Package ‘dagLogo’
December 21, 2016

Type Package
Title dagLogo
Version 1.12.0
Date 2016-05-03
Author Jianhong Ou, Alexey Stukalov, Niraj Nirala, Usha Acharya, Lihua Julie Zhu
Maintainer Jianhong Ou <jianhong.ou@umassmed.edu>
Description Visualize significant conserved amino acid sequence pattern in groups based on probability theory.
License GPL (>=2)
Depends R (>= 3.0.1), methods, biomaRt, grImport, grid, motifStack
Imports pheatmap, Biostrings
Suggests XML, UniProt.ws, BiocStyle, knitr, rmarkdown, testthat
biocViews SequenceMatching, Visualization
VignetteBuilder knitr
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>dagLogo-package</td>
<td>2</td>
</tr>
<tr>
<td>buildBackgroundModel</td>
<td>2</td>
</tr>
<tr>
<td>colorsets</td>
<td>4</td>
</tr>
<tr>
<td>dagBackground-class</td>
<td>4</td>
</tr>
<tr>
<td>dagHeatmap</td>
<td>5</td>
</tr>
<tr>
<td>dagLogo</td>
<td>5</td>
</tr>
<tr>
<td>dagPeptides-class</td>
<td>6</td>
</tr>
<tr>
<td>ecoli.proteome</td>
<td>7</td>
</tr>
<tr>
<td>fetchSequence</td>
<td>8</td>
</tr>
<tr>
<td>formatSequence</td>
<td>9</td>
</tr>
<tr>
<td>nameHash</td>
<td>10</td>
</tr>
<tr>
<td>prepareProteome</td>
<td>10</td>
</tr>
<tr>
<td>proteome-class</td>
<td>11</td>
</tr>
<tr>
<td>proteome.example</td>
<td>12</td>
</tr>
<tr>
<td>seq.example</td>
<td>12</td>
</tr>
<tr>
<td>testDAU</td>
<td>13</td>
</tr>
<tr>
<td>testDAUresults-class</td>
<td>14</td>
</tr>
</tbody>
</table>

Index 15
dagLogo-package

Visualize significant conserved amino acid sequence pattern in groups based on probability theory

Description

We implement iceLogo by R to visualize significant conserved amino acid sequence pattern based on probability theory. Compare to iceLogo, dagLogo can also visualize significant sequence patterns by clustering the peptides by groups such as charge, chemistry, hydrophobicity and etc.

Details

Package: dagLogo
Type: Package
Version: 1.0
Date: 2013-09-31
License: GPL (>= 2)

DAG: Differential Amino acid Group

There are several differences between dagLogo from iceLogo:
1. The sequence patterns can be grouped by charge, chemistry, hydrophobicity and etc.
2. dagLogo accepts different length of aligned amino acid sequences.
3. Except Random, regional (called restricted in dagLogo) and terminal (called anchored) background model, the background sequence could be set to other regions of the genes in inputs and complementary set of the proteome.

Author(s)

Jianhong Ou, Julie Lihua Zhu
Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>

Examples

```r
data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10L)
t <- testDAU(seq.example, bg)
dagLogo(t)
```

buildBackgroundModel

Description

build background model for dag test
Usage

buildBackgroundModel(dagPeptides,
 bg=c("wholeGenome", "inputSet", "nonInputSet"),
 model=c("any", "anchored"),
 targetPosition=c("any", "Nterminus", "Cterminus"),
 uniqueSeq=TRUE,
 permutationSize=30L,
 rand.seed=1,
 replacement=FALSE,
 proteome)

Arguments

dagPeptides an object of dagPeptides, output of `fetchSequence` or `formatSequence`
bg could be "wholeGenome", "inputSet" or "nonInputSet"
model could be "any" or "anchored"
targetPosition could be "any", "Nterminus" or "Cterminus"
uniqueSeq should the background sequence be unique?
permutationSize how many times should it samples
rand.seed random seed
replacement Should sampling be with replacement?
proteome an object of Proteome, output of `prepareProteome`

Details

The background could be generated from wholeGenome, inputSet or nonInputSet. whole genome: randomly select subsequences from the whole genome with each subsequence containing amino acids with same width of input sequences. anchored whole genome: randomly select subsequences from the whole genome with each subsequence containing amino acids with same width of input sequences where the middle amino acids must contain anchor amino acid, e.g., K, which is specified by user. input set: same to whole genome, but only use protein sequence from input id and not including the site specified in input sequences anchored input set: same to anchored whole genome, but only use protein sequences from input id, and not including the site specified in input sequences. non-input set: whole genome - input set. anchored non-input set: whole genome - input set and the middle amino acids must contain anchor amino acid.

Value

an object of dagBackground which contains background and permutationSize.

Author(s)

Jianhong Ou, Alexey Stukalov, Julie Zhu

See Also

`prepareProteome`
Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example)

colorsets

Description

retrieve color setting for logo

Usage

colorsets(colorScheme=c("null", "classic", "charge", "chemistry", "hydrophobicity"))

Arguments

colorScheme could be 'null', 'charge', 'chemistry', 'classic' or 'hydrophobicity'

Value

A character vector of color scheme

Author(s)

Jianhong Ou

Examples

col <- colorsets("hydrophobicity")

dagBackground-class

Class "dagBackground"

Description

An object of class "dagBackground" represents background model.

Objects from the Class

Objects can be created by calls of the form new("dagBackground", background, permutationSize).

Slots

background Object of class "list" records the background model
permutationSize code"integer" permutation size of background
dagHeatmap

plot heatmap for test results

Description
plot heatmap for test results

Usage
dagHeatmap(testDAUresults, type=c("diff", "zscore"), ...)

Arguments
- `testDAUresults` output of `testDAU`, should be an object of testDAUresults
- `type` "diff" or "zscore"
- `...` parameter could be passed to pheatmap

Value
one

Author(s)
Jianhong Ou

Examples
```r
data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10)
t <- testDAU(seq.example, bg)
dagHeatmap(t)
```

dagLogo
plot sequence logo for test results

Description
plot sequence logo for test results

Usage
dagLogo(testDAUresults, type=c("diff", "zscore"), pvalueCutoff=0.05, namehash=NULL, font="Helvetica-Bold", textgp=gpar(), legend=FALSE, labelRelativeToAnchor=FALSE, labels=NULL)
Arguments

- `testDAUresults`: output of `testDAU`, should be an object of `testDAUresults`
- `type`: "diff" or "zscore"
- `pvalueCutoff`: pvalue cutoff for logo plot
- `namehash`: the hash table to convert rownames of test results to a single letter to be plotted in the logo
- `font`: font for logo symbol
- `textgp`: text parameter
- `legend`: plot legend or not, default false.
- `labelRelativeToAnchor`: plot label relative to anchor or not, default false.
- `labels`: the labels in each position.

Value

none

Author(s)

Jianhong Ou

See Also

nameHash

Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10)
t <- testDAU(seq.example, bg)
dagLogo(t)

dagPeptides-class

Class "dagPeptides"

Description

An object of class "dagPeptides" represents the information of peptides.

Objects from the Class

Objects can be created by calls of the form `new("dagPeptides", data, peptides, upstreamOffset, downstreamOffset)`.
Slots

data Object of class "data.frame" The details of the input sequences. It includes the columns: IDs, anchorAA (anchor Amino Acid), anchorPos (anchor Position), peptide (protein peptide), anchor, upstream, downstream (peptides in given upstream and downstream offset from anchor)

peptides code"matrix" The input peptides. Each column contains one peptide in that position

upstreamOffset "numeric" The upstream offset from anchor
downstreamOffset "numeric" The downstream offset from anchor
type "character" ID type of inputs

Description

the subset proteome of Escherichia coli

Usage

data(ecoli.proteome)

Format

An object of Proteome for Escherichia coli proteome. The format is: A list with one data frame and an character.

proteome 'data.frame': obs. of 4 variables
type 'character': "UniProt"

The format of proteome is

ENTREZ_GENE a character vector, records entrez gene id
SEQUENCE a character vector, peptide sequences
ID a character vector, Uniprot ID
LEN a character vector, length of peptides

Details

used in the examples Annotation data obtained by: library(UniProt.ws) taxId(UniProt.ws) <- 562 proteome <- prepareProteome(UniProt.ws, species="Escherichia coli")

Examples

data(ecoli.proteome)
head(ecoli.proteome@proteome)
ecoli.proteome@type
fetchSequence

fetch sequence by id

Description

fetch amino acid sequence by given identifiers via biomaRt or proteome prepared by prepareProteome

Usage

```r
fetchSequence(IDs, type="entrezgene", anchorAA=NULL, anchorPos,
              mart, proteome, upstreamOffset, downstreamOffset)
```

Arguments

- **IDs**
 A vector of Identifiers to retrieve peptides
- **type**
 type of identifiers
- **anchorAA**
 a vector of character, anchor Amino Acid
- **anchorPos**
 a vector of character or numeric, anchor position, for example, K121. Or a vector of character with amino acid sequences. If AA sequences is used, the anchorAA must be the a vector of character with single AA for each.
- **mart**
 an object of Mart
- **proteome**
 an object of Proteome, output of prepareProteome
- **upstreamOffset**
 an integer, upstream offset position
- **downstreamOffset**
 an integer, downstream offset position

Value

return an object of dagPeptides

Author(s)

Jianhong Ou, Alexey Stukalov, Julie Zhu

See Also

formatSequence

Examples

```r
if(interactive()){
  mart <- useMart("ensembl", "dmelanogaster_gene_ensembl")
  dat <- read.csv(system.file("extdata", "dagLogoTestData.csv", package="dagLogo"))
  seq <- fetchSequence(as.character(dat$entrez_geneid[1:5]),
                      anchorPos=as.character(dat$NCBI_site[1:5]),
                      mart=mart,
                      upstreamOffset=7,
                      downstreamOffset=7)
  ## sample: use sequence as anchorPos
  sequences <- seq@peptides
  sequences[, 8] <- "k"
```
sequences <- apply(sequences, 1, paste, collapse="")
seq <- fetchSequence(as.character(seq$data$IDs),
 anchorAA="k",
 anchorPos=sequences,
 mart=mart,
 upstreamOffset=7,
 downstreamOffset=7)
sample: use sequence as anchorPos 2
sequences <- cbind(seq@peptides[, 1:8], ",", seq@peptides[, 9:15])
seq <- fetchSequence(as.character(seq$data$IDs),
 anchorAA="*",
 anchorPos=sequences,
 mart=mart,
 upstreamOffset=7,
 downstreamOffset=7)

formatSequence <- prepare an object of dagPeptides from sequences

Description

prepare an object of dagPeptides from sequences

Usage

formatSequence(seq, proteome, upstreamOffset, downstreamOffset)

Arguments

seq a vector of character, amino acid sequences
proteome an object of Proteome, output of prepareProteome
upstreamOffset an integer, upstream offset position
downstreamOffset an integer, downstream offset position

Value

return an object of dagPeptides, which is a list contains: data, peptides, upstreamOffset, downstreamOffset and type information

Author(s)

Jianhong Ou, Julie Zhu

See Also

fetchSequence
prepareProteome

Examples

if(interactive()){
 dat <- unlist(read.delim(system.file("extdata", "grB.txt", package="dagLogo"), header=F, as.is=TRUE))
 proteome <- prepareProteome(fasta=system.file("extdata", "HUMAN.fasta", package="dagLogo"))
 seq <- formatSequence(dat, proteome)
}

nameHash

convert group name to a single character

Description

convert group name to a single character to shown in a logo

Usage

ameHash(nameScheme=c("classic", "charge", "chemistry", "hydrophobicity"))

Arguments

nameScheme could be "classic", "charge", "chemistry", "hydrophobicity"

Value

A character vector of name scheme

Author(s)

Jianhong Ou

Examples

nameHash("charge")

prepareProteome

prepare proteome for background building

Description

prepare proteome from UniProt webserver or a fasta file

Usage

prepareProteome(UniProt.ws, fasta, species="unknown")
Proteome-class

Arguments

 UniProt.ws an object of UniProt.ws
 fasta fasta file name or an object of AAStringSet
 species an character to assign the species of the proteome

Value

 an object of Proteome which contain protein sequence information

Author(s)

 Jianhong Ou

See Also

 formatSequence, buildBackgroundModel

Examples

 if(interactive(){
 library(UniProt.ws)
 UniProt.ws <- UniProt.ws(taxId=7227)
 proteome <- prepareProteome(UniProt.ws, species="Drosophila melanogaster")
 })

Proteome-class Class "Proteome"

Description

 An object of class "Proteome" represents proteome of a given species.

Objects from the Class

 Objects can be created by calls of the form new("Proteome", proteome, type, species).

Slots

 proteome Object of class "data.frame" the proteome of a given species, should include ids and peptide sequences.
 type code"character" indicates how the object is prepared, could be "fasta" or "UniProt"
 species "character" the species
Proteome.example

the subset proteome of fruit fly

Description

the subset proteome of fruit fly

Usage

`data(proteome.example)`

Format

An object of Proteome for fly subset proteome. The format is: A list with one data frame and an character.

- `proteome` 'data.frame': 1406 obs. of 4 variables
 - `type` 'character': "UniProt"

The format of proteome is

- `ENTREZ_GENE` a character vector, records entrez gene id
- `SEQUENCE` a character vector, peptide sequences
- `ID` a character vector, Uniprot ID
- `LEN` a character vector, length of peptides

Details

used in the examples Annotation data obtained by: `library(UniProt.ws)` `taxId(UniProt.ws) <- 7227`
`proteome <- prepareProteome(UniProt.ws)` `proteome@proteome <- proteome@proteome[sample(1:19902, 1406),]`

Examples

`data(proteome.example)`
`head(proteome.example@proteome)`
`proteome.example@type`

Seq.example

example object of dagPeptides

Description

example object of dagPeptides

Usage

`data(seq.example)`
testDAU

Format

An object of dagPeptides. The format is: A list.

data 'data.frame': 732 obs. of 7 variables
peptides 'matrix': amnio acid in each position
upstreamOffset an integer, upstream offset position
downstreamOffset an integer, downstream offset position
type "character", type of identifiers

The format of data is

IDs a character vector, input identifiers
anchorAA a character vector, anchor amino acid provided in inputs
anchorPos a numeric vector, anchor position in the protein
peptide a character vector, peptide sequences
anchor a character vector, anchor amino acid in the protein
upstream a character vector, upstream peptides
downstream a character vector, downstream peptides

Details

used in the examples seq obtained by: mart <- useMart("ensembl", "dmelanogaster_gene_ensembl")
dat <- read.csv(system.file("extdata", "dagLogoTestData.csv", package="dagLogo")) seq <- fetchSequence(as.character(dat$entrez_geneid), anchorPos=as.character(dat$NCBI_site), mart=mart, upstreamOffset=7, downstreamOffset=7)

Examples

data(seq.example)
head(seq.example@peptides)
seq.example@upstreamOffset
seq.example@downstreamOffset

testDAU

DAU test

Description

Performs DAU test

Usage

testDAU(dagPeptides, dagBackground,
group=c("null", "classic", "charge", "chemistry", "hydrophobicity"),
bgNoise=NA)
Arguments

dagPeptides an object of dagPeptides, output of \texttt{fetchSequence} or \texttt{fformatSequence}
dagBackground an object of dagBackground, output of \texttt{buildBackgroundModel}
group could be "null", "classic", "charge", "chemistry", "hydrophobicity"
bgNoise if it is not NA, test will using a background by Dirichlet(1)-distributed random frequencies with weight bg.noise. The value of bgNoise should be a number in the range of 0 to 1, eg. 0.05

Value

an object of testDAUresults ready for plotting

Author(s)

Jianhong Ou, Alexey Stukalov, Julie Zhu

Examples

data("seq.example")
data("proteome.example")
b <- buildBackgroundModel(seq.example, proteome=proteome.example)
t <- testDAU(seq.example, bg, bgNoise=0.05)

Description

An object of class "testDAUresults" represents background model.

Objects from the Class

Objects can be created by calls of the form \texttt{new("dagBackground", group="character",

difference code"matrix" the difference of inputs from background for each amino acid in each position
zsore code"matrix" z score for each amino acid in each position
pvalue code"matrix" pvalue for each amino acid in each position
background code"matrix" background frequencies for each amino acid in each position
motif code"matrix" inputs frequencies for each amino acid in each position
upstream "numeric" The upstream offset from anchor
downstream "numeric" The downstream offset from anchor
Index

*Topic **classes**
 - dagBackground-class, 4
 - dagPeptides-class, 6
 - Proteome-class, 11
 - testDAUresults-class, 14

*Topic **datasets**
 - ecoli.proteome, 7
 - proteome.example, 12
 - seq.example, 12

*Topic **figure**
 - colorsets, 4
 - dagHeatmap, 5
 - dagLogo, 5
 - nameHash, 10

*Topic **misc**
 - buildBackgroundModel, 2
 - fetchSequence, 8
 - formatSequence, 9
 - prepareProteome, 10
 - testDAU, 13

*Topic **package**
 - dagLogo-package, 2

buildBackgroundModel, 2, 11, 14

colorsets, 4

dagBackground-class, 4

dagHeatmap, 5

dagLogo, 5

dagLogo-package, 2

dagPeptides, 8

dagPeptides-class, 6

ecoli.proteome, 7

fetchSequence, 3, 8, 9, 14

formatSequence, 3, 8, 9, 11, 14

nameHash, 6, 10

prepareProteome, 3, 8, 9, 10

Proteome-class, 11

proteome.example, 12

seq.example, 12

testDAU, 5, 6, 13

testDAUresults-class, 14