Package ‘dagLogo’

March 22, 2017

Type Package
Title dagLogo
Version 1.12.0
Date 2016-05-03
Author Jianhong Ou, Alexey Stukalov, Niraj Nirala, Usha Acharya, Lihua Julie Zhu
Maintainer Jianhong Ou <jianhong.ou@umassmed.edu>
Description Visualize significant conserved amino acid sequence pattern in groups based on probability theory.
License GPL (>=2)
Depends R (>= 3.0.1), methods, biomaRt, grImport, grid, motifStack
Imports pheatmap, Biostrings
Suggests XML, UniProt.ws, BiocStyle, knitr, rmarkdown, testthat
biocViews SequenceMatching, Visualization
VignetteBuilder knitr
NeedsCompilation no

R topics documented:

 dagLogo-package .. 2
 buildBackgroundModel .. 2
 colorsets ... 4
 dagBackground-class .. 4
 dagHeatmap ... 5
 dagLogo .. 5
 dagPeptides-class ... 6
 ecoli.proteome .. 7
 fetchSequence ... 8
 formatSequence .. 9
 nameHash ... 10
 prepareProteome ... 10
 Proteome-class .. 11
 proteome.example .. 12
 seq.example .. 12
 testDAU .. 13
 testDAUresults-class .. 14

Index 15
dagLogo-package

Visualize significant conserved amino acid sequence pattern in groups based on probability theory

Description

We implement iceLogo by R to visualize significant conserved amino acid sequence pattern based on probability theory. Compare to iceLogo, dagLogo can also visualize significant sequence patterns by clustering the peptides by groups such as charge, chemistry, hydrophobicity and etc.

Details

Package: dagLogo
Type: Package
Version: 1.0
Date: 2013-09-31
License: GPL (>= 2)

DAG: Differential Amino acid Group

There are several differences between dagLogo from iceLogo:
1. The sequence patterns can be grouped by charge, chemistry, hydrophobicity and etc.
2. dagLogo accepts different length of aligned amino acid sequences.
3. Except Random, regional (called restricted in dagLogo) and terminal (called anchored) background model, the background sequence could be set to other regions of the genes in inputs and complementary set of the proteome.

Author(s)

Jianhong Ou, Julie Lihua Zhu
Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>

Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10L)
t <- testDAU(seq.example, bg)
dagLogo(t)
Usage

buildBackgroundModel(dagPeptides,
 bg=c("wholeGenome", "inputSet", "nonInputSet"),
 model=c("any", "anchored"),
 targetPosition=c("any", "Nterminus", "Cterminus"),
 uniqueSeq=TRUE,
 permutationSize=30L,
 rand.seed=1,
 replacement=FALSE,
 proteome)

Arguments

dagPeptides an object of dagPeptides, output of `fetchSequence` or `formatSequence`
bg could be "wholeGenome", "inputSet" or "nonInputSet"
model could be "any" or "anchored"
targetPosition could be "any", "Nterminus" or "Cterminus"
uniqueSeq should the background sequence be unique?
permutationSize how many times should it samples
rand.seed random seed
replacement Should sampling be with replacement?
proteome an object of Proteome, output of `prepareProteome`

Details

The background could be generated from wholeGenome, inputSet or nonInputSet. whole genome: randomly select subsequences from the whole genome with each subsequence containing amino acids with same width of input sequences. anchored whole genome: randomly select subsequences from the whole genome with each subsequence containing amino acids with same width of input sequences where the middle amino acids must contain anchor amino acid, e.g., K, which is specified by user. input set: same to whole genome, but only use protein sequence from input id and not including the site specified in input sequences. anchored input set: same to anchored whole genome, but only use protein sequences from input id, and not including the site specified in input sequences. non-input set: whole genome - input set. anchored non-input set: whole genome - input set and the middle amino acids must contain anchor amino acid.

Value

an object of dagBackground which contains background and permutationSize.

Author(s)

Jianhong Ou, Alexey Stukalov, Julie Zhu

See Also

`prepareProteome`
Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example)

colorsets retrieve color setting for logo

Description

retrieve prepared color setting for logo

Usage

colorsets(colorScheme=c("null", "classic", "charge", "chemistry", "hydrophobicity"))

Arguments

colorScheme could be 'null', 'charge', 'chemistry', 'classic' or 'hydrophobicity'

Value

A character vector of color scheme

Author(s)

Jianhong Ou

Examples

col <- colorsets("hydrophobicity")

dagBackground-class Class "dagBackground"

Description

An object of class "dagBackground" represents background model.

Objects from the Class

Objects can be created by calls of the form new("dagBackground", background, permutationSize).

Slots

background Object of class "list" records the background model
permutationSize code"integer" permutation size of background
dagHeatmap

plot heatmap for test results

Description
plot heatmap for test results

Usage
dagHeatmap(testDAUresults, type=c("diff", "zscore"), ...)

Arguments
testDAUresults output of testDAU, should be an object of testDAUresults
type "diff" or "zscore"
... parameter could be passed to pheatmap

Value
none

Author(s)
Jianhong Ou

Examples
data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10)
t <- testDAU(seq.example, bg)
dagHeatmap(t)

dagLogo

plot sequence logo for test results

Description
plot sequence logo for test results

Usage
dagLogo(testDAUresults, type=c("diff", "zscore"), pvalueCutoff=0.05, namehash=NULL, font="Helvetica-Bold", textgp=gpar(), legend=FALSE, labelRelativeToAnchor=FALSE, labels=NULL)
 Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>testDAUresults</td>
<td>output of <code>testDAU</code>, should be an object of <code>testDAUresults</code></td>
</tr>
<tr>
<td>type</td>
<td>"diff" or "zscore"</td>
</tr>
<tr>
<td>pvalueCutoff</td>
<td>p-value cutoff for logo plot</td>
</tr>
<tr>
<td>namehash</td>
<td>the hash table to convert rownames of test results to a single letter to be plotted in the logo</td>
</tr>
<tr>
<td>font</td>
<td>font for logo symbol</td>
</tr>
<tr>
<td>textgp</td>
<td>text parameter</td>
</tr>
<tr>
<td>legend</td>
<td>plot legend or not, default false.</td>
</tr>
<tr>
<td>labelRelativeToAnchor</td>
<td>plot label relative to anchor or not, default false.</td>
</tr>
<tr>
<td>labels</td>
<td>the labels in each position</td>
</tr>
</tbody>
</table>

 Value

none

 Author(s)

Jianhong Ou

 See Also

dagPeptides-class

 Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example, permutationSize=10)
t <- testDAU(seq.example, bg)
dagLogo(t)

dagPeptides-class Class "dagPeptides"

 Description

An object of class "dagPeptides" represents the information of peptides.

 Objects from the Class

Objects can be created by calls of the form `new("dagPeptides", data, peptides, upstreamOffset, downstreamOffset)`
Slots

- **data**: Object of class "data.frame" The details of the input sequences. It includes the columns: IDs, anchorAA (anchor Amino Acid), anchorPos (anchor Position), peptide (protein peptide), anchor, upstream, downstream (peptides in given upstream and downstream offset from anchor).

- **peptides**: code"matrix" The input peptides. Each column contains one peptide in that position.

- **upstreamOffset**: numeric" The upstream offset from anchor.

- **downstreamOffset**: numeric" The downstream offset from anchor.

- **type**: "character" ID type of inputs.

Description

the subset proteome of Escherichia coli

Usage

`data(ecoli.proteome)`

Format

An object of Proteome for Escherichia coli proteome. The format is: A list with one data frame and an character.

- **proteome**: 'data.frame': obs. of 4 variables

- **type**: 'character': "UniProt"

Details

used in the examples Annotation data obtained by: library(UniProt.ws) taxId(UniProt.ws) <- 562 proteome <- prepareProteome(UniProt.ws, species="Escherichia coli")

Examples

`data(ecoli.proteome)`

`head(ecoli.proteome@proteome)`

`ecoli.proteome@type`
fetchSequence

Description
fetch amino acid sequence by given identifiers via biomaRt or proteome prepared by prepareProteome

Usage
fetchSequence(IDs, type="entrezgene", anchorAA=NULL, anchorPos, mart, proteome, upstreamOffset, downstreamOffset)

Arguments
IDs A vector of Identifiers to retrieve peptides
type type of identifiers
anchorAA a vector of character, anchor Amino Acid
anchorPos a vector of character or numeric, anchor position, for example, K121. Or a vector of character with amino acid sequences. If AA sequences is used, the anchorAA must be the a vector of character with single AA for each.
mart an object of Mart
proteome an object of Proteome, output of prepareProteome
upstreamOffset an integer, upstream offset position
downstreamOffset an integer, downstream offset position

Value
return an object of dagPeptides

Author(s)
Jianhong Ou, Alexey Stukalov, Julie Zhu

See Also
formatSequence

Examples
if(interactive()){
mart <- useMart("ensembl", "dmelanogaster_gene_ensembl")
dat <- read.csv(system.file("extdata", "dagLogoTestData.csv", package="dagLogo"))
seq <- fetchSequence(as.character(dat$entrez_geneid[1:5]),
 anchorPos=as.character(dat$NCBI_site[1:5]),
 mart=mart,
 upstreamOffset=7,
 downstreamOffset=7)
n# sample: use sequence as anchorPos
sequences <- seq@peptides
sequences[, 8] <- "k"
sequences <- apply(sequences, 1, paste, collapse="")
seq <- fetchSequence(as.character(seq@data$IDs),
 anchorAA="k",
 anchorPos=sequences,
 mart=mart,
 upstreamOffset=7,
 downstreamOffset=7)
sample: use sequence as anchorPos 2
sequences <- cbind(seq@peptides[, 1:8], "*", seq@peptides[, 9:15])
sequences <- apply(sequences, 1, paste, collapse="")
seq <- fetchSequence(as.character(seq@data$IDs),
 anchorAA="*",
 anchorPos=sequences,
 mart=mart,
 upstreamOffset=7,
 downstreamOffset=7)
}

formatSequence

Description

prepare an object of dagPeptides from sequences

Usage

formatSequence(seq, proteome, upstreamOffset, downstreamOffset)

Arguments

seq a vector of character, amino acid sequences
proteome an object of Proteome, output of prepareProteome
upstreamOffset an integer, upstream offset position
downstreamOffset an integer, downstream offset position

Value

return an object of dagPeptides, which is a list contains: data, peptides, upstreamOffset, downstreamOffset and type information

Author(s)

Jianhong Ou, Julie Zhu

See Also

fetchSequence
Examples

```r
if(interactive()){
  dat <- unlist(read.delim(system.file("extdata", 
    "grB.txt", package="dagLogo"),
    header=F, as.is=TRUE))
  proteome <- prepareProteome(fasta=system.file("extdata", 
    "HUMAN.fasta", 
    package="dagLogo"))
  seq <- formatSequence(dat, proteome)
}
```

nameHash

convert group name to a single character

Description

Convert group name to a single character to shown in a logo.

Usage

```r
nameHash(nameScheme=c("classic", "charge", "chemistry", "hydrophobicity"))
```

Arguments

- `nameScheme` could be "classic", "charge", "chemistry", "hydrophobicity"

Value

A character vector of name scheme

Author(s)

Jianhong Ou

Examples

```r
nameHash("charge")
```

prepareProteome

prepare proteome for background building

Description

Prepare proteome from UniProt webserver or a fasta file.

Usage

```r
prepareProteome(UniProt.ws, fasta, species="unknown")
```
Proteome-class

Arguments

- `UniProt.ws` an object of UniProt.ws
- `fasta` fasta file name or an object of AAStringSet
- `species` an character to assign the species of the proteome

Value

an object of Proteome which contain protein sequence information

Author(s)

Jianhong Ou

See Also

formatSequence, *buildBackgroundModel*

Examples

```r
if(interactive()){
  library(UniProt.ws)
  UniProt.ws <- UniProt.ws(taxId=7227)
  proteome <- prepareProteome(UniProt.ws, species="Drosophila melanogaster")
}
```

Proteome-class

Class "Proteome"

Description

An object of class "Proteome" represents proteome of a given species.

Objects from the Class

Objects can be created by calls of the form `new("Proteome", proteome, type, species)`.

Slots

- `proteome` Object of class "data.frame" the proteome of a given species, should include ids and peptide sequences.
 - `type` code"character" indicates how the object is prepared, could be "fasta" or "UniProt"
 - `species` "character" the species
proteome.example
The subset proteome of fruit fly

Description

The subset proteome of fruit fly

Usage

`data(proteome.example)`

Format

An object of Proteome for fly subset proteome. The format is: A list with one data frame and an character.

- **proteome** `data.frame`: 1406 obs. of 4 variables
- **type** `character`: "UniProt"

The format of proteome is

- **ENTREZ_GENE**: a character vector, records entrez gene id
- **SEQUENCE**: a character vector, peptide sequences
- **ID**: a character vector, Uniprot ID
- **LEN**: a character vector, length of peptides

Details

used in the examples Annotation data obtained by:

```r
library(UniProt.ws) taxId(UniProt.ws) <- 7227
proteome <- prepareProteome(UniProt.ws) proteome@proteome <- proteome@proteome[sample(1:19902, 1406), ]
```

Examples

```r
data(proteome.example)
head(proteome.example@proteome)
proteome.example@type
```

seq.example
example object of dagPeptides

Description

example object of dagPeptides

Usage

`data(seq.example)`
Format

An object of dagPeptides. The format is: A list.

data `data.frame`: 732 obs. of 7 variables
peptides `matrix`: amnio acid in each position
upstreamOffset an integer, upstream offset position
downstreamOffset an integer, downstream offset position
type "character", type of identifiers

The format of data is

IDs a character vector, input identifiers
anchorAA a character vector, anchor amino acid provided in inputs
anchorPos a numeric vector, anchor position in the protein
peptide a character vector, peptide sequences
anchor a character vector, anchor amino acid in the protein
upstream a character vector, upstream peptides
downstream a character vector, downstream peptides

Details

used in the examples seq obtained by: mart <- useMart("ensembl", "dmelanogaster_gene_ensembl")
dat <- read.csv(system.file("extdata", "dagLogoTestData.csv", package="dagLogo")) seq <- fetchSequence(as.character(dat$entrez_geneid), anchorPos=as.character(dat$NCBI_site), mart=mart, upstreamOffset=7, downstreamOffset=7)

Examples

data(seq.example)
head(seq.example@peptides)
seq.example@upstreamOffset
seq.example@downstreamOffset

testDAU

Description

Performs DAU test

Usage

testDAU(dagPeptides, dagBackground,
 group=c("null", "classic", "charge", "chemistry", "hydrophobicity"),
 bgNoise=NA)
Arguments

dagPeptides an object of dagPeptides, output of fetchSequence or formatSequence

dagBackground an object of dagBackground, output of buildBackgroundModel

group could be "null", "classic", "charge", "chemistry", "hydrophobicity"

bgNoise if it is not NA, test will using a background by Dirichlet(1)-distributed random frequencies with weight bg.noise. The value of bgNoise should be a number in the range of 0 to 1, eg. 0.05

Value

an object of testDAUresults ready for plotting

Author(s)

Jianhong Ou, Alexey Stukalov, Julie Zhu

Examples

data("seq.example")
data("proteome.example")
bg <- buildBackgroundModel(seq.example, proteome=proteome.example)
t <- testDAU(seq.example, bg, bgNoise=0.05)

testDAUresults-class Class "testDAUresults"

Description

An object of class "testDAUresults" represents background model.

Objects from the Class

Objects can be created by calls of the form new("dagBackground", group="character",
difference="matrix", zscore="matrix", pvalue="matrix", background="matrix",
motif="matrix", upstream="numeric", downstream="numeric")

Slots

group Object of class "character" could be "null", "classic", "charge", "chemistry", "hydrophobicity"
difference code"matrix" the difference of inputs from background for each amino acid in each position
zscore code"matrix" z score for each amino acid in each position
pvalue code"matrix" pvalue for each amino acid in each position
background code"matrix" background frequencies for each amino acid in each position
motif code"matrix" inputs frequencies for each amino acid in each position
upstream "numeric" The upstream offset from anchor
downstream "numeric" The downstream offset from anchor
Index

*Topic classes
 dagBackground-class, 4
 dagPeptides-class, 6
 Proteome-class, 11
 testDAUresults-class, 14
*Topic datasets
 ecoli.proteome, 7
 proteome.example, 12
 seq.example, 12
*Topic figure
colorsets, 4
dagHeatmap, 5
dagLogo, 5
nameHash, 10
*Topic misc
 buildBackgroundModel, 2
 fetchSequence, 8
 formatSequence, 9
 prepareProteome, 10
 testDAU, 13
*Topic package
dagLogo-package, 2

buildBackgroundModel, 2, 11, 14

colorsets, 4
dagBackground-class, 4
dagHeatmap, 5
dagLogo, 5
dagLogo-package, 2
dagPeptides, 8
dagPeptides-class, 6
ecoli.proteome, 7
fetchSequence, 3, 8, 9, 14
formatSequence, 3, 8, 9, 11, 14
nameHash, 6, 10
prepareProteome, 3, 8, 9, 10
Proteome-class, 11
proteome.example, 12

seq.example, 12
testDAU, 5, 6, 13
testDAUresults-class, 14