Package ‘clst’

December 21, 2016

Type Package

Title Classification by local similarity threshold

Version 1.22.0

Depends R (>= 2.10)

Imports ROC, lattice

Suggests RUnit

LazyLoad yes

LazyData yes

Author Noah Hoffman

Maintainer Noah Hoffman <ngh2@uw.edu>

Description Package for modified nearest-neighbor classification based on calculation of a similarity threshold distinguishing within-group from between-group comparisons.

License GPL-3

biocViews Classification

NeedsCompilation no

R topics documented:

clst-package .. 2
actino .. 3
bvseqs ... 3
classify .. 4
findThreshold ... 7
plotDistances .. 9
printClst .. 10
scaleDistPlot .. 10
strep ... 12

Index 14
clst-package

Classification by local similarity threshold

Description

Package for modified nearest-neighbor classification based on calculation of a similarity threshold distinguishing within-group from between-group comparisons.

Details

Package: clst
Type: Package
License: GPL-3
Author: Noah Hoffman <ngh2@uw.edu>

Index:

Further information is available in the following vignettes:

clstDemo clst (source, pdf)

TODO: write package overview.

Author(s)

Noah Hoffman
Maintainer: <ngh2@uw.edu>

See Also

cmdscale

Examples

library(clst)
packageDescription("clst")
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
i <- 1
cc <- classify(dmat, groups, dvect=dmat[i,])
cat('query at i =',i,'is species',paste('I.', groups[i]),'\n')
printClst(cc)
i <- 125
cc <- classify(dmat, groups, dvect=dmat[i,])
cat('query at i =',i,'is species',paste('I.', groups[i]),'\n')
printClst(cc)
actino

Actinomyces data set

Description

Square matrices describing pairwise distances among 16s rRNA sequences.

Usage

data(actino)

Format

List of 5

- `$dmat1`: num [1:146, 1:146] 0 0.763 1.25 10.345 12.771 ...
 - attr(*, "dimnames")=List of 2
 - ...$: chr [1:146] "200" "201" "202" "203" ...
 - ...$: chr [1:146] "200" "201" "202" "203" ...

- `$dmat2`: num [1:146, 1:146] 0 0.574 1.044 5.669 8.409 ...
 - attr(*, "dimnames")=List of 2
 - ...$: chr [1:146] "200" "201" "202" "203" ...
 - ...$: chr [1:146] "200" "201" "202" "203" ...

- `$dmat3`: num [1:146, 1:146] 0 0.763 1.25 8.571 11.233 ...
 - attr(*, "dimnames")=List of 2
 - ...$: chr [1:146] "200" "201" "202" "203" ...
 - ...$: chr [1:146] "200" "201" "202" "203" ...

- `$taxa`: Factor w/ 33 levels "Actinomyces bowdenii",...
 - 12 12 12 23 20 8 22 12 20 ...

- `$abbrev`: Factor w/ 33 levels "A bowdenii", "A canis",...
 - 12 12 12 23 20 8 22 12 20 ...

Details

The matrices `$dmat1`, `$dmat2`, and `$dmat3` contain percent nucleotide difference with indels penalized heavily, little, and somewhat, respectively.

$taxa$ is a factor of species names; abbreviations of the same names are found in `$abbrev$`.

Examples

data(actino)

bvseqs

BV reference set.

Description

Tree-derived pairwise distances and taxonomic assignments among 16S rRNA sequences representing bacteria represented in the vaginal mucosa.

Usage

data(bvseqs)
Format

The format is:
List of 3

$ dmat : num [1:448, 1:448] 0 0.0494 0.0968 0.1002 0.1606 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:448] "S001098970" "S000859776" "S000539896" "S001352901" ...
 $: chr [1:448] "S001098970" "S000859776" "S000539896" "S001352901" ...
$ groupTab:'data.frame': 448 obs. of 12 variables:
 ..$ superkingdom : chr [1:448] "2" "2" "2" "2" ...
 ..$ superphylum : chr [1:448] NA NA NA NA ...
 ..$ phylum : chr [1:448] "1224" "1224" "1224" "1224" ...
 ..$ class : chr [1:448] "1236" "1236" "1236" "1236" ...
 ..$ subclass : chr [1:448] NA NA NA NA ...
 ..$ order : chr [1:448] "72274" "72274" "72274" "72274" ...
 ..$ suborder : chr [1:448] NA NA NA NA ...
 ..$ family : chr [1:448] "468" "468" "468" "468" ...
 ..$ genus : chr [1:448] "469" "469" "469" "469" ...
 ..$ species_group : chr [1:448] NA NA NA NA ...
 ..$ species_subgroup: chr [1:448] NA NA NA NA ...
 ..$ species : chr [1:448] "470" "470" "471" "470" ...
$ taxNames: Named chr [1:212] "Actinomyces urogenitalis" "Lactobacillus jensenii" "Proteobacteria" "Gammaproteobacteria" ...
 ..- attr(*, "names")= chr [1:212] "103621" "109790" "1224" "1236" ...

Details

(Describe creation of this data set)

Source

Sequences were assembled from both the RDP 16S rRNA database and from the laboratory of Dr. David Fredricks.

References

RDP url here.

Examples

data(bvseqs)
maybe str(bvseqs) ; plot(bvseqs) ...

classify

Description

Functions to perform classification by local similarity threshold.
classify

Usage

classify(dmat, groups, dvect, method = "mutinfo", minScore = 0.45,
 doffset = 0.5, dStart = NA, maxDepth = 10, minGroupSize = 2,
 objNames = names(dvect), keep.data = TRUE, ..., verbose = FALSE)
classifyIter(dmat, groupTab, dvect, dStart = NA, multiple = FALSE,
 keep.data = TRUE, ..., verbose = FALSE)
classifier(dmat, groups, dvect, method = 'mutinfo', minScore = 0.45,
 doffset = 0.5, dStart = NA, minGroupSize = 2,
 objNames = names(dvect), keep.data = TRUE, ..., verbose = FALSE,
 depth = 1)
pull(dmat, groups, index)
pullTab(dmat, groupTab, index)

Arguments

dmat Square matrix of pairwise distances.
groups Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
groupTab a data.frame representing a taxonomy, with columns in increasing order of specificity from left to right (i.e., Kingdom -> Species). Column names are used to name taxonomic ranks. Rows correspond to margins of dmat.
dvect numeric vector of distance from query sequence to each reference corresponding to margins of dmat.
method The method for calculating the threshold; only 'mutinfo' is currently implemented.
minScore Threshold value for the match score to define a match.
doffset Offset used in the denominator of the expression to calculate match score to penalize very small groups of reference objects.
dStart start with this value of D.
multiple if TRUE, stops at the rank that yields at least one match; if FALSE, continues to perform classification until exactly one match is identified.
maxDepth Maximum number of iterations that will be attempted to perform classification.
minGroupSize The minimal number of members comprising at least one group required to attempt classification.
objNames Optional character identifiers for objects corresponding to margin of dmat.
keep.data Populates thresh$distances (see findThreshold) if TRUE.
verbose Terminal output is produced if TRUE.
index an integer specifying an element in dmat
... see Details
depth specifies iteration number (not meant to be user-defined)
Details
classify performs iterative classification. See the vignette vignette for package clst for a description of the classification algorithm.
classifier performs non-iterative classification, and is typically not called directly by the user.
The functions pull and pullTab are used to remove a single element of dmat for the purpose of performing classification against the remaining elements. The value of these two functions (a list) can be passed directly to classify or classifyIter directly (see examples).

Value
classify and classifyIter return x, a list of lists, one for each iteration of the classifier. Each sub-list contains the following named elements:
depth An integer indicating the number of the iteration (where x[[i]]$depth == i)
tally a data.frame with one row for each group or reference objects. Columns below and above contain counts of reference objects with distance values greater than or less than D, respectively; score, containing match score S; match is 1 if $S \geq minScore$, 0 otherwise; and the minimum, median, and maximum values of distances to all members of the indicated group.
details a list of two matrices, named "below" and "above", itemizing each object with index i in the reference set with distances below or above the distance threshold D, respectively. Columns include index, the index i; dist, the distance between the object and the query; and group, indicating the classification of the object.
matches Character vector naming groups to which query object belongs.
thresh object returned by findThreshold
params a list of input arguments and their values
input list containing copies of dvect and groups

Author(s)
Noah Hoffman

See Also
findThreshold

Examples

illustrate classification using the Iris data set
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species

remove one element from the data set and perform classification using ## the remaining elements as the reference set
ind <- 1
cat(paste("class of "unknown" sample is Iris",groups[ind]),fill=TRUE)
cc <- classify(dmat[-ind,-ind], groups[-ind], dvect=dmat[ind, -ind])
printClst(cc)

this operation can be performed conveinetly using the `pull` function
findThreshold

ind <- 51
cat(paste('class of "unknown" sample is Iris', groups[ind]), fill = TRUE)
cc <- do.call(classify, pull(dmat, groups, ind))
printClst(cc)
str(cc)

findThreshold

Description

Identify a distance threshold predicting whether a pairwise distance represents a comparison between objects in the same class (within-group comparison) or different classes (between-group comparison) given a matrix providing distances between objects and the group membership of each object.

Usage

findThreshold(dmat, groups, distances, method = "mutinfo", prob = 0.5, na.rm = FALSE, keep.dists = TRUE, roundCuts = 2, minCuts = 20, maxCuts = 300, targetCuts = 100, verbose = FALSE, depth = 1, ...)

partition(dmat, groups, include, verbose = FALSE)

Arguments

dmat | Square matrix of pairwise distances.
groups | Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
include | vector (numeric or boolean) indicating which elements to retain in the output; comparisons including an excluded element will have a value of NA
distances | Optional output of partition provided in the place of dmat and groups
method | The method for calculating the threshold; only 'mutinfo' is currently implemented.
prob | Sets the upper and lower bounds of D as some quantile of the within class distances and between-class differences, respectively.
na.rm | If TRUE, excludes NA elements in groups and corresponding rows and columns in dmat. Ignored if distances is provided.
keep.dists | If TRUE, the output will contain the distances element (output of partition).
roundCuts | Number of digits to round cutoff values (see Details)
minCuts | Minimal length of vector of cutoffs (see Details).
maxCuts | Maximal length of vector of cutoffs (see Details)
targetCuts | Length of vector of cutoffs if conditions met by minCuts and maxCuts are not met (see Details).
verbose | Terminal output is produced if TRUE.
depth | Private argument used to track level of recursion.
... | Extra arguments are ignored.
findThreshold

Details

findThreshold is used internally in classify, but may also be used to calculate a starting value of SD2.

partition is used to transform a square (or lower triangular) distance matrix into a data.frame containing a column of distances ($vals$) along with a factor ($comparison$) defining each distance as a within- or between-group comparison. Columns row and col provide indices of corresponding rows and columns of dmat.

Value

In the case of findThreshold, output is a list with elements described below. In the case of partition, output is the data.frame returned as the element named $distances$ in the output of findThreshold.

- **D** The distance threshold (distance cutoff corresponding to the PMMI).
- **pmmi** Value of the point of maximal mutual information (PMMI)
- **interval** A vector of length 2 indicating the upper and lower bounds over which values for the threshold are evaluated.
- **breaks** A data.frame with columns x and y providing candidate breakpoints and corresponding mutual information values, respectively.
- **distances** If keep.distances is TRUE, a data.frame containing pairwise distances identified as within- or between classes.
- **method** Character corresponding to input argument method.
- **params** Additional input parameters.

Author(s)

Noah Hoffman

See Also

plotDistances, plotMutinfo

Examples

data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
thresh <- findThreshold(dmat, groups, type="mutinfo")
str(thresh)
plotDistances

Visualize results of `link{findThreshold}`

Description

The functions `plotDistances` and `plotMutinfo` are used to visualize the distance threshold calculated by `findThreshold` in the context of pairwise distances among objects in the reference set.

Usage

```r
plotDistances(distances, D = NA, interval = NA,
               ylab = "distances", ...)  
plotMutinfo(breaks, D = NA, interval = NA,
            xlab = "distance", ylab = "mutual information", ...)
```

Arguments

- `distances`: The `$distances` element of the output value of `findThreshold`
- `breaks`: The `$breaks` element of the output value of `findThreshold`
- `D`: The distance threshold
- `interval`: The range of values over which candidate values of PMMI are evaluated.
- `xlab`: Label the x axis of the plot.
- `ylab`: Label the y axis of the plot.
- `...`: Additional arguments are passed to `bwplot` (plotDistances) or `xyplot` (plotMutinfo)

Details

`plotDistances` produces a box-and-whisker plot contrasting within- and between-group distances.

`plotMutinfo` produces a plot of cutpoints vs mutual information scores.

Value

Returns a lattice grid object.

Author(s)

Noah Hoffman

See Also

`findThreshold`

Examples

```r
data(iris)  
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))  
groups <- iris$Species  
thresh <- findThreshold(dmat, groups)  
do.call(plotDistances, thresh)  
do.call(plotMutinfo, thresh)
```
printClst \hspace{1cm} \textit{Print a summary of the classifier output.}

\textbf{Description}

Prints a description of the output of \texttt{classify}.

\textbf{Usage}

\begin{verbatim}
printClst(cc, rows = 8, nameWidth = 30, groupNames)
\end{verbatim}

\textbf{Arguments}

\begin{description}
\item \texttt{cc} \hspace{1cm} \texttt{Output of classify}
\item \texttt{rows} \hspace{1cm} \texttt{Number of rows corresponding to groups of reference objects to show.}
\item \texttt{nameWidth} \hspace{1cm} \texttt{Character width of group names.}
\item \texttt{groupNames} \hspace{1cm} \texttt{a named vector containing replacement names for groups keyed by categories in groups (classify) or groupTab (classifyIter).}
\end{description}

\textbf{Value}

Output value is \texttt{NULL}; output is to stdout.

\textbf{Author(s)}

Noah Hoffman

\textbf{See Also}

\texttt{classify, classifyIter}

\textbf{Examples}

\begin{verbatim}
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species
\end{verbatim}

\textbf{scaleDistPlot} \hspace{1cm} \textit{Annotated multidimensional scaling plots.}

\textbf{Description}

Produces annotated representations of two-dimensional multidimensional scaling plots using \texttt{cmdscale}.
scaleDistPlot

Usage

scaleDistPlot(dmat, groups, fill, X, O, indices = "no", include, display, labels, shuffleGlyphs = NA, key = "top", keyCols = 4, glyphs, xflip = FALSE, yflip = FALSE, ...)

Arguments

dmat Square matrix of pairwise distances.
groups Object coercible to a factor identifying group membership of objects corresponding to either edge of dmat.
fill vector (logical or indices) of points to fill
X vector of points to mark with an X
O vector of points to mark with a circle
indices label points with indices (all points if 'yes', or a subset indicated by a vector)
include boolean or numeric vector of elements to include in call to cmdscale
display boolean or numeric vector of elements to include in call to display
labels list or data frame with parameters $i indicating indices and $text containing labels.
shuffleGlyphs modify permutation of shapes and colors given an integer to serve as a random seed.
key 'right' (single column), 'top' (variable number of columns), or NULL for no key
keyCols number of columns in key
glyphs a data.frame with columns named col and pch corresponding to elements of unique(groups)
xflip if TRUE, flip orientation of x-axis
yflip if TRUE, flip orientation of y-axis
... additional arguments are passed to xyplot

Value

Returns a lattice grid object.

Author(s)

Noah Hoffman

See Also

cmdscale, xyplot
```r
# Examples
data(iris)
dmat <- as.matrix(dist(iris[,1:4], method="euclidean"))
groups <- iris$Species

## visualize pairwise euclidean distances among items in the Iris data set
fig <- scaleDistPlot(dmat, groups)
plot(fig)

## leave-one-out analysis of the classifier
loo <- lapply(seq_along(groups), function(i){
do.call(classify, pull(dmat, groups, i))
})
matches <- lapply(loo, function(x) rev(x)[[1]]$matches)
result <- sapply(matches, paste, collapse="-")
confusion <- sapply(matches, length) > 1
no_match <- sapply(matches, length) < 1
plot(scaleDistPlot(dmat, groups, fill=confusion, O=confusion, X=no_match))

# strep

strep

Streptococcus data set.

Description

Square matrices describing pairwise distances among 16s rRNA sequences.

Usage
data(strep)

Format

List of 5
$ dmat1 : num [1:150, 1:150] 0 5.81 8.38 10.28 10.64 ...
..- attr(*, "dimnames")=List of 2
 ... $ : chr [1:150] "197" "199" "207" "208" ...
 ... $ : chr [1:150] "197" "199" "207" "208" ...
$ dmat2 : num [1:150, 1:150] 0 5.09 3.82 7.21 7.59 ...
 ..- attr(*, "dimnames")=List of 2
 ... $ : chr [1:150] "197" "199" "207" "208" ...
 ... $ : chr [1:150] "197" "199" "207" "208" ...
$ dmat3 : num [1:150, 1:150] 0 5.63 5.81 8.77 9.14 ...
 ..- attr(*, "dimnames")=List of 2
 ... $ : chr [1:150] "197" "199" "207" "208" ...
 ... $ : chr [1:150] "197" "199" "207" "208" ...
$ taxa : Factor w/ 50 levels "Streptococcus acidominimus",...
... 31 44 26 4 31 32 39 42 31 ...
$ abbrev: Factor w/ 50 levels "S acidominimus",...
... 31 44 26 4 31 32 39 42 31 ...

Details

The matrices $dmat1, dmat2, and dmat3 contain percent nucleotide difference with indels penalized heavily, little, and somewhat, respectively.

$taxa is a factor of species names; abbreviations of the same names are found in $abbrev.
Examples

data(strep)
Index

*Topic `\textasciitilde kwd1`
  printClst, 10
  scaleDistPlot, 10
*Topic `\textasciitilde kwd2`
  printClst, 10
*Topic `\textasciitilde kwd3`
  classify, 4
  clst-package, 2
  findThreshold, 7
  plotDistances, 9
*Topic `datasets`
  actino, 3
  bvseqs, 3
  strep, 12
*Topic `package`
  clst-package, 2

actino, 3
bvseqs, 3
bwplot, 9

classifier (classify), 4
classify, 4, 8, 10
classifyIter, 10
classifyIter (classify), 4
clst (clst-package), 2
clst-package, 2
cmdscale, 2, 10, 11

findThreshold, 5, 6, 7, 9

partition, 7
partition (findThreshold), 7
plotDistances, 8, 9
plotMutinfo, 8
plotMutinfo (plotDistances), 9
printClst, 10
pull (classify), 4
pullTab (classify), 4

scaleDistPlot, 10
strep, 12

xyplot, 9, 11