Package ‘dSimer’

March 22, 2017

Type Package

Title Integration of Disease Similarity Methods

Version 1.0.0

Date 2015-12-10

Author Min Li <limin@mail.csu.edu.cn>, Peng Ni <nipeng@csu.edu.cn>

with contributions from Zhihui Fei and Ping Huang.

Maintainer Peng Ni <nipeng@csu.edu.cn>

Description dSimer is an R package which provides computation of nine methods for measuring disease-disease similarity, including a standard cosine similarity measure and eight function-based methods. The disease similarity matrix obtained from these nine methods can be visualized through heatmap and network. Biological data widely used in disease-disease associations study are also provided by dSimer.

Depends R (>= 3.3.0), igraph (>= 1.0.1)

Imports stats, Rcpp (>= 0.11.3), ggplot2, reshape2, GO.db, org.Hs.eg.db, AnnotationDbi, graphics

Suggests knitr, rmarkdown, BiocStyle

LinkingTo Rcpp

License GPL (>= 2)

biocViews Software, Visualization, Network

VignetteBuilder knitr

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:

- dSimer-package ... 2
- BOG ... 3
- CosineDFV .. 4
- d2go_sample .. 5
- d2g_fundo_entrezid 5
- d2g_fundo_symbol 6
- d2g_separation 6
- d2s_hsdn ... 7
dSimer-package

Integration of Disease Similarity Methods

Description

dSimer is an R package which provides computation of nine methods for measuring disease-disease similarity, including a standard cosine similarity measure and eight function-based methods. The disease similarity matrix obtained from these nine methods can be visualized through heatmap and network. Biological data widely used in disease-disease associations study are also provided by dSimer.

Details

Package: dSimer
Type: Package
Version: 0.99.6
Date: 12-10-2015
biocViews: Software, Visualization, Network
Depends: R (>= 3.3.0), igraph (>= 1.0.1)
BOG

Imports: stats, Rcpp (>= 0.11.3), ggplot2, reshape2, GO.db, AnnotationDbi, org.Hs.eg.db, graphics
Suggests: knitr, rmarkdown, BiocStyle
LinkingTo: Rcpp
License: GPL (>= 2)

Author(s)

Min Li, Peng Ni

BOG calculate disease similarity by BOG

Description

given two vectors of diseases and a list of disease-gene associations, this function will calculate disease similarity by method BOG.

Usage

BOG(D1, D2, d2g)

Arguments

D1 a vector consists disease ids
D2 another vector consists disease ids
d2g a list of disease-gene associations

Value

a matrix of disease disease similairity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

See Also

Normalize

Examples

data(d2g_separation) #get disease-gene associations
ds<-sample(names(d2g_separation),5)
sim<-BOG(ds,ds,d2g_separation)
Normalize(sim) #normalize BOG sim scores
CosineDFV
calculate disease similarity by using feature vectors

Description

given two (lists of) disease names, this function will calculate cosine similarity between these diseases’ feature vectors.

Usage

```r
CosineDFV(D1, D2, d2f, dcol = 2, fcol = 1, ccol = 3)
```

Arguments

- **D1**: a vector consists of disease ids/names
- **D2**: another vector consists of disease ids/names
- **d2f**: data.frame, contains term co-occurrences between features and diseases
- **dcol**: integer, disease column number in d2f
- **fcol**: integer, feature column number in d2f
- **ccol**: integer, co-occurrences column number in d2f

Value

a matrix of disease disease similarity which rownames and colnames are the disease names

Author(s)

Zhihui Fei, Peng Ni, Min Li

References

Examples

```r
### this is a disease-symptom-cooccurrence sample, if you want to use
### the complete data, please use "data(d2s_hsdn)" command
data(d2s_hsdn_sample)

ds <- sample(unique(d2s_hsdn_sample[,2]), 10)
simmat <- CosineDFV(ds, ds, d2s_hsdn_sample)
```
d2go_sample

Description

A sample list of disease-GO term associations.

Value

d2go_sample is a named list of length 3. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of GO term ids. The entire data of disease-GO term associations can be obtained by function HypergeometricTest.

See Also

HypergeometricTest

Examples

```r
data(d2go_sample)
```

d2g_fundo_entrezid

Description

A list of disease-gene associations from FunDO.

Value

d2g_fundo_entrezid is a named list of length 1855 which stored disease-gene associations from FunDO. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of Entrez gene IDs.

References

Examples

```r
data(d2g_fundo_entrezid)
```
Description

A list of disease-gene associations from FunDO.

Value

d2g_fundo_symbol is a named list of length 1855 which stored disease-gene associations from FunDO. The names are the DOIDs (DOIDs are ids of terms in Disease Ontology, e.g. "DOID:4") and list elements are vectors of gene symbols.

References

Examples

data(d2g_fundo_symbol)

description

A list of disease-gene associations from the reference paper (see below).

Value

d2g_separation is a named list of length 299 which stored disease-gene associations from the reference paper (see below). The names are diseases and list elements are vectors of gene entrez ids.

References

Examples

data(d2g_separation)
d2s_hsdn

<table>
<thead>
<tr>
<th>d2s_hsdn</th>
<th>d2s_hsdn</th>
</tr>
</thead>
</table>

Description

diseases, symptoms and their co-occurrences in PubMed

Value

d2s_hsdn is a data.frame of 73726 rows and 3 columns, contains PubMed co-occurrences of diseases and symptoms, will be used in method CosineDFV.

References

See Also

CosineDFV

Examples

data(d2s_hsdn)

<table>
<thead>
<tr>
<th>d2s_hsdn_sample</th>
<th>d2s_hsdn_sample</th>
</tr>
</thead>
</table>

Description

a sample of d2s_hsdn

Value

d2s_hsdn_sample is a data.frame of 1480 rows and 3 columns, contains PubMed co-occurrences of diseases and symptoms. It is a sample of d2s_hsdn.

References

See Also

d2s_hsdn, CosineDFV

Examples

data(d2s_hsdn_sample)
FunSim

calculate disease similarity by FunSim

Description

given two vectors of diseases, a list of disease-gene associations, and a list of gene-gene log-likelihood score from HumanNet, this function will calculate disease similarity by method FunSim.

Usage

```r
FunSim(D1, D2, d2g, LLSnList)
```

Arguments

- `D1` a vector consists disease ids
- `D2` another vector consists disease ids
- `d2g` a list of disease-gene associations, while gene ids should be entrez id.
- `LLSnList` a list of gene-gene log-likelihood score from HumanNet

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

See Also

LLSn2List

Examples

```r
## in this method, we must use disease-gene associations
## which genes are represented by entrez ids because of HumanNet
data(d2g_fundo_entrezid)
data(HumanNet_sample)
## we specified 5 DOIDs to match Human_sample
ds<-c("DOID:8176","DOID:2394","DOID:3744","DOID:8466","DOID:5679")
llsnlist<-LLSn2List(HumanNet_sample)
FunSim(ds,ds,d2g_fundo_entrezid,llsnlist)
```
get_GOterm2GeneAssos

Description
get GO-gene associations from GO.db and org.Hs.eg.db

Usage

```r
get_GOterm2GeneAssos(GOONTOLOGY = c("BP", "MF", "CC"),
                     geneid = c("ENTREZID", "SYMBOL"),
                     rm.IEAs = TRUE,
                     rm.termlessthan3genes = TRUE)
```

Arguments

- `GOONTOLOGY` "BP" or "MF" or "CC"
- `geneid` gene id type, "ENTREZID" or "SYMBOL"
- `rm.IEAs` logical value, remove GO terms with evidence "IEA" or not
- `rm.termlessthan3genes` logical value, remove terms whose number of annotated genes are less than 3 or not

Value
a list which names are GO term IDs and elements are gene ids or symbols annotated with GO terms

Author(s)
Peng Ni, Min Li

References

See Also

`PSB`, `Sun_function`

Examples

```r
go2g<-get_GOterm2GeneAssos(GOONTOLOGY="BP", geneid="SYMBOL")
go2g
```
Description

a sample list of GO term-gene associations.

Value

go2g_sample is a named list of length 465. The names are GO term ids (GOIDs) and list elements are vectors of gene symbols. The entire data of GO term-gene assos can be obtained by function get_GOterm2GeneAssos.

See Also

get_GOterm2GeneAssos

Examples

data(go2g_sample)

Description

graphlet signature of nodes in HPRD PPI network.

Value

#’ graphlet_sig_hprd is a matrix of 9270 rows and 73 rows. The rownames of graphlet_sig_hprd are gene symbols of nodes from HPRD. Each row indicates a graphlet signature of one node. Graphlet signatures of nodes in HPRD PPI network were calculated by ORCA tool, will be used in method Sun_topology.

References

See Also

Sun_topology

Examples

data(graphlet_sig_hprd)
HumanNet_sample

Description

A sample of HumanNet likelihood score data which will be used in method FunSim.

Value

HumanNet_sample is a data.frame has 22708 rows and 3 columns. Each row indicates a pair of genes and their normalized likelihood score in HumanNet. HumanNet_sample will be used in method FunSim after being converted to list by method LLSn2List. The entire data of HumanNet can be downloaded from the website http://www.functionalnet.org/humannet/.

References

See Also

FunSim, LLSn2List

Examples

```r
data(HumanNet_sample)
```

HypergeometricTest

Hypergeometric test and multiple testing

Description

Given disease-gene associations and go-gene associations, return disease-go associations by using hypergeometric test and fdr multiple testing.

Usage

```r
HypergeometricTest(d2g, go2g, method = "BH", cutoff = 0.05)
```

Arguments

- `d2g`: a list of disease-gene associations
- `go2g`: a list of GOterm-gene associations
- `method`: multiple testing method, the same as parameter in method p.adjust
- `cutoff`: multiple testing cut off value

Value

A list of disease-GO term associations.
ICod

Author(s)

Peng Ni, Min Li

See Also

PSB, Sun_function, get_GOterm2GeneAssos

Examples

```r
## see more examples in function PSB or Sun_function
data(d2go_sample)
data(go2g_sample)
data(d2g_fundo_symbol)
HypergeometricTest(d2g_fundo_symbol[names(d2go_sample)], go2g_sample)
```

ICod

calculate disease similarity by ICod

Description

Given two vectors of diseases, a list of disease-gene associations and a PPI network, this function will calculate disease similarity by method ICod.

Usage

```r
ICod(D1, D2, d2g, graph, A = 0.9, b = 1, C = 0)
```

Arguments

- **D1**: a vector consists disease ids
- **D2**: another vector consists disease ids
- **d2g**: a list of disease-gene associations
- **graph**: an igraph graph object of PPI network
- **A**: a parameter used in ICod to calculate transformed distance of node pair, default 0.9
- **b**: a parameter used in ICod to calculate transformed distance of node pair, default 1
- **C**: a parameter used in ICod to calculate disease similarity, default 0

Value

A matrix of disease disease similarity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li
InformationContent

References

Examples

```r
data(d2g_fundo_symbol)
data(PPI_HPRD)

graph_hprd<-graph.data.frame(PPI_HPRD,directed=FALSE) # get a igraph object based on HPRD data
ds<-sample(names(d2g_fundo_symbol),5)
ICod(ds,ds,d2g_fundo_symbol,graph_hprd)
```

Descripion

calculate information content of all term ids in a term list

Usage

```r
InformationContent(T2G)
```

Arguments

- **T2G**
 a list of Term-Gene associations which names are term ids

Value

a list of IC values of inputted term ids

Author(s)

Peng Ni, Min Li

Examples

```r
data(d2g_fundo_symbol)
InformationContent(d2g_fundo_symbol[1:5])
```
Description

interactome data

Value

interactome is a data.frame of 141296 rows and 2 columns. Each row indicates an interaction of two gene entrez ids. It was obtained from the reference below.

References

Examples

data(interactome)

jaccardindex calculating Jaccard Index

Description

calculate Jaccard Index of two terms by using their annotated genes

Usage

jaccardindex(x1, x2, x2y)

Arguments

x1 a disease id
x2 another disease id
x2y a list of disease-gene associations which consists x1 and x2

Value

numeric value of a jaccard index of x1 and x2

Author(s)

Peng Ni, Min Li

Examples

this function is not just for disease-gene associations
data(d2go_sample)
d1<-names(d2go_sample)[1]
d2<-names(d2go_sample)[2]
jaccardindex(d1,d2,d2go_sample)
LLSn2List

- **convert data.frame of HumanNet log-likelihood Score to list**

Description

convert HumanNet normalized log-likelihood score from data.frame to list, which will be used in FunSim method

Usage

```r
LLSn2List(LLSn)
```

Arguments

- `LLSn` data.frame of gene-gene normalized log-likelihood score in HumanNet

Value

a list of normalized log-likelihood score

Author(s)

Peng Ni, Min Li

References

See Also

- `FunSim`

Examples

```r
## see examples in function FunSim
data(HumanNet_sample)
llsnlist<-LLSn2List(HumanNet_sample[1:100,])
llsnlist
```
Normalize

Description

normalize a vector or a matrix based on the formula from SemFunSim

Usage

```
Normalize(data)
```

Arguments

- `data`: a numeric/integer vector or matrix

Value

normalized vector or matrix

Author(s)

Peng Ni, Min Li

References

Examples

```
sim<-matrix(1:9,3,3)
Normalize(sim)
```

orbit_dependency_count

Description

orbit dependency count

Value

`orbit_dependency_count` is a 73-dim vector, indicating 73 orbits’ dependency count in graphlet theory, used to calculate weight factor in method `setWeight`.

References

plot_bipartite

See Also

setWeight

Examples

data(orbit_dependency_count)

plot_bipartite(xylist, vertex.size = 12, vertex.shape1 = "circle",
vertex.shape2 = "square", vertex.color1 = "darkseagreen",
vertex.color2 = "turquoise1", vertex.label.font = 2,
vertex.label.dist = 0, vertex.label.color = "black",
vertex.label.cex = 0.8, edge.color = "black",
layout = layout.kamada.kawai)

Description

plot a bipartite graph which visualizes associations between diseases and genes (or GO terms etc.)

Usage

plot_bipartite(xylist, vertex.size = 12, vertex.shape1 = "circle",
vertex.shape2 = "square", vertex.color1 = "darkseagreen",
vertex.color2 = "turquoise1", vertex.label.font = 2,
vertex.label.dist = 0, vertex.label.color = "black",
vertex.label.cex = 0.8, edge.color = "black",
layout = layout.kamada.kawai)

Arguments

xylist a named list object which names are diseases and each element of the list is a
gene set with respect to each disease.
vertex.size vertex size
vertex.shape1 shape for one kind of vertex
vertex.shape2 shape for another kind of vertex
vertex.color1 color for one kind of vertex
vertex.color2 color for another kind of vertex
vertex.label.font label text font
vertex.label.dist label text dist
vertex.label.color label text color
vertex.label.cex label text cex
data(orbit_dependency_count)
edge.color edge color
layout layout

Value

an igraph plot object

Author(s)
Peng Ni, Min Li
Examples

```r
data(d2g_fundo_symbol)
d2g_sample<-sample(d2g_fundo_symbol, 3)
plot_bipartite(d2g_sample)
```

plot_heatmap

Similarity matrix heatmap plotting

Description

plot heatmap of a disease similarity matrix

Usage

```r
plot_heatmap(simmat, xlab = "", ylab = "", color.low = "white",
            color.high = "red", labs = TRUE, digits = 2, labs.size = 3,
            font.size = 14)
```

Arguments

- `simmat`: a similarity matrix
- `xlab`: xlab
- `ylab`: ylab
- `color.low`: color of low value
- `color.high`: color of high value
- `labs`: logical, add text label or not
- `digits`: round digit numbers
- `labs.size`: label size
- `font.size`: font size

Value

a ggplot object

Author(s)

Peng Ni, Min Li

References

plot_net

Examples

data(d2g_separation)
data(interactome)

graph_interactome <- graph.data.frame(interactome, directed = FALSE)

ds <- c("myocardial ischemia", "myocardial infarction", "coronary artery disease", "cerebrovascular disorders", "arthritis, rheumatoid", "diabetes mellitus, type 1", "autoimmune diseases of the nervous system", "demyelinating autoimmune diseases, cns", "respiratory hypersensitivity", "asthma", "retinitis pigmentosa", "retinal degeneration", "macular degeneration")

sep <- Separation(ds, ds, d2g_separation, graph_interactome)
sim <- Separation2Similarity(sep)
plot_heatmap(sim)

plot_net

plot a network based on a symmetric disease similarity matrix

Description

plot a network/graph of a symmetric disease similarity matrix, note that a unsymmetric matrix can’t be visualized into a network by this method.

Usage

plot_net(simmat, cutoff = 1, vertex.label.font = 2,
vertex.label.dist = 0.5, vertex.label.color = "black",
vertex.label.cex = 0.8, vertex.shape = "circle",
vertex.color = "paleturquoise", vertex.size = 20, edge.color = "red",
layout = layout.fruchterman.reingold)

Arguments

simmat a symmetric similarity matrix
cutoff a cutoff value, only disease pairs have similarity scores no less than cutoff will be visualized in the network
vertex.label.font label text font
vertex.label.dist label text dist
vertex.label.color label text color
vertex.label.cex label text cex
vertex.shape vertex shape
vertex.color vertex color
vertex.size vertex size
edge.color edge color
layout layout
plot_topo

Value
an igraph plot object

Author(s)
Peng Ni, Min Li

Examples

data(d2g_separation)
data(interactome)

graph_interactome<-graph.data.frame(interactome,directed=FALSE)
ds<-c("myocardial ischemia","myocardial infarction","coronary artery disease","cerebrovascular disorders","arthritis, rheumatoid","diabetes mellitus, type 1","autoimmune diseases of the nervous system","demyelinating autoimmune diseases, cns","respiratory hypersensitivity","asthma","retinitis pigmentosa","retinal degeneration","macular degeneration")

sep<-Separation(ds,ds,d2g_separation,graph_interactome)
sim<-Separation2Similarity(sep)
plot_net(sim,cutoff=0.2)

plot_topo

plot topological relationship of two gene sets

Description
plot topological relationship of two gene sets (which are associated with two diseases respectively).

Usage
plot_topo(geneset1, geneset2, graph, vertexcolor = c("tomato", "orange", "lightsteelblue"), vertex.shape = "circle", vertex.size = 14, vertex.label.font = 1, vertex.label.dist = 0, vertex.label.color = "black", vertex.label.cex = 0.5, edge.color = "black", layout = layout.auto)

Arguments
geneset1 a character vector contains gene ids
geneset2 another character vector contains gene ids
graph an igraph graph object which represents a gene network
vertexcolor a character vector contains 3 colors for vertexs
vertex.shape vertex shape
vertex.size vertex size
vertex.label.font label text font
vertex.label.dist label text dist
PPI_HPRD

vertex.label.color

- label text color

vertex.label.cex

- label text cex

dataframe: 36867 rows and 2 columns

- Each rows indicates an interaction of two gene symbols.
- It was fetched from HPRD.

```r
# Examples

data("PPI_HPRD")
g <- graph.data.frame(PPI_HPRD, directed = FALSE) # get an igraph graph

data(d2g_fundo_symbol)
a <- d2g_fundo_symbol[["DOID:8242"]]
# get gene set a
b <- d2g_fundo_symbol[["DOID:4914"]]
# get gene set b

plot_topo(a, b, g)
```

Description

PPI data from HPRD

Value

PPI_HPRD is a data.frame of 36867 rows and 2 columns. Each rows indicates an interaction of two gene symbols. It was fetched from HPRD.

References

Examples

```r
data(PPI_HPRD)
```
PSB

calculate disease similarity by PSB

Description

Given two vectors of diseases, a list of disease-GO term associations and a list of GO term-gene associations, this function will calculate disease similarity by method PSB.

Usage

```r
PSB(D1, D2, d2go, go2g)
```

Arguments

- **D1**: A vector consists disease ids.
- **D2**: Another vector consists disease ids.
- **d2go**: A list of disease-go associations.
- **go2g**: A list of go-gene associations.

Value

A matrix of disease disease similarity which rownames is D1 and colnames is D2.

Author(s)

Peng Ni, Min Li

References

See Also

- `get_GOterm2GeneAssos`
- `HypergeometricTest`
- `Normalize`

Examples

```r
## these are samples of GO-gene associations and disease-GO associations
data(go2g_sample)
data(d2go_sample)

##### the entire associations can be obtained by follows:
## go2g<-get_GOterm2GeneAssos(GOONTOLOGY = "BP", geneid="SYMBOL") #get go-gene associations
## data(d2g_fundo_symbol)
## d2go<-HypergeometricTest(d2g = d2g_fundo_symbol,go2g = go2g)

##### #################################################################

d<-names(d2go_sample)
sim<-PSB(ds,ds,d2go_sample,go2g_sample)
Normalize(sim)
```
Separation

Description

given two vectors of diseases, a list of disease-gene associations and a PPI network, this function will calculate network-based separation by method Separation.

Usage

Separation(D1, D2, d2g, graph)

Arguments

- **D1** a vector consists disease ids
- **D2** another vector consists disease ids
- **d2g** a list of disease-gene associations
- **graph** an igraph graph object of PPI network

Value

a matrix of disease disease network-based separation which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

See Also

Separation2Similarity

Examples

data(d2g_separation)
data(interactome)

graph_interactome<-graph.data.frame(interactome,directed=FALSE)
ds<-sample(names(d2g_separation),5)
sep<-Separation(ds,ds,d2g_separation,graph_interactome)
sim<-Separation2Similarity(sep)
sim
Separation2Similarity
a method which convert separation to similarity

Description
convert a separation matrix to a similarity matrix

Usage
Separation2Similarity(data)

Arguments
- **data**
a numeric/integer matrix calculated by method Separation

Value
a similarity matrix

Author(s)
Peng Ni

See Also
Separation

Examples

```r
a<-matrix(c(-4:4),3,3)
Separation2Similarity(a)
```

setWeight
set weight factor

Description
set weight factor of 73-orbits in graphlet theory

Usage
setWeight(orbit_dependency_count)

Arguments
- **orbit_dependency_count**
a vector which each element are the dependency count of each orbit

Value
a vector which contains weight factors to each orbit
Sun_annotation

Author(s)

Peng Ni

References

Examples

data(orbit_dependency_count)
setWeight(orbit_dependency_count)

Sun_annotation (Sun’s annotation measure of disease similarity calculating)

Description

given two vectors of diseases and a list of disease-gene associations, this function will calculate disease similarity by method Sun_annotation

Usage

Sun_annotation(D1, D2, d2g)

Arguments

D1 a vector consists disease ids
D2 another vector consists disease ids
d2g a list of disease-gene associations

Value

a matrix of disease disease similarity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Examples

data(d2g_separation)
ds<-sample(names(d2g_separation),5)
Sun_annotation(ds,ds,d2g_separation)
Sun_function

Sun’s function measure of disease similarity calculating

Description

given two vectors of diseases and a list of disease-go term associations, this function will calculate
disease similarity by method Sun_function

Usage

Sun_function(D1, D2, d2go)

Arguments

D1 a vector consists disease ids
D2 another vector consists disease ids
d2go a list of disease-go term associations

Value

a matrix of disease disease simialrity which rownames is D1 and colnames is D2

Author(s)

Peng Ni, Min Li

References

Sun K, Goncalves JP, Larminie C. Predicting disease associations via biological network analy-

See Also

get_GOterm2GeneAssos, HypergeometricTest

Examples

get a sample of disease-GO associations
data(d2go_sample)

######## the entire disease-GO associations can be obtained by follows:
go2g<-get_GOterm2GeneAssos(GOONTOLOGY = "BP", geneid="SYMBOL") #get go-gene associations
data(d2g_fundo_symbol)
d2go<-HypergeometricTest(d2g = d2g_fundo_symbol,go2g = go2g)
######## ###################################

ds<-names(d2go_sample)
Sun_function(ds,ds,d2go_sample)
Sun_topology

Sun's topology measure of disease similarity calculating

Description

given two vectors of diseases, a list of disease-gene associations, a matrix of genes’ graphlet signature in a PPI network and a weight vector of 73 orbits in graphlet theory, this function will calculate disease similarity by method Sun_function

Usage

Sun_topology(D1, D2, d2g, graphlet_sig_mat, weight)

Arguments

D1
a vector consists disease ids
D2
another vector consists disease ids
d2g
a list of disease-gene associations
graphlet_sig_mat
matrix of graphlet signature of nodes in a ppi network calculated by orca, see examples below.
weight
a vector which elements are weight factors to each orbit in graphlet theory

Value

a disease disease similarity matrix

Author(s)

Peng Ni, Min Li

References

Examples

data(d2g_fundo_symbol)
data(graphlet_sig_hprd) #get graphlet signatures of genes in HPRD PPI network
data(weight)
dsc<-sample(names(d2g_fundo_symbol),5)
Sun_topology(ds,ds,d2g_fundo_symbol,graphlet_sig_hprd,weight)
weight

Description

weight factor

Value

weight is a 73-dim vector, indicating 73 orbits’ weight factor, will be used in method Sun_topology.

References

See Also

setWeight, Sun_topology

Examples

data(weight)

x2y_conv2_y2x

convert x2ylist to y2xlist

Description

convert list of x-y associations to list of y-x associations

Usage

x2y_conv2_y2x(x2ylist)

Arguments

x2ylist

a list which the names are xs and the elements are ys of each x

Value

a list of y2x

Author(s)

Peng Ni, Min Li

Examples

data(go2g_sample)

g2go_sample<-x2y_conv2_y2x(go2g_sample[1:100])
Description
concert x-y associations (e.g., disease-gene associations) from data.frame to list

Usage
x2y_df2list(x2ydf, xcol = 1, ycol = 2)

Arguments
x2ydf data.frame of x-y associations
xcol col of x in x2ydf
ycol col of y in x2ydf

Value
a list of x-y associations

Author(s)
Peng Ni, Min Li

Examples
options(stringsAsFactors = FALSE)
d2g_fundo_sample<-read.table(text = "DOID:5218 IL6
DOID:8649 EGFR
DOID:8649 PTGS2
DOID:8649 VHL
DOID:8649 ERBB2
DOID:8649 PDCD1
DOID:8649 KLRC1
DOID:5214 MPZ
DOID:5214 EGR2
DOID:5210 AMH")
d2g_fundo_list<-x2y_df2list(d2g_fundo_sample)
Index

*Topic dataset
 d2g_fundo_entrezid, 5
 d2g_fundo_symbol, 6
 d2g_separation, 6
 d2go_sample, 5
 d2s_hsdn, 7
 d2s_hsdn_sample, 7
 go2g_sample, 10
 graphlet_sig_hprd, 10
 HumanNet_sample, 11
 interactome, 14
 orbit_dependency_count, 16
 PPI_HPRD, 21
 weight, 28
*Topic package
 dSimer-package, 2

BOG, 3

CosineDFV, 4, 7

 d2g_fundo_entrezid, 5
 d2g_fundo_symbol, 6
 d2g_separation, 6
 d2go_sample, 5
 d2s_hsdn, 7, 7
 d2s_hsdn_sample, 7
 dSimer (dSimer-package), 2
 dSimer-package, 2

FunSim, 8, 11, 15

 get_GOterm2GeneAssos, 9, 10, 12, 22, 26
 go2g_sample, 10
 graphlet_sig_hprd, 10

HumanNet_sample, 11

HypergeometricTest, 5, 11, 22, 26

ICod, 12

InformationContent, 13

interactome, 14

jaccardindex, 14

LLSn2List, 8, 11, 15

Normalize, 3, 16, 22

orbit_dependency_count, 16

plot_bipartite, 17
plot_heatmap, 18
plot_net, 19
plot_topo, 20
PPI_HPRD, 21
PSB, 9, 12, 22

Separation, 23, 24
Separation2Similarity, 23, 24
setWeight, 17, 24, 28
Sun_annotation, 25
Sun_function, 9, 12, 26
Sun_topology, 10, 27, 28

weight, 28

x2y_conv2_y2x, 28
x2y_df2list, 29

weight, 28