. Each element contains a character vector with the corresponding cleavage products of the polypeptides. If x is an AAString or an AAStringSet an AAStringSet or an AAStringSetList instance of the same length as x is returned. Each element contains an AAString or an AAStringSet instance with the corresponding cleavage products of the polypeptides.

cleavageRanges If x is a character it returns a list of the same length as x. Each element contains a two-column matrix with the start and end positions of the peptides. If x is an AAString or an AAStringSet instance an IRanges or an IRangesList of the same length as x is returned.

cleavageSites Returns a list of the same length as x. Each element contains an integer vector with the cleavage positions.

Overview:
Input cleave cleavageRanges cleavageSites
character list of character list of matrix list of integer
AAString AAStringSet IRanges list of integer
AAStringSet AAStringSetList IRangesList list of integer

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

See Also

AAString, AAStringSet, AAStringSetList, IRanges, IRangesList

Examples

library("cleaver")

Gastric juice peptide 1 (UniProtKB/Swiss-Prot: GAJU_HUMAN/P01358)
gaju <- "LAAGKVEDSD"
cleave(gaju, "trypsin")
$LAAGKVEDSD
[1] "LAAGK" "VEDSD"
cleavageRanges(gaju, "trypsin")
$LAAGKVEDSD
start end
[1,] 1 5
[2,] 6 10
cleavageSites(gaju, "trypsin")
$LAAGKVEDSD
[1] 5
cleave(gaju, "trypsin", missedCleavages=1)
$LAAGKVEDSD
[1] "LAAGKVEDSD"
cleavageRanges(gaju, "trypsin", missedCleavages=1)
$LAAGKVEDSD
start end
[1,] 1 10
cleave(gaju, "trypsin", missedCleavages=0:1)
$LAAGKVEDSD
[1] "LAAGK" "VEDSD" "LAAGKVEDSD"
cleavageRanges(gaju, "trypsin", missedCleavages=0:1)
$LAAGKVEDSD
start end
[1,] 1 5
[2,] 6 10
[3,] 1 10

cleave(gaju, "pepsin")
$LAAGKVEDSD
[1] "LAAGKVEDSD"
(no cleavage)

use AAStringSet

gaju <- AAStringSet("LAAGKVEDSD")
cleave(gaju)
AAStringSetList of length 1
[["LAAGKVEDSD"]]
LAAGK VEDSD

Beta-enolase (UniProtKB/Swiss-Prot: ENOB_THUAL/P86978)

enob <- "SITKIKAREILD"
cleave(enob, "trypsin")
$SITKIKAREILD
[1] "SITK" "IK" "AR" "EILD"
cleave(enob, "trypsin", missedCleavages=2)
$SITKIKAREILD
[1] "SITKIKAR" "IKAREILD"
cleave(enob, "trypsin", missedCleavages=0:2)
$SITKIKAREILD
[1] "SITKIKAR" "IKAREILD"

define own cleavage rule: cleave at K

cleave(enob, custom="K")
$SITKIKAREILD
[1] "SITK" "IK" "AREILD"
cleavageRanges(enob, custom="K")
$SITKIKAREILD
start end
[1,] 1 4
[2,] 5 6
[3,] 7 12

define own cleavage rule: cleave at K but not if followed by A

cleave(enob, custom=c("K", "K(?=A)")
$SITKIKAREILD
[1] "SITK" "IKAREILD"
cleavageRanges(enob, custom=c("K", "K(?=A)")
$SITKIKAREILD
start end
[1,] 1 4
[2,] 5 12

cleavageSites(enob, custom=c("K", "K(?=A)"))
$SITKIKAREILD
[1] 4
Index

*Topic **methods**
 cleave, 2
*Topic **package**
 cleaver-package, 2

AAString, 5, 6
AAStringSet, 5, 6
AAStringSetList, 5, 6

cleavageRanges, 2
cleavageRanges (cleave), 2
cleavageRanges, AAString-method (cleave), 2
cleavageRanges, AAStringSet-method (cleave), 2
cleavageRanges, character-method (cleave), 2
cleavageSites, 2
cleavageSites (cleave), 2
cleavageSites, AAString-method (cleave), 2
cleavageSites, AAStringSet-method (cleave), 2
cleavageSites, character-method (cleave), 2
cleave, 2, 2
cleave, AAString-method (cleave), 2
cleave, AAStringSet-method (cleave), 2
cleave, character-method (cleave), 2
cleave-package, 2
gregexpr, 3

IRanges, 5, 6
IRangesList, 5, 6