Package ‘cobindR’

November 20, 2016

Title Finding Co-occurring motifs of transcription factor binding sites

Description Finding and analysing co-occurring motifs of transcription factor binding sites in groups of genes

Version 1.12.0

Date 2013-07-09

Author Manuela Benary, Stefan Kroeger, Yuehien Lee, Robert Lehmann

Maintainer Manuela Benary <manuela.benary@cms.hu-berlin.de>

License Artistic-2.0

Imports methods, seqinr, yaml, rtfbs, gplots, mclust, gmp, BiocGenerics (>= 0.13.8), IRanges, Biostrings, BSgenome, biomaRt

Suggests RUnit

Enhances rGADEM, seqLogo, genoPlotR, parallel, VennDiagram, RColorBrewer, vcd, MotifDb, snowfall

biocViews ChIPSeq, CellBiology, MultipleComparison, SequenceMatching

NeedsCompilation no

R topics documented:
cobindR-package .. 3
bg_binding_sites .. 3
bg_pairs ... 4
bg_sequences ... 5
bg_sequence_origin ... 6
bg_sequence_source .. 6
bg_sequence_type ... 7
binding_sites ... 8
cobindr-class .. 9
cobindRConfiguration .. 10
comment .. 11
configuration .. 12
configuration-class ... 13
downstream ... 14
experiment_description .. 15
fdrThreshold ... 16
find.pairs .. 16
R topics documented:

- `get.bindingsite.ranges` .. 17
- `get.pairs` .. 18
- `get.significant.pairs` .. 19
- `id` .. 19
- `location` .. 20
- `mart` ... 21
- `max_distance` ... 22
- `name` .. 22
- `pairs` .. 23
- `pairs_of_interest` ... 24
- `path` .. 25
- `pfm` .. 26
- `pfm_path` .. 27
- `plot.detrending` .. 27
- `plot.gc` .. 28
- `plot.pairdistance` .. 29
- `plot.pairdistribution` ... 30
- `plot.positionprofile` .. 31
- `plot.positions` ... 31
- `plot.positions.simple` ... 32
- `plot.tfbs.heatmap` .. 33
- `plot.tfbs.venndiagram` ... 34
- `plot.tfbslogo` ... 35
- `predicted2pwm` ... 35
- `pseudocount` .. 36
- `pValue` ... 37
- `rtfbs` ... 37
- `search.gadem` ... 39
- `search.pwm` .. 41
- `seqObj` ... 42
- `SeqObj-class` .. 43
- `sequence` ... 44
- `sequences` .. 45
- `sequence_origin` ... 46
- `sequence_source` ... 46
- `sequence_type` ... 46
- `species` ... 47
- `testCpG` .. 48
- `threshold` .. 49
- `uid` .. 50
- `upstream` .. 51
- `write.bindingsites` ... 52
- `write.bindingsites.table` ... 53
- `write.pairs` ... 54
- `write.sequences` ... 54

Index .. 56
Description

Many transcription factors (TFs) regulate gene expression by binding to specific DNA motifs near genes. Often the regulation of gene expression is not only controlled by one TF, but by many TFs together, that can either interact in a cooperative manner or interfere with each other. In recent years high throughput methods, like ChIP-Seq, have become available to produce large amounts of data, that contain potential regulatory regions. In silico analysis of transcription factor binding sites can help to interpret these enormous datasets in a convenient and fast way or narrow down the results to the most significant regions for further experimental studies.

cobindR provides a complete set of methods to analyse and detect pairs of TFs, including support of diverse input formats and different background models for statistical testing. Several visualization tools are implemented to ease the interpretation of the results.

Author(s)

Yue-Hien Lee, Robert Lehmann, Stefan Kroeger, Manuela Benary

See Also

The core class in this package: cobindr-class. The core function in this package: find.pairs.

bg_binding_sites

motif hits in the background sequences

Description

motif hits in the background sequences

Usage

S4 method for signature 'cobindr'
bg_binding_sites(x)

S4 replacement method for signature 'cobindr,data.frame'
bg_binding_sites(x) <- value

Arguments

x a cobindr object

value data.frame holding the binding site hits in the background sequences

Value

motif hits in background sequences (data.frame)
Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, sequences, bg_sequences, desc, configuration, binding_sites, pfm, bg_binding_sites, pairs, bg_pairs, p pairs_of_interest

Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak bg_binding_sites'
cbr <- cobindr(cfg)
binding_sites(cbr)

bg_pairs

motif hit pairs in the background sequences

Description

motif hit pairs in the background sequences

Usage

S4 method for signature 'cobindr'
bg_pairs(x)
S4 replacement method for signature 'cobindr,data.frame'
bg_pairs(x) <- value

Arguments

x

a cobindr object

value

data.frame holding the binding site pairs in the background sequences

Value

background motif pairs (data.frame)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, sequences, bg_sequences, desc, configuration, binding_sites, bg_binding_sites, pfm, pairs, bg_pairs, p pairs_of_interest
Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak bg_pairs'
cbr <- cobindr(cfg)
bg_pairs(cbr)

Description

list of background sequence

Usage

S4 method for signature 'cobindr'
bg_sequences(x)
S4 replacement method for signature 'cobindr,list'
bg_sequences(x) <- value

Arguments

x a cobindr object
value list of background sequence of type SeqObj

Value

list of background sequences (SeqObj)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, bg_sequences, bg_sequences, desc, configuration, binding_sites, bg_binding_sites, pfm, pairs, bg_pairs

Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak bg_sequences'
cbr <- cobindr(cfg)
length(bg_sequences(cbr))
bg_sequence_origin

Description
background sequence origin note

Usage
S4 method for signature 'configuration'
bg_sequence_origin(x)
S4 replacement method for signature 'configuration,character'
bg_sequence_origin(x) <- value

Arguments
x a cobindR configuration object
value a character

Value
background sequence origin (character)

Author(s)
Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also
id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_type, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

cfg <- cobindRConfiguration()
bg_sequence_origin(cfg)

bg_sequence_source

Description
background sequence source note

Usage
S4 method for signature 'configuration'
bg_sequence_source(x)
S4 replacement method for signature 'configuration,character'
bg_sequence_source(x) <- value
bg_sequence_type

Arguments

x a cobindR configuration object
value a character

Value

background sequence source (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, bg_sequence_type

Examples

```r
cfg <- cobindRConfiguration()
bg_sequence_source(cfg)
```

bg_sequence_type background sequence type note

Description

background sequence type note

Usage

```r
## S4 method for signature 'configuration'
bg_sequence_type(x)
## S4 replacement method for signature 'configuration,character'
bg_sequence_type(x) <- value
```

Arguments

x a cobindR configuration object
value a character

Value

bg_sequence_type (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, bg_sequence_type
Examples

cfg <- cobindRConfiguration()
bg_sequence_type(cfg)

binding_sites
motif hits on the foreground sequences

Description

motif hits on the foreground sequences

Usage

S4 method for signature 'cobindr'

binding_sites(x)

S4 replacement method for signature 'cobindr,data.frame'

binding_sites(x) <- value

Arguments

x
a cobindr object

value
data.frame holding the binding site hits in the foreground sequences

Value

motif hits in foreground sequences as data.frame

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, sequences, bg_sequences, desc, configuration, binding_sites, bg_binding_sites, pfm, pairs, bg_pairs, p pairs_of_interest

Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak binding_sites'
cbr <- cobindr(cfg)
binding_sites(cbr)
cobindr-class

Description

Container for experiment run and its meta-data

Objects from the Class

Objects can be created by calls of the form `new("cobindr", conf, name, desc).

Slots

- **uid**: Object of class "character" ~~ unique id for internal representation
- **name**: Object of class "character" ~~ name of the experiment
- **sequences**: Object of class "list" ~~ list of sequence objects to be analyzed
- **bg_sequences**: Object of class "list" ~~ list of background sequences for statistical analyses
- **desc**: Object of class "character" ~~ verbal experiment description
- **configuration**: Object of class "configuration" ~~ the configuration object used to describe the experiment
- **pfm**: Object of class "list" ~~ list of pfms to be used
- **pairs_of_interest**: Object of class "factor" ~~ contains pairs for search

Methods

- **detrending** signature(object = "cobindr"): ...
- **find.pairs** signature(object = "cobindr"): ...
- **generate.background** signature(object = "cobindr"): ...
- **get.bindingsite.ranges** signature(object = "cobindr"): ...
- **get.pairs** signature(object = "cobindr"): ...
- **get.significant.pairs** signature(object = "cobindr"): ...
- **initialize** signature(.Object = "cobindr"): ...
- **input_pwm** signature(object = "cobindr"): ...
cobindRConfiguration
cobindR configuration object constructor

Description

cobindR configuration object constructor

Usage

S4 method for signature 'character'
cobindRConfiguration(x)

Arguments

x path to configuration file. NULL by default
Value

cobindR configuration object

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

seqObj

Examples

cfg <- cobindRConfiguration()

comment <- comment(x) <- value

Arguments

x a cobindR seqObj object
value comment to the sequence (character)

Value

comment (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, species, comment, location, sequence

Examples

library(Biostrings)
so <- seqObj(DNAString('A'), id='', name='', species='', comment='', location='')
comment(so)
configuration

configuration of cobindr object

Description

configuration of cobindr object

Usage

```r
## S4 method for signature 'cobindr'
configuration(x)
## S4 replacement method for signature 'cobindr,configuration'
configuration(x) <- value
```

Arguments

- `x`: a cobindr object
- `value`: returns the configuration object used in this cobindR object

Value

cobindR configuration object

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

guidelines, sequences, bg_sequences, desc, configuration, binding_sites, bg_binding_sites, pfm, pairs, bg_pairs, ...

Examples

```r
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak configuration'
cbr <- cobindr(cfg)
configuration(cbr)
```
configuration-class

Class "configuration"

Description

Container for experiment description.

Objects from the Class

Objects can be created by calls of the form `new("configuration", fname)`.

Slots

- **id**: Object of class "character" ~~ unique id for internal representation
- **experiment_description**: Object of class "character" ~~ verbal experiment description
- **sequence_source**: Object of class "character" ~~ file path or list of paths
- **sequence_origin**: Object of class "character" ~~ source of sequence data, e.g. ensembl
- **sequence_type**: Object of class "character" ~~ either ChipSeq or Fasta or BED are available
- **bg_sequence_source**: Object of class "character" ~~ file path or list of paths
- **bg_sequence_origin**: Object of class "character" ~~ how the background is obtained - either simulated or from fasta files or from gene ids
- **bg_sequence_type**: Object of class "character" ~~ determines the generation of the background sequences. Possible values: simulated, fasta and geneid
- **species**: Object of class "character" ~~ reference species
- **downstream**: Object of class "numeric" ~~ length of sequence downstream of reference point, e.g. transcription start site
- **upstream**: Object of class "numeric" ~~ length of sequence upstream of reference point, e.g. transcription start site
- **max_distance**: Object of class "numeric" ~~ maximal distance allowed between cooccuring transcription factor binding sites
- **pairs**: Object of class "character" ~~ list of pairs of interesting transcription factors
- **pfm_path**: Object of class "character" ~~ path to pfm matrix file
- **threshold**: Object of class "numeric" ~~ threshold for transcription factor binding site prediction
- **fdrThreshold**: Object of class "numeric" ~~ false discovery rate for filtering results (used in rTfbs)
- **date**: Object of class "character" ~~ data of experiment run
- **path**: Object of class "character" ~~ path of configuration file
- **mart**: Object of class "character" ~~ optional mirror for biomart
- **pseudocount**: Object of class "numeric" ~~ sets the pseudocount for the detrending analysis
- **pValue**: Object of class "numeric" ~~ optional p-Value for search with RGadem
Methods

- `initialize` signature(.Object = "configuration"): ...
- `read.background.fasta` signature(object = "configuration"): ...
- `read.pfm` signature(object = "configuration"): ...
- `read.sequences` signature(object = "configuration"): ...
- `write` signature(x = "configuration", file = "character"): ...

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

See Also

SeqObj cobindr

Examples

```
showClass("configuration")
```

Description

downstream range [bp] used in experiment

Usage

```r
## S4 method for signature 'configuration'
downstream(x)
## S4 replacement method for signature 'configuration,numeric'
downstream(x) <- value
```

Arguments

- `x` a cobindR configuration object
- `value` downstream distance [bp] of feature to be included (numeric)

Value

considered downstream range [bp]

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, bg_sequence_type, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue
Examples

```r
cfg <- cobindRConfiguration()
downstream(cfg)

experiment_description(cbr)
```

Description

description of cobindR or configuration object

Usage

```r
## S4 method for signature 'configuration'
experiment_description(x)
## S4 replacement method for signature 'configuration,character'
experiment_description(x) <- value
## S4 method for signature 'cobindr'
experiment_description(x)
## S4 replacement method for signature 'cobindr,character'
experiment_description(x) <- value
```

Arguments

- `x` a cobindR or configuration object
- `value` description

Value

experiment description (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

`id`, `experiment_description`, `sequence_source`, `sequence_origin`, `sequence_type`, `bg_sequence_source`, `bg_sequence_origin`, `bg_sequence_type`, `species`, `downstream`, `upstream`, `max_distance`, `pairs`, `pfm_path`, `threshold`, `fdrThreshold`, `path`, `mart`, `pValue`
find.pairs

function to find pairs of binding sites for every sequence in a given object of class "cobindr"

Description
find.pairs creates a data frame with all pairs in all sequences within the given distance.

Usage
find.pairs(x, background_scan = FALSE, n.cpu = NA)
get.bindingsite.ranges

Arguments

\textbf{x} \hspace{1cm} an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.

\textbf{background_scan} \hspace{1cm} logical flag, if \texttt{background_scan = TRUE} the pairs for the background sequences will be found.

\textbf{n.cpu} \hspace{1cm} number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used.

Value

\texttt{runObj} \hspace{1cm} an object of the class "cobindr" including the pairs of transcription factor binding sites

Author(s)

Yue-Hien Lee <>

See Also

\texttt{plot.detrending}

\textbf{get.bindingsite.ranges} \hspace{1cm} convenience function to convert predicted binding sites to \texttt{GRanges} object.

\textbf{Description}

Function converts predicted binding sites into a \texttt{GRanges} object (package: GenomicFeatures). This allows for easy interaction with other tools as well as output of different formats (bed, gff).

\textbf{Usage}

\texttt{get.bindingsite.ranges(x, \ldots)}

\textbf{Arguments}

\textbf{x} \hspace{1cm} An object of the class "cobindr", which will hold the predicted binding site locations.

\textbf{\ldots} \hspace{1cm} optional additional parameters

\textbf{Value}

A \texttt{GRanges} object holding the positions of all predicted transcription factor binding sites relative to the input sequence.

\textbf{Author(s)}

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>
See Also

get.pairs write.bindingsites write.bindingsites.table

Examples

export(get.bindingsite.ranges(runObj), "tfbs_hits.gff3")

get.pairs function to get output of findPairs

Description

Function returns the results of findPairs() as a data frame. The data.frame consists of 6 columns, namely

- a unique id for each pair,
- the unique id of the sequence, where the pair was found,
- the names of the corresponding PFM,
- the unique id for each PFM, and
- the distance window in which the pair occurs.

Usage

S4 method for signature 'cobindr'
get.pairs(x, background = FALSE)

Arguments

x an object of the class "cobindr", which holds all necessary information about the sequences and the predicted binding sites.
background logical flag. If background is ‘TRUE’ the pairs found in the background sequences are used.

Author(s)

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

See Also

get.significant.pairs, write.bindingsites, write.sequences, write
get.significant.pairs

function to returns the results of detrending as a data.frame

Description

get.significant.pairs returns a data.frame of observed distances between the specified pair of PWMs in the foreground set of the sequences as well as the background set of sequences. The distance distribution for the pair in the background is used for detrending.

Usage

S4 method for signature 'cobindr'
get.significant.pairs(x, pwm1, pwm2, bin_length=20, z_value=3, overlap=0, abs.distance=FALSE)

Arguments

x
an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
pwm1
name of the first PWM
pwm2
name of the second PWM
bin_length
defines size of bins for distance analysis, default value is 20nucleotides
z_value
level of significance
overlap
number of nucleotides which are allowed for an overlap
abs.distance
logical flag

Author(s)

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

See Also

plot.detrending, get.pairs, find.pairs

id
id of cobindR configuration object

Description

id of cobindR configuration object.

Usage

S4 method for signature 'configuration'
id(x)
S4 replacement method for signature 'configuration,character'
id(x) <- value
location

Arguments

- **x**
 a cobindR configuration object

- **value**
 the identifier of the configuration object

Value

id (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

- id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

```r
cfg <- cobindRConfiguration()
id(cfg)
```

location

location of cobindR SeqObj object

Description

location of cobindR seqObj object (e.g. chr1)

Usage

```r
## S4 method for signature 'SeqObj'
location(x)

## S4 replacement method for signature 'SeqObj,character'
location(x) <- value
```

Arguments

- **x**
 a cobindR seqObj object

- **value**
 the location description of the sequence

Value

returns location (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

- uid, name, species, location, comment, sequence
Examples

```
library(Biostrings)
so <- seqObj(DNAString('A'), id='', name='', species='', comment='', location='')
location(so)
```

Description

biomart of cobindR configuration object. Set to "ensembl" as default

Usage

```r
## S4 method for signature 'configuration'
mart(x)
## S4 replacement method for signature 'configuration,character'
mart(x) <- value
```

Arguments

- `x`: a cobindR configuration object
- `value`: name of biomart to retrieve sequence data

Value

`mart` (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

`id`, `experiment_description`, `sequence_source`, `sequence_origin`, `sequence_type`, `bg_sequence_source`, `bg_sequence_origin`, `species`, `downstream`, `upstream`, `max_distance`, `pairs`, `pfm_path`, `threshold`, `fdrThreshold`, `path`, `mart`, `pValue`
max_distance

max_distance of cobindR configuration object

Description

max_distance of cobindR configuration object.

Usage

S4 method for signature 'configuration'
max_distance(x)
S4 replacement method for signature 'configuration,numeric'
max_distance(x) <- value

Arguments

x a cobindR configuration object
value the maximal distance of two hits to be considered a pair

Value

max_distance (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

cfg <- cobindRConfiguration()
max_distance(cfg)

name

name of cobindR SeqObj object

Description

name of cobindR seqObj object.
pairs

Usage

S4 method for signature 'SeqObj'
name(x)
S4 method for signature 'cobindR'
name(x)
S4 replacement method for signature 'SeqObj,character'
name(x) <- value
S4 replacement method for signature 'cobindR,character'
name(x) <- value

Arguments

- `x` a cobindR seqObj object
- `value` the name describing the sequence object

Value

name (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, species, location, comment, sequence

Examples

library(Biostrings)
so <- seqObj(DNAString('A'), id='', name='', species='', comment='', location='')
name(so)

pairs

| pairs | motif hit pairs in the foreground sequences |

Description

motif hit pairs in the foreground sequences

Usage

S4 method for signature 'configuration'
pairs(x)
S4 replacement method for signature 'configuration,character'
pairs(x) <- value
S4 method for signature 'cobindR'
pairs(x)
S4 replacement method for signature 'cobindR,data.frame'
pairs(x) <- value
pairs_of_interest

Arguments

x a cobindR configuration object
value for a configuration object, pairs is a character specifying the motif pairs which should be considered. for a cobindR object, pairs is a data.frame holding the detected motif pairs.

Value

pairs (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

cfg <- cobindRConfiguration()
pairs(cfg)

pairs_of_interest pairs_of_interest of cobindr object

Description

pairs_of_interest of cobindr object.

Usage

S4 method for signature 'cobindr'
pairs_of_interest(x)
S4 replacement method for signature 'cobindr,factor'
pairs_of_interest(x) <- value

Arguments

x a cobindr object
value factors specifying the motif pairs that are to be evaluated

Value

pairs_of_interest (factor)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>
path

path

path of cobindR configuration object.

Description

path of cobindR configuration object.

Usage

```r
## S4 method for signature 'configuration'
path(x)
## S4 replacement method for signature 'configuration,character'
path(x) <- value
```

Arguments

- `x` a cobindR configuration object
- `value` the path of the loaded configuration file

Value

`path` (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

- `id`, `experiment_description`, `sequence_source`, `sequence_origin`, `sequence_type`, `bg_sequence_source`, `bg_sequence_origin`, `species`, `downstream`, `upstream`, `max_distance`, `pairs`, `pfm_path`, `threshold`, `fdrThreshold`, `path`, `mart`, `pValue`

Examples

```r
cfg <- cobindRConfiguration()
path(cfg)
```
pfm

pfm list used in experiment

Description

pfm list used in experiment

Usage

```r
## S4 method for signature 'cobindr'
pfm(x)
## S4 replacement method for signature 'cobindr,list'
pfm(x) <- value
```

Arguments

- `x` a cobindr object
- `value` a list of motif matrices

Value

pfm (list of motif matrices)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, sequences, bg_sequences, desc, configuration, binding_sites, bg_binding_sites, pfm, pairs, bg_pairs, pfm

Examples

```r
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta', package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak pfm'
cbr <- cobindr(cfg)
pfm(cbr)
```
pfm_path

pfm_path

Description

path to pfms to be used

Usage

S4 method for signature 'configuration'
pfm_path(x)
S4 replacement method for signature 'configuration,character'
pfm_path(x) <- value

Arguments

x
a cobindR configuration object
value
the path to the folder containing the motif matrices to be used

Value

pfm_path (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, sequence_type, bg_sequence_origin

Examples

cfg <- cobindRConfiguration()
pfm_path(cfg)

plot.detrending

function to plot distances between a pair of PWMs

Description

plot.detrending plots a histograms of observed distances between the specified pair of PWMs in the foreground set of the sequences as well as the background set of sequences. The distance distribution for the pair in the background is used for detrending.

Usage

S4 method for signature 'cobindr'
plot.detrending(x, pwm1, pwm2, bin_length=20, z_value=3, overlap=0, abs.distance=FALSE)
Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
pwm1 name of the first PWM
pwm2 name of the second PWM
bin_length defines size of bins for distance analysis, default value is 20 nucleotides
z_value level of significance
overlap number of nucleotides which are allowed for an overlap
abs.distance logical flag

Author(s)

Yue-Hien Lee

See Also

plot.pairdistribution, plot.pairdistance

Description

plot.gc calculates the GC (or CpG) content based on a window size for each sequence and plots the content for all sequences as a heatmap over position and sequence.

Usage

S4 method for signature 'cobindr'
plot.gc(x, seq.ids, cpg = F, wind.size = 50,
sig.test = F, hm.margin = c(4, 10), frac = 10, n.cpu = NA)

Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences.
seq.ids list of sequence identifiers, for which the GC (or CpG) content will be plotted.
cpg logical flag, if cpg=TRUE the CpG content rather than the GC content will be calculated and plotted.
wind.size integer describing the window size for GC content calculation
sig.test logical flag, if sig.test=TRUE wilcoxon.test is performed per individual window against all windows in other sequence at the same position. The significance test might be slow for large number of sequences
hm.margin optional argument providing the margin widths for the heatmap (if sig.test=FALSE)
frac determines the overlap between consecutive windows as fraction wind.size/frac
n.cpu number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used.
Examples

```r
library(Biostrings)

n <- 50 # number of input sequences
l <- 100 # length of sequences
bases <- c("A","C","G","T") # alphabet
# generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.25,.25,.25,.25)), collapse="")))
#save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)

cfg <- new("configuration")
slot(cfg, 'sequence_type') <- 'fasta'
slot(cfg, 'sequence_source') <- tmp.file
# avoid complaint of validation mechanism
slot(cfg, 'pfm_path') <- system.file("extdata/pfms",package='cobindR')
slot(cfg, 'pairs') <- ''

runObj <- new('cobindr', cfg, 'test')

plot.gc(runObj, cpg = TRUE)

unlink(tmp.file)
```

Description

For a specified pair of PWMs the function creates histogram plot of distances between pairs of TFs as specified by pwm1 and pwm2

Usage

```r
## S4 method for signature 'cobindr'
plot.pairdistance(x, pwm1, pwm2, breaks=50, main=NA, xlab=NA, ylab=NA, background=FALSE)
```
Arguments

- **x**: an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- **pwm1**: name of the first PWM
- **pwm2**: name of the second PWM
- **breaks**: number of breaks to separate the distance distribution into
- **main**: figure title
- **xlab**: label for the x-axis of the figure
- **ylab**: label for the y-axis of the figure
- **background**: flag allowing to plot foreground or background distance distribution

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

See Also

- `plot.pairdistribution`
- `plot.detrending`, `plot.pairdistance`

Description

For a specified pair of PWMs the function visualizes in how many sequences how many of the pairs can be found.

Usage

```r
## S4 method for signature 'cobindr'
plot.pairdistribution(x, pwm1, pwm2)
```

Arguments

- **x**: an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- **pwm1**: name of the first PWM
- **pwm2**: name of the second PWM

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

See Also

- `plot.detrending`, `plot.pairdistance`
plot.positionprofile

Function to plot a profile over the total number of predicted transcription factor binding sites for each PWM.

Description

plot.positionprofile provides position-wise profile plot over total number of predicted TFBS for each PWM over all input sequences. Windowing is used to provide a smoother appereance, the window size can be adjusted with the window parameter.

Usage

```r
## S4 method for signature 'cobindr'
plot.positionprofile(x, wind.len = 50)
```

Arguments

- `x`
 an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- `wind.len`
 integer, defining the length of the window for counting the hits.

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

- `plot.positions`

plot.positions

Function to plot hits for each PWM on the individual sequence

Description

plot.positions plots hits for each PWM on the individual sequence. Which sequences to plot can be specified by providing a list of sequence identifiers `seq.ids`. Which PWMs to plot can be specified as list of PWMs. The total height of the plot can be adjusted via argument `height`.

Usage

```r
## S4 method for signature 'cobindr'
plot.positions(x, seq.ids, pwms, main, order.seq = FALSE, wind.size = 400, frac = 10)
```
plot.positions.simple

Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
seq.ids list of sequence identifiers, for which the positions of TFBS will be plotted.
pwms list of PWMs, for which the positions will be visualized. If no list is given, all PWMs in runObj are used.
main title for the plot, if no title is given than 'predicted TFBS positions per sequence' will be used
order.seq logical flag, if TRUE similar patterns of TFBS are shown together. This is computationally expensive for large numbers of sequences.
wind.size integer describing the windows which will be used to enhance clustering of TFBS patterns. Necessary if order.seq=TRUE
frac integer

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de

plot.positions.simple function to plot hits for each PWM on the individual sequence

Description

plot.positions plots hits for each PWM on the individual sequence. Which sequences to plot can be specified by providing a list of sequence identifiers seq.ids. Which PWMs to plot can be specified as list of PWMs. The total height of the plot can be adjusted via argument height.

Usage

S4 method for signature 'cobindr'
plot.positions.simple(x, seq.ids, pwms, main)

Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
seq.ids list of sequence identifiers, for which the positions of TFBS will be plotted.
pwms list of PWMs, for which the positions will be visualized. If no list is given, all PWMs in runObj are used.
main title for the plot, if no title is given than 'predicted TFBS positions per sequence' will be used

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de

See Also

plot.positionprofile
plot.tfbs.heatmap

function to do plot a heatmap of overlaps between all specified PWMs

Description

plot.tfbs.heatmap plots a heatmap of overlaps between all specified PWMs. For each overlap, the significance is determined based on the hypergeometric test. If a file path is specified in pdf.name, the diagram will be written into the specified file.

Usage

S4 method for signature 'cobindr'
plot.tfbs.heatmap(x, pwms, include.empty.seqs = FALSE)

Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
pwms list of PWMs, for which the overlap will be visualized. If no list is given, all PWMs in runObj are used.
include.empty.seqs logical flag, if include.empty.seqs == TRUE, sequences without hits of the specified PWMs are also included in the diagram.

Details

In this plot for each pair of PWMs the overlap of sequences with hits of the given PWMs is calculated. The number of sequences in each overlap are color-coded in the heatmap. For each overlap the significance is calculated using the hypergeometric test. If the significance is below 0.05 (or below 0.01), the corresponding field is marked with one (or two) *.

Warning

- unknown identifier if the list of PWMs contains unknown PWM identifiers a warning is given and the method stops
- no hits if no hits are found in the object, the method gives a warning and stops

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

See Also

plot.tfbs.venndiagram
plot.tfbs.venndiagram function visualize the overlaps of PWM hits over the sequences.

Description

The distribution of PWM hits over the sequences is visualized as Venn diagram. If a list of PWM names is provided, only these PWMs are included in the Venn diagram. If include.empty.seqs == TRUE, sequences without hits of the specified PWMs are also included in the diagram. If a file path is specified in pdf.name, the diagram will be written into the specified file.

Usage

```r
## S4 method for signature 'cobindr'
plot.tfbs.venndiagram(x, pwms, include.empty.seqs = FALSE)
```

Arguments

- `x`: an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- `pwms`: list of PWMs, which shall be visualized in the Venn-Diagram. If no list is given, all PWMs in the runObj are used. The package "VennDiagram" only allows Venn plots with up to 4 elements.
- `include.empty.seqs`: logical flag, if include.empty.seqs == TRUE, sequences without hits of the specified PWMs are also included in the diagram.

Warning

- unknown identifier: if the list of PWMs contains unknown PWM identifiers a warning is given and the method stops
- too many PWMs: if more than 4 PWMs are listed a warning is given and the method stops
- no hits: if no hits are found in the object, the method gives a warning and stops

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

References

using the package "VennDiagram" (http://www.biomedcentral.com/1471-2105/12/35/)

See Also

plot.tfbs.heatmap
plot.tfbslogo

function to plot sequence logos based on hits of tools

Description

plot.tfbslogo produces a sequence logo based on all hits per position weight matrix. If a file path is specified in pdf.name, sequences logos will be written into the specified file.

Usage

```r
## S4 method for signature 'cobindr'
plot.tfbslogo(x, pwms)
```

Arguments

- `x` Object
- `pwms` vector of names of position weight matrices used for searching the sequences. For each pwm a new sequence logo based on the hits is produced.

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>

predicted2pwm

function to convert predicted TFBS hits into a PWM

Description

function converts for each input PWM the predicted TFBS hits into a PWM. Function is intended to be used together with the sequence logo creation function `plot.tfbslogo`.

Usage

```r
## S4 method for signature 'cobindr'
predicted2pwm(x, as.pfm=FALSE)
```

Arguments

- `x` object of class "cobindr" describing the sequences and the predicted TFBS.
- `as.pfm` logical flag. to indicate whether the function should return a PFM (TRUE) or a PWM (FALSE)

Value

- `predPwm` positional frequency matrix based on consensus matrix

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>
See Also

plot.tfbslogo

pseudocount

pseudocount of cobindR configuration object

Description

pseudocount of cobindR configuration object. Set to 10 as default

Usage

```r
## S4 method for signature 'configuration'
pseudocount(x)
## S4 replacement method for signature 'configuration,character'
pseudocount(x) <- value
```

Arguments

- **x**
 - a cobindR configuration object

- **value**
 - pseudocount for detrending analysis, i.e. the default number in each distance bin.

Value

pseudocount (numeric)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pseudocount, pValue

Examples

```r
cfg <- cobindRConfiguration()
pseudocount(cfg)
```
pValue

pValue threshold used for motif hit finding

Description

pValue threshold used for motif hit finding

Usage

S4 method for signature 'configuration'

pValue(x)

S4 replacement method for signature 'configuration,numeric'

pValue(x) <- value

Arguments

x a cobindR configuration object

value the p-value threshold used for hit searching

Value

pValue threshold (numeric)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence Origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

cfg <- cobindRConfiguration()
pValue(cfg)

rtfbs

function performs TFBS prediction using the package rtfbs

Description

function performs TFBS prediction using the package rtfbs

Usage

S4 method for signature 'cobindr'

rtfbs(x, append = F, background_scan = FALSE, n.cpu = NA)
Arguments

- `x`: an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- `append`: logical flag, if `append=TRUE` the binding sites will be appended to already existing results
- `background_scan`: logical flag, if `background_scan=TRUE` the background sequences will be searched for transcription factor binding sites
- `n.cpu`: number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used.

Value

- `x`: an object of the class "cobindr" including the predicted transcription factor binding sites

Author(s)

Yue-Hien Lee <>

References

uses the package "rtfbs" (http://cran.r-project.org/web/packages/rtfbs/index.html)

See Also

search.pwm, search.gadem

Examples

###
use simulated sequences
library(Biostrings)

n <- 400 # number of input sequences
l <- 500 # length of sequences
n.hits <- 250 # number of 'true' binding sites
bases <- c("A","C","G","T") # alphabet

generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.25,.25,.25,.25)), collapse="")))

path <- system.file("extdata/pfms/myod.tfpfm",package="cobindR")
motif <- read.transfac.pfm(path)[[1]] # get PFM of binding site

add binding sites with distance specificity
for(position in c(110, 150)) {
 hits <- apply(apply(motif, 2, function(x) sample(x=bases, size=n.hits, prob=x, replace=TRUE)), 1, paste, collapse="")
 pos.hits <- round(rnorm(n.hits, mean=position, sd=8))
 names(pos.hits) <- sample(1:n, n.hits)
 for(i in 1:n.hits) substr(seqs[as.integer(names(pos.hits)[i])],
 start=pos.hits[i], stop=pos.hits[i]+ncol(motif)) <- hits[i]
search.gadem

```r
# save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)
# run cobindr
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- tmp.file
sequence_origin(cfg) <- 'artificial sequences'
pfm_path(cfg) <- system.file('extdata/pfms', package = 'cobindR')
pairs(cfg) <- V$MYOD_01 V$MYOD_01'
fdrThreshold(cfg) <- 0
runObj <- cobindr(cfg, name = 'cobindr test using sampled sequences')
# perform tfbs prediction using rtfbs
runObj.bs <- rtfbs(runObj)
# show results
plot.positionprofile(runObj.bs)
# clean up
unlink(tmp.file)
```

search.gadem

function performs TFBS prediction denovo or based on transfac / jaspar matrices pwms using rGADEM.

Description

function performs TFBS prediction denovo or based on transfac / jaspar matrices pwms using rGADEM. If append=T, predicted hits are appended to the hits in the input object.

Usage

```r
## S4 method for signature 'cobindr'
search.gadem(x, deNovo = FALSE, append = F, background_scan = FALSE)
```

Arguments

- `x`: an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
- `deNovo`: logical flag, if deNOVO=TRUE a denovo search is startet. Otherwise the given PFM are used as seed.
- `append`: logical flag, if append=TRUE the binding sites will be appended to already existing results
- `background_scan`: logical flag, if background_scan=TRUE the function will search for binding sites in the set of background sequences

Value

- `x`: an object of the class "cobindr" including the predicted transcription factor binding sites
Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>

References

uses package "rGADEM" (http://www.bioconductor.org/packages/release/bioc/html/rGADEM.html)

See Also

rtfbs, search.pwm

Examples

##
use simulated sequences
library(Biostrings)

n <- 600 # number of input sequences
l <- 150 # length of sequences
n.hits <- 600 # number of 'true' binding sites
bases <- c("A","C","G","T") # alphabet
generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l, replace=TRUE, prob=c(.25,.25,.25,.25)), collapse="")))
path <- system.file(extdata/pfms/myod.tfpfm,package=\'cobindR\'
)

motif <- read.transfac.pfm(path)[[1]] # get PFM of binding site
add binding sites with distance specificity
for(position in c(70, 90)) {
 hits <- apply(apply(motif, 2, function(x) sample(x=bases, size=n.hits, prob=x, replace=TRUE)), 1, paste, collapse="")
 pos.hits <- round(rnorm(n.hits, mean=position, sd=8))
 names(pos.hits) <- sample(1:n, n.hits)
 for(i in 1:n.hits) substr(seqs[as.integer(names(pos.hits)[i])], start=pos.hits[i], stop=pos.hits[i]+ncol(motif)) <- hits[i]
}
#save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)
#run cobindr
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- tmp.file
sequence_origin(cfg) <- 'artificial sequences'
pfm_path(cfg) <- system.file(extdata/pfms',package=\'cobindR\'
)pairs(cfg) <- '\$MYOD_01 $MYOD_01'
runObj <- cobindr(cfg, name='cobindr test using sampled sequences')

perform tfbs prediction using rGADEM - commented out due to long time required
runObj.bs <- search.gadem(runObj)
show results
plot.positions(runObj.bs)
#clean up
unlink(tmp.file)
search.pwm

function to predict transcription factor binding sites using the method matchPWM from package Biostrings

Description

function to predict transcription factor binding sites using the method matchPWM from package Biostrings

Usage

S4 method for signature 'cobindr'
search.pwm(x, min.score = "80\%", append = FALSE, background.scan = FALSE, n.cpu = NA)

Arguments

x an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.
min.score minimal score to define threshold for hits (default = .8)
append logical flag, if append=TRUE the binding sites will be appended to already existing results
background.scan logical flag, if background.scan=TRUE the background sequences will be searched for transcription factor binding sites
n.cpu number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used.

Value

x an object of the class "cobindr" including the predicted transcription factor binding sites

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de

References

uses matchPWM from package "Biostrings" (http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html)

See Also

rtfbs, search.gadem
Examples

use simulated sequences
library(Biostrings)

n <- 400 # number of input sequences
l <- 500 # length of sequences
n.hits <- 250 # number of 'true' binding sites
bases <- c("A", "C", "G", "T") # alphabet

generate random input sequences with two groups with differing GC content
seqs <- sapply(1:(3*n/4), function(x) paste(sample(bases, l, replace=TRUE,
prob=c(.3,.22,.2,.28)), collapse=""))
seqs <- append(seqs, sapply(1:(n/4), function(x) paste(sample(bases, l, replace=TRUE,
prob=c(.25,.25,.25,.25)), collapse="")))

path <- system.file("extdata/pfms/myod.tfpfm", package="cobindR")
motif <- read.transfac.pfm(path)[[1]] # get PFM of binding site

add binding sites with distance specificity
for(position in c(110, 150)) {
 hits <- apply(apply(motif, 2, function(x) sample(x=bases, size=n.hits, prob=x,
replace=TRUE)), 1, paste, collapse='
')
 pos.hits <- round(rnorm(n.hits, mean=position, sd=8))
 names(pos.hits) <- sample(1:n, n.hits)
 for(i in 1:n.hits) substr(seqs[as.integer(names(pos.hits)[i])], start=pos.hits[i],
stop=pos.hits[i]+ncol(motif)) <- hits[i]
}

save sample sequences in fasta file
tmp.file <- tempfile(pattern = "cobindr_sample_seq", tmpdir = tempdir(), fileext = ".fasta")
writeXStringSet(DNAStringSet(seqs), tmp.file)

#run cobindr
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- tmp.file
sequence_origin(cfg) <- 'artificial sequences'
pfm_path(cfg) <- system.file("extdata/pfms", package="cobindR")
pairs(cfg) <- c("$MYOD_01 $MYOD_01")
runObj <- cobindr(cfg, name='cobindr test using sampled sequences')

perform tfbs prediction using matchPWM
runObj.bs <- search.pwm(runObj, min.score = 90)
show results
plot.positionprofile(runObj.bs)
clean up
unlink(tmp.file)

S4 method for signature
'DNAString, character, character, character, character, character, character'
seqObj(seq, id, name, species, comment, location)
SeqObj-class

Arguments

- seq: DNAString object holding the sequence
- id: id (character)
- name: id (character)
- species: id (character)
- comment: id (character)
- location: id (character)

Value

cobindR SeqObj object

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

cobindRConfiguration

Examples

library(Biostrings)
so <- seqObj(DNAString('A'), id='', name='', species='', comment='', location='')
sequence(so)

Description

Container for DNA sequence and its meta-data.

Objects from the Class

Objects can be created by calls of the form new("SeqObj", seq, id, species, name, comment, location).

Slots

- uid: Object of class "character" ~~ unique id for internal representation
- name: Object of class "character" ~~ biological reference name, if available
- species: Object of class "character" ~~ reference species
- location: Object of class "character" ~~ location on the reference genome
- comment: Object of class "character" ~~ comments and notes
- sequence: Object of class "DNAString" ~~ the sequence
Methods

- `initialize` signature(.Object = "SeqObj"): ...
- `rtfbs.intern` signature(object = "SeqObj"): ...
- `write.fasta` signature(sequences = "SeqObj"): ...

Author(s)

Manuela Benary <manuela.benary@cms.hu-berlin.de>

See Also

cobindr configuration

Examples

```r
showClass("SeqObj")
```

sequence returns sequence of cobindR SeqObj object

Description

returns sequence of cobindR seqObj object.

Usage

```r
## S4 method for signature 'SeqObj'
sequence(x)

## S4 replacement method for signature 'SeqObj,DNAString'
sequence(x) <- value
```

Arguments

- `x`: a cobindR seqObj object
- `value`: DNAString of the actual DNA sequence in this SeqObj

Value

sequence (DNAString)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, species, location, comment, sequence

Examples

```r
library(Biostrings)
so <- seqObj(DNAString("A"), id='', name='', species='', comment='', location='')
sequence(so)
```
sequences

sequences of cobindr object

Description

sequences of cobindr object.

Usage

S4 method for signature 'cobindr'
sequences(x)
S4 replacement method for signature 'cobindr,list'
sequences(x) <- value

Arguments

x a cobindr object
value the list of input sequences of type SeqObj

Value

sequences (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid,name,sequences,bg_sequences,desc,configuration,binding_sites,bg_binding_sites,pfm,pairs,bg_pairs

Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/sox_oct_example_vignette_seqs.fasta',package='cobindR')
sequence_origin(cfg) <- 'Mouse Embryonic Stem Cell Example ChIP-Seq Oct4 Peak Sequences'
cbr <- cobindr(cfg)
length(sequences(cbr))
sequence_origin returns sequence_origin of cobindR configuration object

Description

returns sequence_origin of cobindR configuration object.

Usage

```r
## S4 method for signature 'configuration'
sequence_origin(x)
## S4 replacement method for signature 'configuration,character'
sequence_origin(x) <- value
```

Arguments

- `x`: a cobindR configuration object
- `value`: the origin of the sequence

Value

sequence_origin (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin

Examples

```r
cfg <- cobindRConfiguration()
sequence_origin(cfg)
```

sequence_source returns sequence_source of cobindR configuration object

Description

returns sequence_source of cobindR configuration object.

Usage

```r
## S4 method for signature 'configuration'
sequence_source(x)
## S4 replacement method for signature 'configuration,character'
sequence_source(x) <- value
```
sequence_type

Arguments

 x a cobindR configuration object
 value the source of which the sequence is retrieved

Value

 sequence_source (character)

Author(s)

 Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

 id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

 cfg <- cobindRConfiguration()
 sequence_source(cfg)

sequence_type sequence type of cobindR configuration object

Description

 sequence type of cobindR configuration object

Usage

S4 method for signature 'configuration'
sequence_type(x)
S4 replacement method for signature 'configuration,character'
sequence_type(x) <- value

Arguments

 x a cobindR configuration object
 value the type of the sequence used in this experiment (e.g. promotor)

Value

 sequence_type (character)

Author(s)

 Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

 id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue
Examples

```r
cfg <- cobindRConfiguration()
sequence_type(cfg)
```

species

species of cobindR configuration or SeqObj

Description

species of cobindR configuration or SeqObj

Usage

```r
## S4 method for signature 'configuration'
Species(object)
## S4 replacement method for signature 'configuration'
Species(object) <- value
## S4 method for signature 'SeqObj'
Species(object)
## S4 replacement method for signature 'SeqObj'
Species(object) <- value
```

Arguments

- `object` a cobindR configuration object
- `value` name of species in this experiment or SeqObj

Value

sequence / experiment species (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id, experiment_description, sequence_source, sequence_origin, sequence_type, bg_sequence_source, bg_sequence_origin, species, downstream, upstream, max_distance, pairs, pfm_path, threshold, fdrThreshold, path, mart, pValue

Examples

```r
cfg <- cobindRConfiguration()
species(cfg)
```
testCpG

function to cluster sequences based on their CpG and GC content

Description

diagnostical function - GC content and CpG content are clustered using 2D gaussian models (Mclust). FALSE is returned if > max.clust (default=1) subgroups are found using the bayesian information criterion (BIC). If do.plot=TRUE, the results are visualized.

Usage

S4 method for signature 'cobindr'
testCpG(x, max.clust = 4, do.plot = F, n.cpu = NA)

Arguments

x
an object of the class "cobindr", which will hold all necessary information about the sequences and the hits.

max.clust
integer describing the maximal number of clusters which are used for separating the data.

do.plot
logical flag, if do.plot=TRUE a scatterplot for the GC and CpG content for each sequence is produced and the clusters are color coded.

n.cpu
number of CPUs to be used for parallelization. Default value is 'NA' in which case the number of available CPUs is checked and than used.

Value

result
logical flag, FALSE is returned if more than one subgroups are found using the bayesian information criterion (BIC)

gc
matrix with rows corresponding to sequences and columns corresponding to GC and CpG content

Author(s)

Robert Lehmann <r.lehmann@biologie.hu-berlin.de>

References

the method uses clustering functions from the package "mclust" (http://www.stat.washington.edu/mclust/)

See Also

plot.gc
Examples

cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/example.fasta', package='cobindR')
avoid complaint of validation mechanism
pfm_path(cfg) <- system.file('extdata/pfms',package='cobindR')
pairs(cfg) <- ''
runObj <- cobindr(cfg)
testCpG(runObj, max.clust = 2, do.plot = TRUE)

Description

threshold used in motif hit finding

Usage

S4 method for signature 'configuration'
threshold(x)
S4 replacement method for signature 'configuration,numeric'
threshold(x) <- value

Arguments

x a cobindR configuration object

value the hit threshold

Value

threshold (numeric)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

id,experiment_description,sequence_source,sequence_origin,sequence_type,bg_sequence_source,bg_sequence_origin,species,upstream,downstream,max_distance,pairs,pfm_path,threshold,fdrThreshold,path,mart,pValue

Examples

cfg <- cobindRConfiguration()
threshold(cfg)
uid

uid of cobindR SeqObj object

Description

uid of cobindR seqObj object.

Usage

S4 method for signature 'SeqObj'
uid(x)
S4 method for signature 'cobindr'
uid(x)
S4 replacement method for signature 'SeqObj,character'
uid(x) <- value
S4 replacement method for signature 'cobindr,character'
uid(x) <- value

Arguments

x a cobindR seqObj object
value the unique id of the sequence or cobindr object

Value

uid (character)

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

uid, name, species, location, comment, sequence

Examples

library(Biostrings)
so <- seqObj(DNAString('A'), id='', name='', species='', comment='', location='')
uid(so)
upstream

Description

upstream range [bp] used in experiment

Usage

```r
## S4 method for signature 'configuration'
upstream(x)
## S4 replacement method for signature 'configuration,numeric'
upstream(x) <- value
```

Arguments

- `x`: a cobindR configuration object
- `value`: upstream distance [bp] of feature to be included (numeric)

Value

considered upstream range [bp]

Author(s)

Rob Lehmann <r.lehmann@biologie.hu-berlin.de>

See Also

`id`, `experiment_description`, `sequence_source`, `sequence_origin`, `sequence_type`, `bg_sequence_source`, `bg_sequence_origin`, `sequence_type`, `species`, `downstream`, `upstream`, `max_distance`, `pairs`, `pfm_path`, `threshold`, `fdrThreshold`, `path`, `mart`, `pValue`

Examples

```r
cfg <- cobindRConfiguration()
upstream(cfg)
```

write.bindingsites

writes predicted binding sites as a BED file.

Description

writes predicted binding sites as a BED file.

Usage

```r
## S4 method for signature 'cobindr'
write.bindingsites(x, file = NULL, background = FALSE)
```
Arguments

\textbf{x} \hspace{1cm} an object of the class "cobindr", which holds all necessary information about the sequences and the predicted binding sites.

\textbf{file} \hspace{1cm} path to file. If filename is 'NULL' a filename is generated based on the name of the object of class "cobindr".

\textbf{background} \hspace{1cm} logical flag. If background is 'TRUE' the binding sites found in the background sequences are used.

\textbf{Note}

At the moment write.bindingsites() only works for sequences based on gene ids. Otherwise please use write.bindingsites.table().

\textbf{Author(s)}

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

\textbf{See Also}

write.bindingsites.table, write.pairs, write.sequences, write

\textbf{Description}

function to write predicted TFBS into a tab-separated file.

\textbf{Usage}

\begin{verbatim}
S4 method for signature 'cobindr'
write.bindingsites.table(x, file = NULL)
\end{verbatim}

\textbf{Arguments}

\textbf{x} \hspace{1cm} an object of the class "cobindr", which will hold all necessary information about the sequences and the predicted binding sites.

\textbf{file} \hspace{1cm} path to file. If filename is 'NULL' a filename is generated based on the name of the object of class "cobindr".

\textbf{Author(s)}

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

\textbf{See Also}

write.pairs, write.bindingsites, write.sequences, write
write.pairs
function to write output of findPairs into file

Description

Function writes the results of findPairs() as a tab-separated file. The file consists of 6 columns, namely

- a unique id for each pair,
- the unique id of the sequence, where the pair was found,
- the names of the corresponding PFM,
- the unique id for each PFM, and
- the distance window in which the pair occurs.

Usage

```r
## S4 method for signature 'cobindr'
write.pairs(x, file = NULL, background = FALSE)
```

Arguments

- `x`: an object of the class "cobindr", which holds all necessary information about the sequences and the predicted binding sites.
- `file`: path to file. If filename is 'NULL' a filename is generated based on the name of the object of class "cobindr".
- `background`: logical flag. If background is 'TRUE' the pairs found in the background sequences are used.

Author(s)

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

See Also

write.bindingsites.table, write.bindingsites, write.sequences, write

write.sequences
writes the sequences of a cobindr-object into a fasta file.

Description

writes the sequences of a cobindr-object into a fasta file.

Usage

```r
## S4 method for signature 'cobindr'
write.sequences(x, slotname = "sequences", file = NULL)
```
write.sequences

Arguments

- **x**: an object of the class "cobindr", which will hold all necessary information about the sequences.
- **slotname**: string, describing whether to use foreground sequences (default) or background sequences
- **file**: path to file. If filename is 'NULL' a filename is generated based on the name of the object of class "cobindr".

Author(s)

Stefan Kroeger <kroeger@informatik.hu-berlin.de>

See Also

write.bindingsites.table, write.bindingsites, write.pairs, write

Examples

```r
cfg <- cobindRConfiguration()
sequence_type(cfg) <- 'fasta'
sequence_source(cfg) <- system.file('extdata/example.fasta', package='cobindR')
# avoid complaint of validation mechanism
pfm_path(cfg) <- system.file('extdata/pfms',package='cobindR')
pairs(cfg) <- ''
runObj <- cobindr(cfg)
write.sequences(runObj, file = file.path(tempfile("example.txt", tempdir())))
```
Index

*Topic **IO**
 get.pairs, 18
 get.significant.pairs, 19
 write.bindingsites, 52
 write.bindingsites.table, 53
 write.pairs, 54
 write.sequences, 54

*Topic **SeqObj**
 comment, 11
 location, 20
 name, 22
 sequence, 44
 uid, 51

*Topic **accessor**
 bg_binding_sites, 3
 bg_pairs, 4
 bg_sequence_origin, 6
 bg_sequence_source, 6
 bg_sequence_type, 7
 bg_sequences, 5
 binding_sites, 8
 comment, 11
 configuration, 12
 downstream, 14
 experiment_description, 15
 fdrThreshold, 16
 id, 19
 location, 20
 mart, 21
 max_distance, 22
 name, 22
 pairs, 23
 pairs_of_interest, 24
 path, 25
 pfm, 26
 pfm_path, 27
 pseudocount, 36
 pValue, 37
 sequence, 44
 sequence_origin, 46
 sequence_source, 46
 sequence_type, 47
 sequences, 45
 species, 48
 threshold, 50
 uid, 51
 upstream, 52

*Topic **classes**
 cobindr-class, 9
 configuration-class, 13
 SeqObj-class, 43

*Topic **clust**
 testCpG, 49

*Topic **cobindR**
 bg_binding_sites, 3
 bg_pairs, 4
 bg_sequence_origin, 6
 bg_sequence_source, 6
 bg_sequence_type, 7
 bg_sequences, 5
 binding_sites, 8
 cobindRConfiguration, 10
 comment, 11
 configuration, 12
 downstream, 14
 experiment_description, 15
 fdrThreshold, 16
 id, 19
 location, 20
 mart, 21
 max_distance, 22
 name, 22
 pairs, 23
 pairs_of_interest, 24
 path, 25
 pfm, 26
 pfm_path, 27
 pseudocount, 36
 pValue, 37
 seqObj, 42
 sequence, 44
 sequence_origin, 46
 sequence_source, 46
 sequence_type, 47
 sequences, 45
 species, 48
id<-,configuration,character-method (id), 19
initialize,cobindr-method (cobindr-class), 9
initialize,configuration-method (configuration-class), 13
initialize,SeqObj-method (SeqObj-class), 43
input.pwm,cobindr-method (cobindr-class), 9

location, 11, 20, 20, 23, 44, 51
location,SeqObj-method (location), 20
location<-, (location), 20
location<-,SeqObj,character-method (location), 20

mart, 6, 7, 14–16, 20, 21, 21, 22, 24, 25, 27, 36, 37, 36–48, 50, 52
mart,configuration-method (mart), 21
mart<-,configuration,character-method (mart), 21
max_distance, 6, 7, 14–16, 20–22, 22, 24, 25, 27, 36, 37, 36–48, 50, 52
max_distance,configuration-method (max_distance), 22
max_distance<-, (max_distance), 22
max_distance<-,configuration,numeric-method (max_distance), 22

name, 4, 5, 8, 11, 12, 20, 22, 23, 25, 26, 44, 45, 51
name, cobindr-method (name), 22
name,SeqObj-method (name), 22
name<-, (name), 22
name<-,cobindr,character-method (name), 22
name<-,SeqObj,character-method (name), 22

pairs, 4–8, 12, 14–16, 20–22, 23, 24–27, 36, 37, 45–48, 50, 52
pairs,cobindr-method (pairs), 23
pairs,configuration-method (pairs), 23
pairs<-, (pairs), 23
pairs<-,cobindr,data.frame-method (pairs), 23
pairs<-,configuration,character-method (pairs), 23
pairs_of_interest, 4, 5, 8, 12, 24, 25, 26, 45
pairs_of_interest,cobindr-method (pairs_of_interest), 24
pairs_of_interest<-, (pairs_of_interest), 24
pairs_of_interest<-,cobindr,factor-method (pairs_of_interest), 24
path, 6, 7, 14–16, 20–22, 24, 25, 25, 27, 36, 37, 46–48, 50, 52
path,configuration-method (path), 25
path<-, (path), 25
path<-,configuration,character-method (path), 25
pfm, 4, 5, 8, 12, 25, 26, 26, 45
pfm,cobindr-method (pfm), 26
pfm<-, (pfm), 26
pfm<-,cobindr,list-method (pfm), 26
pfm_path, 6, 7, 14–16, 20–22, 24, 25, 27, 27, 36, 37, 46–48, 50, 52
pfm_path,configuration-method (pfm_path), 27
pfm_path<-, (pfm_path), 27
pfm_path<-,configuration,character-method (pfm_path), 27
plot.detrending, 17, 19, 27, 30
plot.detrending,cobindr-method (plot.detrending), 27
plot.detrending-method (plot.detrending), 27
plot.gc, 28, 49
plot.gc,cobindr-method (plot.gc), 28
plot.gc-method (plot.gc), 28
plot.pairdistance, 28, 29, 30
plot.pairdistance,cobindr-method (plot.pairdistance), 29
plot.pairdistance-method (plot.pairdistance), 29
plot.pairdistance,configuration-method (plot.pairdistance), 29
plot.pairdistance,cobindr-method (plot.pairdistance), 29
plot.pairdistance-method (plot.pairdistance), 29
plot.pairdistribution, 28, 30, 30
plot.pairdistribution,cobindr-method (plot.pairdistribution), 30
plot.pairdistribution-method (plot.pairdistribution), 30
plot.pairpositionprofile, 31, 32
plot.pairpositionprofile,cobindr-method (plot.pairpositionprofile), 31
plot.pairpositionprofile-method (plot.pairpositionprofile), 31
plot.positionprofile, 31, 31
plot.positions, 31, 31
plot.positions,cobindr-method (plot.positions), 31
plot.positions-method (plot.positions), 31
plot.positions.simple, 32
plot.positions.simple,cobindr-method (plot.positions.simple), 32
INDEX

threshold, configuration-method (threshold), 50
threshold<- (threshold), 50
threshold<-, configuration, numeric-method (threshold), 50

uid, 4, 5, 8, 11, 12, 20, 23, 25, 26, 44, 45, 51, 51
uid, cobindr-method (uid), 51
uid, SeqObj-method (uid), 51
uid<- (uid), 51
uid<-, cobindr, character-method (uid), 51
uid<-, SeqObj, character-method (uid), 51
upstream, 6, 7, 14–16, 20–22, 24, 25, 27, 36, 37, 46–48, 50, 52, 52
upstream, configuration-method (upstream), 52
upstream<- (upstream), 52
upstream<-, configuration, numeric-method (upstream), 52

write, 18, 53–55
write, cobindr, character-method (cobindr-class), 9
write, configuration, character-method (configuration-class), 13
write.bindingsites, 18, 52, 53–55
write.bindingsites, cobindr-method (write.bindingsites), 52
write.bindingsites-method (write.bindingsites), 52
write.bindingsites.table, 53, 53, 54, 55
write.bindingsites.table, cobindr-method (write.bindingsites.table), 53
write.bindingsites.table-method (write.bindingsites.table), 53
write.fasta, SeqObj-method (SeqObj-class), 43
write.pairs, 53, 54, 55
write.pairs, cobindr-method (write.pairs), 54
write.pairs-method (write.pairs), 54
write.sequences, 18, 53, 54, 54
write.sequences, cobindr-method (write.sequences), 54
write.sequences-method (write.sequences), 54