Package ‘derfinderHelper’

April 25, 2017

Type Package
Title derfinder helper package
Version 1.10.0
Date 2017-03-06
Depends R(>= 3.2.2)
Imports IRanges (>= 1.99.27), Matrix, methods, S4Vectors (>= 0.2.2)
Suggests devtools (>= 1.6), knitr (>= 1.6), BiocStyle (>= 2.3.12), testthat
VignetteBuilder knitr
Description Helper package for speeding up the derfinder package when using multiple cores.
License Artistic-2.0
LazyData false
URL https://github.com/leekgroup/derfinderHelper
BugReports https://support.bioconductor.org/t/derfinderHelper
biocViews DifferentialExpression, Sequencing, RNASeq, Software
RoxygenNote 5.0.1
NeedsCompilation no
Author Leonardo Collado-Torres [aut, cre], Andrew E. Jaffe [aut], Jeffrey T. Leek [aut, ths]
Maintainer Leonardo Collado-Torres <lcollado@jhu.edu>

R topics documented:
derfinderHelper-package .. 2
fstats.apply .. 2

Index 5
derfinderHelper-package

Derfinder helper package

Description

Helper package for speeding up the derfinder package when using multiple cores.

Author(s)

Leonardo Collado-Torres <lcollado@jhu.edu>

fstats.apply

Calculate F-statistics per base by extracting chunks from a DataFrame

Description

Extract chunks from a DataFrame and get the F-statistics on the rows of data, comparing the models `mod` (alternative) and `mod0` (null).

Usage

```r
fstats.apply(index = Rle(TRUE, nrow(data)), data, mod, mod0, adjustF = 0,
  lowMemDir = NULL, method = "Matrix", scalefac = 32)
```

Arguments

- **index**: An index (logical Rle is the best for saving memory) indicating which rows of the DataFrame to use.
- **data**: The DataFrame containing the coverage information. Normally stored in `coveragePrep$coverageProcessed` from `derfinder::preprocessCoverage`. Could also be the full data from `derfinder::loadCoverage`.
- **mod**: The design matrix for the alternative model. Should be \(m \) by \(p \) where \(p \) is the number of covariates (normally also including the intercept).
- **mod0**: The design matrix for the null model. Should be \(m \) by \(p_0 \).
- **adjustF**: A single value to adjust that is added in the denominator of the F-stat calculation. Useful when the Residual Sum of Squares of the alternative model is very small.
- **lowMemDir**: The directory where the processed chunks are saved when using `derfinder::preprocessCoverage` with a specified `lowMemDir`.
- **method**: Has to be either 'Matrix' (default), 'Rle' or 'regular'. See details.
- **scalefac**: The scaling factor used in `derfinder::preprocessCoverage`. It is only used when `method='Matrix'`.
Details

If lowMemDir is specified then index is expected to specify the chunk number.

fstats.apply has three different implementations which are controlled by the method parameter.
method='regular' coerces the data to a standard 'matrix' object. method='Matrix' coerces the
data to a sparseMatrix which reduces the required memory. This method is only usable when the
projection matrices have row sums equal to 0. Note that these row sums are not exactly 0 due to
how the computer works, thus leading to very small numerical differences in the F-statistics cal-
culated versus method='regular'. Finally, method='Rle' calculates the F-statistics using the Rle
compressed data without coercing it to other types of objects, thus using less memory than the other
methods. However, it's speed is affected by the number of samples (n) as the current implementa-
tion requires n (n + 1) operations, so it's only recommended for small data sets. method='Rle'
does result in small numerical differences versus method='regular'.

Overall method='Matrix' is faster than the other options and requires less memory than method='regular'.
With tiny example data sets, method='Matrix' can be slower than method='regular' because the
coercion step is slower.

In derfinder versions <= 0.0.62, method='regular' was the only option available.

Value

A numeric Rle with the F-statistics per base for the chunk in question.

Author(s)

Leonardo Collado-Torres, Jeff Leek

Examples

Create some toy data
library('IRanges')
toyData <- DataFrame(
 'sample1' = Rle(sample(0:10, 1000, TRUE)),
 'sample2' = Rle(sample(0:10, 1000, TRUE)),
 'sample3' = Rle(sample(0:10, 1000, TRUE)),
 'sample4' = Rle(sample(0:10, 1000, TRUE)))

Create the model matrices
group <- c('A', 'A', 'B', 'B')
mod.toy <- model.matrix(~ group)
mod0.toy <- model.matrix(~ 0 + rep(1, 4))

Get the F-statistics
fstats <- fstats.apply(data = toyData, mod = mod.toy, mod0 = mod0.toy,
 scalefac = 1)

Example with data from derfinder package
Not run:
Load the data
library('derfinder')

Create the model matrices
mod <- model.matrix(~ genomeInfo$pop)
mod0 <- model.matrix(~ 0 + rep(1, nrow(genomeInfo)))
Run the function

```r
system.time(fstats.Matrix <- fstats.apply(data=genomeData$coverage, mod=mod,
     mod0=mod0, method = 'Matrix', scalefac = 1))

fstats.Matrix
```

Compare methods

```r
system.time(fstats.regular <- fstats.apply(data=genomeData$coverage,
     mod=mod, mod0=mod0, method = 'regular'))

system.time(fstats.Rle <- fstats.apply(data=genomeData$coverage, mod=mod,
     mod0=mod0, method = 'Rle'))
```

Small numerical differences can occur

```r
summary(fstats.regular - fstats.Matrix)
summary(fstats.regular - fstats.Rle)
```

You can make the effect negligible by appropriately rounding

```r
findRegions(cutoff) so the DERs will be the same regardless of the method
```

Extra comparison, although the method to compare against is 'regular'

```r
summary(fstats.Rle - fstats.Matrix)
```

End(Not run)
Index

Topic package
 derfinderHelper-package, 2

derfinderHelper-package, 2
fstats.apply, 2, 3
sparseMatrix, 3