Package ‘edge’

January 23, 2016

Type Package

Title Extraction of Differential Gene Expression

Date 2015-04-15

Version 2.2.1

Author John D. Storey, Jeffrey T. Leek and Andrew J. Bass

Maintainer John D. Storey <jstorey@princeton.edu>, Andrew J. Bass <ajbass@princeton.edu>

biocViews MultipleComparison, DifferentialExpression, TimeCourse, Regression, GeneExpression, DataImport

Description The edge package implements methods for carrying out differential expression analyses of genome-wide gene expression studies. Significance testing using the optimal discovery procedure and generalized likelihood ratio tests (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions are available to facilitate the analysis of common study designs, including time course experiments. Other packages such as snm, sva, and qvalue are integrated in edge to provide a wide range of tools for gene expression analysis.

VignetteBuilder knitr

Imports methods, splines, sva, snm, jackstraw, qvalue(>= 1.99.0), MASS

Suggests testthat, knitr, ggplot2, reshape2

Depends R(>= 3.1.0), Biobase

URL https://github.com/jdstorey/edge

BugReports https://github.com/jdstorey/edge/issues

LazyData true

License MIT + file LICENSE

NeedsCompilation yes

RoxygenNote 5.0.1
apply_jackstraw

Non-Parametric Jackstraw for Principal Component Analysis (PCA)

Description

Estimates statistical significance of association between variables and their principal components (PCs).
Usage

apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL, B = NULL,
covariate = NULL, verbose = TRUE, seed = NULL)

S4 method for signature 'deSet'
apply_jackstraw(object, r1 = NULL, r = NULL, s = NULL,
 B = NULL, covariate = NULL, verbose = TRUE, seed = NULL)

Arguments

- **object**: S4 object: deSet
- **r1**: a numeric vector of principal components of interest. Choose a subset of r significant PCs to be used.
- **r**: a number (a positive integer) of significant principal components.
- **s**: a number (a positive integer) of synthetic null variables. Out of m variables, s variables are independently permuted.
- **B**: a number (a positive integer) of resampling iterations. There will be a total of s*B null statistics.
- **covariate**: a data matrix of covariates with corresponding n observations.
- **verbose**: a logical indicator as to whether to print the progress.
- **seed**: a seed for the random number generator.

Details

This function computes m p-values of linear association between m variables and their PCs. Its resampling strategy accounts for the over-fitting characteristics due to direct computation of PCs from the observed data and protects against an anti-conservative bias.

Provide the deSet, with m variables as rows and n observations as columns. Given that there are r significant PCs, this function tests for linear association between m variables and their r PCs.

You could specify a subset of significant PCs that you are interested in r1. If PC is given, then this function computes statistical significance of association between m variables and PC, while adjusting for other PCs (i.e., significant PCs that are not your interest). For example, if you want to identify variables associated with 1st and 2nd PCs, when your data contains three significant PCs, set r=3 and r1=c(1,2).

Please take a careful look at your data and use appropriate graphical and statistical criteria to determine a number of significant PCs, r. The number of significant PCs depends on the data structure and the context. In a case when you fail to specify r, it will be estimated from a permutation test (Buja and Eyuboglu, 1992) using a function permutationPA.

If s is not supplied, s is set to about 10 supplied, B is set to m*10/s.

Value

apply_jackstraw returns a list containing the following slots:

- **p.value**: the m p-values of association tests between variables and their principal components
- **obs.stat**: the observed F-test statistics
- **null.stat**: the s*B null F-test statistics
apply_qvalue

Estimate the q-values for a given set of p-values

Description

Runs `qvalue` on a `deSet` object.

Usage

apply_qvalue(object, ...)

S4 method for signature 'deSet'
apply_qvalue(object, ...)

Author(s)

Neo Christopher Chung <nc@princeton.edu>

References

More information available at http://ncc.name/

See Also

permutationPA

Examples

library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)
create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)
create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)
apply the jackstraw
out = apply_jackstraw(de_obj, r1=1, r=1)
Use optional arguments
For example, set s and B for a balance between speed of the algorithm and accuracy of p-values
out = apply_jackstraw(dat, r=1, r=1, s=10, B=1000, seed=5678)
apply_qvalue

Arguments

object S4 object: deSet
...
Additional arguments for qvalue

Value
deSet object with slots updated by qvalue calculations.

Author(s)
John Storey, Andrew Bass

References

See Also
deSet, odp and lrt

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

Run lrt (or odp) and apply_qvalue
de_lrt <- lrt(de_obj)
de_lrt <- apply_qvalue(de_lrt, fdr.level = 0.05,
pi0.method = "bootstrap", adj=1.2)
summary(de_lrt)
apply_snm

Supervised normalization of data in edge

apply_snm

Description

Runs snm on a deSet object based on the null and full models in deSet. See snm for additional details on the algorithm.

Usage

apply_snm(object, int.var = NULL, ...)

S4 method for signature 'deSet'
apply_snm(object, int.var = NULL, ...)

Arguments

- object: S4 object: deSet
- int.var: data frame: intensity-dependent effects (see snm for details)
- ...: Additional arguments for snm

Value

apply_snm returns a deSet object where assayData (the expression data) that has been passed to apply_snm is replaced with the normalized data that snm returns. Specifically, exprs(object) is replaced by $norm.dat from snm, where object is the deSet object.

Author(s)

John Storey, Andrew Bass

References

See Also

deset, odp and lrt

Examples

simulate data
library(snm)
singleChannel <- sim.singleChannel(12345)
data <- singleChannel$raw.data

create deSet object using build_models (can use ExpressionSet see manual)
apply_sva

```r
cov <- data.frame(grp = singleChannel$bio.var[,2])
full_model <- ~grp
null_model <- ~1

# create deSet object using build_models
de_obj <- build_models(data = data, cov = cov, full.model = full_model,
null.model = null_model)

# run snm using intensity-dependent adjustment variable
de_snm <- apply_snm(de_obj, int.var = singleChannel$int.var,
verbose = FALSE, num.iter = 1)
```

apply_sva

Estimate surrogate variables

Description

Runs `sva` on the null and full models in `deSet`. See `sva` for additional details.

Usage

```r
apply_sva(object, ...)
```

```r
## S4 method for signature 'deSet'
apply_sva(object, ...)
```

Arguments

- `object` S4 object: `deSet`
- `...` Additional arguments for `sva`

Value

`deSet` object where the surrogate variables estimated by `sva` are added to the full model and null model matrices.

Author(s)

John Storey, Jeffrey Leek, Andrew Bass

References

See Also
deSet.odp and lrt

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

# run surrogate variable analysis
de_sva <- apply_sva(de_obj)

# run odp/lrt with surrogate variables added
de_odp <- odp(de_sva, bs.its = 30)
summary(de_odp)
```

betaCoef

Regression coefficients from full model fit

Description

Access the full model fitted coefficients of a deFit object.

Usage

```r
betaCoef(object)
```

```r
## S4 method for signature 'deFit'
betaCoef(object)
```

Arguments

- `object` S4 object: deFit

Value

betaCoef returns the regression coefficients for the full model fit.
build_models

Generate a deSet object with full and null models

Description

build_models creates a deSet object. The user inputs the full and null models.

Usage

build_models(data, cov, full.model = NULL, null.model = NULL, ind = NULL)

Arguments

data: matrix: gene expression data.
cov: data.frame: the covariates in the study.
full.model: formula: the adjustment and the biological variables of interest.
null.model formula: the adjustment variables.
ind factor: individuals sampled in the study. Default is NULL. Optional.

Value

deSet object

Author(s)

John Storey, Andy Bass

See Also

deset, build_study

Examples

create ExpressionSet object from kidney dataset
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null.model <- ~sex
full.model <- ~sex + ns(age, df=4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null.model,
full.model = full.model)

build_study \hspace{1cm} \textit{Formulates the experimental models}

Description

build_study generates the full and null models for users unfamiliar with building models in R. There are two types of experimental designs: static and time-course. For more details, refer to the vignette.

Usage

build_study(data, grp = NULL, adj.var = NULL, bio.var = NULL,
tme = NULL, ind = NULL, sampling = c("static", "timecourse"),
basis.df = 2, basis.type = c("ncs", "poly"))
Arguments

data matrix: gene expression data (rows are genes, columns are samples).
grp vector: group assignment in the study (for K-class studies). Optional.
adj.var matrix: adjustment variables. Optional.
bio.var matrix: biological variables. Optional.
tme vector: time variable in a time course study. Optional.
ind factor: individual factor for repeated observations of the same individuals. Optional.
sampling string: type of study. Either "static" or "timecourse". Default is "static".
basis.df numeric: degrees of freedom of the basis for time course study. Default is 2.
basis.type string: either "ncs" (natural cubic spline) or "ps" (polynomial spline) basis for time course study. Default is "ncs".

Value

deset object

Author(s)

John Storey, Andy Bass

See Also

deset, build_models

Examples

create ExpressionSet object from kidney dataset
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr

create deset object from data
de_obj <- build_study(data = kidexpr, adj.var = sex, tme = age, sampling = "timecourse", basis.df = 4)
deFit-class

The differential expression class for the model fits

description

Object returned from fit_models containing information regarding the model fits for the experiment.

slots

- fit.full matrix: containing fitted values for the full model.
- fit.null matrix: containing fitted values for the null model.
- res.full matrix: the residuals of the full model.
- res.null matrix: the residuals of the null model.
- dH.full vector: contains diagonal elements in the projection matrix for the full model.
- beta.coef matrix: fitted coefficients for the full model.
- stat.type string: information on the statistic of interest. Currently, the only options are “lrt” and “odp”.

Methods

- fitNull(deFit) Access fitted data from null model.
- fitFull(deFit) Access fitted data from full model.
- resNull(deFit) Access residuals from null model fit.
- resFull(deFit) Access residuals from full model fit.
- betaCoef(deFit) Access beta coefficients in linear model.
- sType(deFit) Access statistic type of model fitting utilized in function.

Author(s)

John Storey, Jeffrey Leek, Andrew Bass
deSet

Create a deSet object from an ExpressionSet

Description

Creates a deSet object that extends the ExpressionSet object.

Usage

```r
deSet(object, full.model, null.model, individual = NULL)
```

```r
## S4 method for signature 'ExpressionSet'
deSet(object, full.model, null.model, individual = NULL)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>S4 object: ExpressionSet</td>
</tr>
<tr>
<td>full.model</td>
<td>formula: full model containing the both the adjustment and the biological variables for the experiment.</td>
</tr>
<tr>
<td>null.model</td>
<td>formula: null model containing the adjustment variables for the experiment.</td>
</tr>
<tr>
<td>individual</td>
<td>factor: information on repeated samples in experiment.</td>
</tr>
</tbody>
</table>

Value

deSet object

Note

It is essential that the null and full models have the same variables as the ExpressionSet phenoType column names.

Author(s)

John Storey, Andrew Bass

See Also

deset.odp and lrt

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
```
cov <- data.frame(sex = sex, age = age)
pDat <- as(cov, "AnnotatedDataFrame")
exp_set <- ExpressionSet(assayData = kidexpr, phenoData = pDat)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- deSet(exp_set, null_model = null_model,
 full_model = full_model)

optionally add individuals to experiment, in this case there are 36
individuals that were sampled twice
indSamples <- as.factor(rep(1:36, each = 2))
de_obj <- deSet(exp_set, null_model = null_model,
 full_model = full_model, ind = indSamples)
summary(de_obj)

deSet-class

The differential expression class (deSet)

Description

The deSet class extends the ExpressionSet class. While the ExpressionSet class contains information about the experiment, the deSet class contains both experimental information and additional information relevant for differential expression analysis, explained below in Slots.

Slots

null.model formula: contains the adjustment variables in the experiment. The null model is used for comparison when fitting the full model.
full.model formula: contains the adjustment variables and the biological variables of interest.
null.matrix matrix: the null model as a matrix.
full.matrix matrix: the full model as a matrix.
individual factor: contains information on which sample is from which individual in the experiment.
qvalueObj S3 object: containing qvalue object. See qvalue for additional details.

Methods

as(ExpressionSet, "deSet") Coerce objects of ExpressionSet to deSet.
lrt(deSet, ...) Performs a generalized likelihood ratio test using the full and null models.
odp(deSet, ...) Performs the optimal discovery procedure, which is a new approach for optimally performing many hypothesis tests in a high-dimensional study.
kl_clust(deSet, ...) An implementation of mODP that assigns genes to modules based off of the Kullback-Leibler distance.
fit_models(deSet, ...) Fits a linear model to each gene by method of least squares.
apply_qvalue(deSet, ...) Applies qvalue function.
apply_snm(deSet, ...) Applies supervised normalization of microarrays (snm) on gene expression data.
apply_sva(deSet, ...) Applies surrogate variable analysis (sva).
fullMatrix(deSet) Access and set full matrix.
nullMatrix(deSet) Access and set null matrix.
fullModel(deSet) Access and set full model.
nullModel(deSet) Access and set null model.
individual(deSet) Access and set individual slot.
qvalueObj(deSet) Access qvalue object. See qvalue.
validObject(deSet) Check validity of deSet object.

Note
See ExpressionSet for additional slot information.

Author(s)
John Storey, Jeffrey Leek, Andrew Bass

edge

Description
The edge package implements methods for carrying out differential expression analyses of genome-wide gene expression studies. Significance testing using the optimal discovery procedure and generalized likelihood ratio tests (equivalent to F-tests and t-tests) are implemented for general study designs. Special functions are available to facilitate the analysis of common study designs, including time course experiments. Other packages such as snm, sva, and qvalue are integrated in edge to provide a wide range of tools for gene expression analysis.

Author(s)
John Storey, Jeffrey Leek, Andrew Bass

Examples
```r
## Not run:
browseVignettes("edge")

## End(Not run)
```
endotoxin dataset from Calvano et al. (2005) Nature

Description

The data provide gene expression measurements in an endotoxin study where four subjects were given endotoxin and four subjects were given a placebo. Blood samples were collected and leukocytes were isolated from the samples before infusion and at times 2, 4, 6, 9, 24 hours.

Usage

```r
data(endotoxin)
```

Format

- `endoexpr`: A 500 rows by 46 columns data frame containing expression values.
- `class`: A vector of length 46 containing information about which individuals were given endotoxin.
- `ind`: A vector of length 46 providing indexing measurements for each individual in the experiment.
- `time`: A vector of length 46 indicating time measurements.

Value

endotoxin dataset

Note

The data is a random subset of 500 genes from the full dataset. To download the full data set, go to http://genomine.org/edge/.

References

Storey JD, Xiao W, Leek JT, Tompkins RG, and Davis RW. (2005) Significance analysis of time course microarray experiments. PNAS, 102: 12837-12842. http://www.pnas.org/content/100/16/9440.full

Examples

```r
library(splines)
# import data
data(endotoxin)
ind <- endotoxin$ind
class <- endotoxin$class
time <- endotoxin$time
endoexpr <- endotoxin$endoexpr
cov <- data.frame(individual = ind, time = time, class = class)
```
formulate null and full models in experiment
note: interaction term is a way of taking into account group effects
mNull <- ~ns(time, df=4, intercept = FALSE) + class
mFull <- ~ns(time, df=4, intercept = FALSE) + ns(time, df=4, intercept = FALSE):class + class

create deSet object
de_obj <- build_models(endoexpr, cov = cov, full.model = mFull,
 null.model = mNull, ind = ind)

de_odp <- odp(de_obj, bs.its = 10)
de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)

summarize significance results
summary(de_odp)

fitFull

Fitted data from the full model

Description

Access the fitted data from the full model in a deFit object.

Usage

```r
fitFull(object)
```

Arguments

- **object**: S4 object: deFit

Value

`fitFull` returns a matrix of fitted values from full model.

Author(s)

John Storey, Andrew Bass

See Also

`fit_models`
Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

run fit_models to get model fits
defit <- fit_models(de_obj)

extract fitted values for full model
fitted_full <- fitFull(de_fit)

fitNull | Fitted data from the null model |

Description

Access the fitted data from the null model in a deFit object.

Usage

fitNull(object)

S4 method for signature 'deFit'
fitNull(object)

Arguments

object S4 object: deFit

Value

fitNull returns a matrix of fitted values from null model.

Author(s)

John Storey, Andrew Bass
fit_models

See Also

fit_models

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null_model = null_model,
full_model = full_model)

run fit_models to get model fits
de_fit <- fit_models(de_obj)

extract fitted values from null model
fitted_null <- fitNull(de_fit)

fit_models

Linear regression of the null and full models

Description

fit_models fits a model matrix to each gene by using the least squares method. Model fits can be either statistic type "odp" (optimal discovery procedure) or "lrt" (likelihood ratio test).

Usage

fit_models(object, stat.type = c("lrt", "odp"), weights = NULL)

S4 method for signature 'deSet'
fit_models(object, stat.type = c("lrt", "odp"),
weights = NULL)

Arguments

object S4 object: deSet.
stat.type character: type of statistic to be used. Either "lrt" or "odp". Default is "lrt".
weights matrix: weights for each observation. Default is NULL.
Details

If "odp" method is implemented then the null model is removed from the full model (see Storey 2007). Otherwise, the statistic type has no affect on the model fit.

Value

`defit` object

Note

`fit_models` does not have to be called by the user to use `odp`, `lrt` or `kl_clust` as it is an optional input and is implemented in the methods. The `defit` object can be created by the user if a different statistical implementation is required.

Author(s)

John Storey

References

See Also

`defit`, `odp` and `lrt`

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)
```
fullMatrix

Matrix representation of full model

Description

These generic functions access and set the full matrix for deSet object.

Usage

fullMatrix(object)

fullMatrix(object) <- value

fullMatrix(object)

fullMatrix(object) <- value

Arguments

object S4 object: deSet

value matrix: full model matrix where the columns are the covariates and rows are observations

Value

fullMatrix returns the value of the full model matrix.

Author(s)

Andrew Bass, John Storey

See Also

deSet, fullModel
Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

extract the full model equation as a matrix
mat_full <- fullMatrix(de_obj)

fullModel

Full model equation

Description

These generic functions access and set the full model for deSet object.

Usage

fullModel(object)

fullModel(object) <- value

S4 method for signature 'deSet'
fullModel(object)

S4 replacement method for signature 'deSet'
fullModel(object) <- value

Arguments

 object S4 object: deSet
 value formula: The experiment design for the full model.

Value

the formula for the full model.
gibson

Author(s)

John Storey, Andrew Bass

See Also
deset

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, full.model = full_model)

# extract out the full model equation
mod_full <- fullModel(de_obj)

# change the full model in the experiment
fullModel(de_obj) <- ~sex + ns(age, df = 2)
```

gibson

Gene expression dataset from Idaghdour et al. (2008)

Description

The data provide gene expression measurements in peripheral blood leukocyte samples from three Moroccan groups leading distinct ways of life: desert nomadic (DESERT), mountain agrarian (VIL-LAGE), and coastal urban (AGADIR).

Usage

data(gibson)
Format

- batch: Batches in experiment.
- location: Environment/lifestyle of Moroccan Amazigh groups.
- gender: Sex of individuals.
- gibexpr: A 500 rows by 46 columns matrix of gene expression values.

Value

gibson dataset

Note

These data are a random subset of 500 genes from the total number of genes in the original data set. To download the full data set, go to http://genomine.org/de/.

References

Examples

```r
# import
data(gibson)
batch <- gibson$batch
gender <- gibson$gender
location <- gibson$location
gibexpr <- gibson$gibexpr
cov <- data.frame(Batch = batch, Gender = gender, Location = location)

# create deSet for experiment- static experiment
mNull <- ~gender + batch
mFull <- ~gender + batch + location

de_obj <- build_models(gibexpr, cov = cov, full.model = mFull, null.model = mNull)

# Perform ODP/lrt statistic to determine significant genes in study
de_odp <- odp(de_obj, bs.its = 10)
de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)

# summarize significance results
summary(de_odp)
```
individual

Individuals sampled in experiment

Description

These generic functions access and set the individual slot in `deSet`.

Usage

```r
individual(object)

individual(object) <- value

## S4 method for signature 'deSet'
individual(object)

## S4 replacement method for signature 'deSet'
individual(object) <- value
```

Arguments

- `object`: `deSet`
- `value`: factor, Identifies which samples correspond to which individuals. Important if the same individuals are sampled multiple times in a longitudinal fashion.

Value

`individual` returns information regarding distinct individuals sampled in the experiment.

Author(s)

John Storey, Andrew Bass

See Also

deSet

Examples

```r
library(splines)
# import data
data(endotoxin)
ind <- endotoxin$ind
time <- endotoxin$time
class <- endotoxin$class
dendoexpr <- endotoxin$endoexpr
cov <- data.frame(individual = ind, time = time, class = class)
```
create ExpressionSet object
pDat <- as(cov, "AnnotatedDataFrame")
exp_set <- ExpressionSet(assayData = endoexpr, phenoData = pDat)

formulate null and full models in experiment
note: interaction term is a way of taking into account group effects
mNull <- ~ns(time, df=4, intercept = FALSE)
mFull <- ~ns(time, df=4, intercept = FALSE) +
 ns(time, df=4, intercept = FALSE):class + class

create deSet object
de_obj <- deSet(exp_set, full.model = mFull, null.model = mNull,
 individual = ind)

extract out the individuals factor
ind_exp <- individual(de_obj)

description

Gene expression measurements from kidney samples were obtained from 72 human subjects ranging in age from 27 to 92 years. Only one array was obtained per individual, and the age and sex of each individual were recorded.

Usage
data(kidney)

Format

- kidcov: A 133 rows by 6 columns data frame detailing the study design.
- kidexpr: A 500 rows by 133 columns matrix of gene expression values, where each row corresponds to a different probe-set and each column to a different tissue sample.
- age: A vector of length 133 giving the age of each sample.
- sex: A vector of length 133 giving the sex of each sample.

Value
kidney dataset

Note

These data are a random subset of 500 probe-sets from the total number of probe-sets in the original data set. To download the full data set, go to http://genomine.org/edge/. The age and sex are contained in kidcov data frame.
References

http://www.pnas.org/content/100/16/9440.full

Examples

```r
# import data
data(kidney)
sex <- kidney$sex
age <- kidney$age
kidexpr <- kidney$kidexpr

# create model
de_obj <- build_study(data = kidexpr, adj.var = sex, tme = age, sampling = "timecourse", basis.df = 4)

de_odp <- odp(de_obj, bs.its = 10)
de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 10)

# summarize significance results
summary(de_odp)
```

kl_clust

Modular optimal discovery procedure (mODP)

Description

kl_clust is an implementation of mODP that assigns genes to modules based on of the Kullback-Leibler distance.

Usage

```r
kl_clust(object, de.fit = NULL, n.mods = 50)
```

```r
## S4 method for signature 'deSet,missing'
kl_clust(object, de.fit = NULL, n.mods = 50)
```

```r
## S4 method for signature 'deSet,deFit'
kl_clust(object, de.fit = NULL, n.mods = 50)
```

Arguments

- **object**: S4 object: *deSet*.
- **de.fit**: S4 object: *deFit*.
- **n.mods**: integer: number of modules (i.e., clusters).
Details

mODP utilizes a k-means clustering algorithm where genes are assigned to a cluster based on the Kullback-Leiber distance. Each gene is assigned an module-average parameter to calculate the ODP score (See Woo, Leek and Storey 2010 for more details). The mODP and full ODP produce nearly exact results but mODP has the advantage of being computationally faster.

Value

A list with the following slots:

- `mu.full`: cluster averaged fitted values from full model.
- `mu.null`: cluster averaged fitted values from null model.
- `sig.full`: cluster standard deviations from full model.
- `sig.null`: cluster standard deviations from null model.
- `n.per.mod`: total members in each cluster.
- `clustMembers`: cluster membership for each gene.

Note

The results are generally insensitive to the number of modules after a certain threshold of about n.mods>=50 in our experience. It is recommended that users experiment with the number of modules. If the number of modules is equal to the number of genes then the original ODP is implemented.

Author(s)

John Storey, Jeffrey Leek

References

See Also

`odp`, `fit_models`

Examples

```r
# import data
t library(splines)
t data(kidney)
t age <- kidney$age
t sex <- kidney$sex
```


\texttt{kidexpr <- kidney$kidexpr}
\texttt{cov <- data.frame(sex = sex, age = age)}

create models
\texttt{null_model <- ~sex}
\texttt{full_model <- ~sex + ns(age, df = 4)}

create deSet object from data
\texttt{de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,}
\texttt{full.model = full_model)}

mODP method
\texttt{de_clust <- kl_clust(de_obj)}

change the number of clusters
\texttt{de_clust <- kl_clust(de_obj, n.mods = 10)}

input a deFit object
\texttt{de_fit <- fit_models(de_obj, stat.type = "odp")}
\texttt{de_clust <- kl_clust(de_obj, de.fit = de_fit)}

\begin{verbatim}
\textbf{lrt} \hspace{1cm} \textit{Performs F-test (likelihood ratio test using Normal likelihood)}
\end{verbatim}

\textbf{Description}

\texttt{lrt} performs a generalized likelihood ratio test using the full and null models.

\textbf{Usage}

\texttt{lrt(object, de.fit, nullDistn = c("normal", "bootstrap"), weights = NULL,}
\texttt{bs.its = 100, seed = NULL, verbose = TRUE, mod.F = FALSE, ...)}

\texttt{## S4 method for signature 'deSet,missing'
\texttt{lrt(object, de.fit, nullDistn = c("normal",}
\texttt{"bootstrap"), weights = NULL, bs.its = 100, seed = NULL,}
\texttt{verbose = TRUE, mod.F = FALSE, ...)}

\texttt{## S4 method for signature 'deSet,deFit'
\texttt{lrt(object, de.fit, nullDistn = c("normal",}
\texttt{"bootstrap"), weights = NULL, bs.its = 100, seed = NULL,}
\texttt{verbose = TRUE, mod.F = FALSE, ...)}

\textbf{Arguments}

\texttt{object} \hspace{1cm} S4 object: \texttt{deSet}.
\texttt{de.fit} \hspace{1cm} S4 object: \texttt{deFit}. Optional.
nullDistn character: either "normal" or "bootstrap". If "normal" then the p-values are calculated using the F distribution. If "bootstrap" then a bootstrap algorithm is implemented to simulate statistics from the null distribution. In the "bootstrap" case, empirical p-values are calculated using the observed and null statistics (see `empPvals`). Default is "normal".

weights matrix: weights for each observation. Default is NULL.

bs.its integer: number of null statistics generated (only applicable for "bootstrap" method). Default is 100.

seed integer: set the seed value. Default is NULL.

verbose boolean: print iterations for bootstrap method. Default is TRUE.

mod.F boolean: Moderated F-test, recommended for experiments with a small sample size. Default is FALSE.

... Additional arguments for `apply_qvalue` and `empPvals` function.

Details

`lrt` fits the full and null models to each gene using the function `fit_models` and then performs a likelihood ratio test. The user has the option to calculate p-values a Normal distribution assumption or through a bootstrap algorithm. If `nullDistn` is "bootstrap" then empirical p-values will be determined from the `qvalue` package (see `empPvals`).

Value

deSet object

Author(s)

John Storey, Andrew Bass

References

http://en.wikipedia.org/wiki/Likelihood-ratio_test

See Also

deSet, build_models, odp

Examples

```R
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
```
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

lrt method
de_lrt <- lrt(de_obj, nullDistn = "normal")

to generate p-values from bootstrap
de_lrt <- lrt(de_obj, nullDistn = "bootstrap", bs.its = 30)

input a deFit object directly
de_fit <- fit_models(de_obj, stat.type = "lrt")
de_lrt <- lrt(de_obj, de.fit = de_fit)

summarize object
summary(de_lrt)

nullMatrix Matrix representation of null model

Description

These generic functions access and set the null matrix for `deSet` object.

Usage

nullMatrix(object)

nullMatrix(object) <- value

S4 method for signature 'deSet'
nullMatrix(object)

S4 replacement method for signature 'deSet'
nullMatrix(object) <- value

Arguments

- **object**: S4 object: `deSet`
- **value**: matrix: null model matrix where columns are covariates and rows are observations
nullModel

Value
nullModel returns the value of the null model matrix.

Author(s)
John Storey, Andrew Bass

See Also
deset, fullModel and fullModel

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
deo_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
 full.model = full_model)

extract the null model as a matrix
mat_null <- nullMatrix(deo_obj)

nullModel

Null model equation from deSet object

Description
These generic functions access and set the null model for deSet object.

Usage

nullModel(object)
nullModel(object) <- value

S4 method for signature 'deSet'
nullModel(object)
nullModel

S4 replacement method for signature 'deSet'

nullModel(object) <- value

Arguments

- **object**: S4 object: deSet
- **value**: formula: The experiment design for the null model.

Value

nullModel returns the formula for the null model.

Author(s)

John Storey, Andrew Bass

See Also

deSet

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
                       full.model = full_model)

# extract the null model equation
mod_null <- nullModel(de_obj)

# change null model in experiment but must update full model
nullModel(de_obj) <- ~1
fullModel(de_obj) <- ~1 + ns(age, df=4)
```
The optimal discovery procedure

Description
odp performs the optimal discovery procedure, which is a framework for optimally performing many hypothesis tests in a high-dimensional study. When testing whether a feature is significant, the optimal discovery procedure uses information across all features when testing for significance.

Usage
odp(object, de.fit, odp.parms = NULL, weights = NULL, bs.its = 100, n.mods = 50, seed = NULL, verbose = TRUE, ...)

S4 method for signature 'deSet,missing'
odp(object, de.fit, odp.parms = NULL, weights = NULL, bs.its = 100, n.mods = 50, seed = NULL, verbose = TRUE, ...)

S4 method for signature 'deSet,deFit'
odp(object, de.fit, odp.parms = NULL, weights = NULL, bs.its = 100, n.mods = 50, seed = NULL, verbose = TRUE, ...)

Arguments
- object: S4 object:
 - deSet
de.fit: S4 object:
 - deFit: Optional.
- odp.parms: list: parameters for each cluster. See
 - kl_clust.
- weights: matrix: weights for each observation. Default is NULL.
- bs.its: numeric: number of null bootstrap iterations. Default is 100.
- n.mods: integer: number of clusters used in
 - kl_clust: Default is 50.
- seed: integer: set the seed value. Default is NULL.
- verbose: boolean: print iterations for bootstrap method. Default is TRUE.
- Additional arguments for
 - qvalue and
 - empPvals.

Details
The full ODP estimator computationally grows quadratically with respect to the number of genes. This becomes computationally taxing at a certain point. Therefore, an alternative method called mODP is used which has been shown to provide results that are very similar. mODP utilizes a clustering algorithm where genes are assigned to a cluster based on the Kullback-Leiber distance. Each gene is assigned an module-average parameter to calculate the ODP score and it reduces the computations time to approximately linear (see Woo, Leek and Storey 2010). If the number of clusters is equal to the number of genes then the original ODP is implemented. Depending on the number of hypothesis tests, this can take some time.
Value

deset object

Author(s)

John Storey, Jeffrey Leek, Andrew Bass

References

See Also

kl_clust, build_models and deset

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deset object from data
de_obj <- build_models(data = kidexpr, cov = cov,
null_model = null_model, full_model = full_model)

odp method
de_odp <- odp(de_obj, bs.its = 30)

input a defit object or ODP parameters ... not necessary
de_fit <- fit_models(de_obj, stat.type = "odp")
de_clust <- kl_clust(de_obj, n.mods = 10)
de_odp <- odp(de_obj, de.fit = de_fit, odp.parms = de_clust,
bs.its = 30)

summarize object
summary(de_odp)
qvalueObj

Access/set qvalue slot

Description
These generic functions access and set the qvalue object in the deSet object.

Usage
qvalueObj(object)
qvalueObj(object) <- value

S4 method for signature 'deSet'
qvalueObj(object)

S4 replacement method for signature 'deSet'
qvalueObj(object) <- value

Arguments
object S4 object: deSet
value S3 object: qvalue

Value
qvalueObj returns a qvalue object.

Author(s)
John Storey, Andrew Bass

See Also
lrt, odp and deSet

Examples
import data
library(splines)
library(qvalue)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

run the odp method
de_odp <- odp(de_obj, bs.its = 20)

extract out significance results
qval_obj <- qvalueObj(de_odp)

run qvalue and assign it to deSet slot
pvals <- qval_obj$pvalues
qval_new <- qvalue(pvals, pfdr = TRUE, fdr.level = 0.1)
qvalueObj(de_odp) <- qval_new

resFull

Residuals of full model fit

Description

Access the fitted full model residuals in a deFit object.

Usage

resFull(object)

```r
## S4 method for signature 'deFit'
resFull(object)
```

Arguments

- `object` S4 object: deFit

Value

resFull returns a matrix of residuals from full model.

Author(s)

John Storey, Andrew Bass

See Also

- fit_models
Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

# run fit_models to get model fits
de_fit <- fit_models(de_obj)

# extract out the full residuals from the model fit
res_full <- resFull(de_fit)
```

resNull

Residuals of null model fit

Description

Access the fitted null model residuals in an `deFit` object.

Usage

```r
resNull(object)
```

```r
## S4 method for signature 'deFit'
resNull(object)
```

Arguments

- `object`: S4 object: `deFit`

Value

`resNull` returns a matrix of residuals from null model.

Author(s)

John Storey, Andrew Bass
See Also

fit_models

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

run fit_models to get model fits
de_fit <- fit_models(de_obj)

extract out the null residuals from the model fits
res_null <- resNull(de_fit)

show

Show function for deFit and deSet

Description

Show function for deFit and deSet objects.

Usage

show(object)

S4 method for signature 'deFit'
show(object)

S4 method for signature 'deSet'
show(object)

Arguments

object S4 object: deSet
... additional parameters
sType

Value

Nothing of interest

Author(s)

John Storey, Andrew Bass

Examples

```r
# import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

# create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

# create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, full.model = full_model)

# get summary
summary(de_obj)

# run odp and summarize
de_odp <- odp(de_obj, bs.its = 20)
de_odp
```

sType

Statistic type used in analysis

Description

Access the statistic type in a `deFit` object. Can either be the optimal discovery procedure (odp) or the likelihood ratio test (lrt).

Usage

```r
sType(object)
```

S4 method for signature 'deFit'

```r
sType(object)
```
Arguments

object S4 object: deFit

Value

sType returns the statistic type- either "odp" or "lrt".

Author(s)

John Storey, Andrew Bass

See Also

fit_models, deFit and deSet

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model,
full.model = full_model)

run fit_models to get model fits
de_fit <- fit_models(de_obj)

extract the statistic type of model fits
stat_type <- sType(de_fit)

summary

Summary of deFit and deSet

Description

Summary of deFit and deSet objects.
Usage

summary(object, ...)

S4 method for signature 'deFit'
summary(object)

S4 method for signature 'deSet'
summary(object, ...)

Arguments

object S4 object: deSet
...
additional parameters

Value

Summary of deSet object

Author(s)

John Storey, Andrew Bass

Examples

import data
library(splines)
data(kidney)
age <- kidney$age
sex <- kidney$sex
kidexpr <- kidney$kidexpr
cov <- data.frame(sex = sex, age = age)

create models
null_model <- ~sex
full_model <- ~sex + ns(age, df = 4)

create deSet object from data
de_obj <- build_models(data = kidexpr, cov = cov, null.model = null_model, full.model = full_model)

get summary
summary(de_obj)

run odp and summarize
de_odp <- odp(de_obj, bs.its = 20)
summary(de_odp)
Index

*Topic datasets
 endotoxin, 16
 gibson, 23
 kidney, 26
*Topic nullModel,
 nullModel, 32
*Topic nullModel<- nullmodel, 32
*Topic sType
 sType, 40
*Topic summary
 summary, 41

apply_jackstraw, 2
apply_jackstraw, deSet-method
 (apply_jackstraw), 2
apply_qvalue, 4, 30
apply_qvalue, deSet-method
 (apply_qvalue), 4
apply_snm, 6
apply_snm, deSet-method (apply_snm), 6
apply_sva, 7
apply_sva, deSet-method (apply_sva), 7

betaCoef, 8
betaCoef, deFit-method (betaCoef), 8
build_models, 9, 11, 30, 35
build_study, 10, 10
defit, 8, 17, 18, 20, 27, 29, 34, 37–41
defit-class, 12
deSet, 3–11, 13, 13, 19, 21–23, 25, 27, 29–36, 39, 41, 42
deSet, ExpressionSet-method (deSet), 13
deSet-class, 14

defit, 15
defit-package (defit), 15
defit, 15
empPvals, 30, 34
endotoxin, 16

ExpressionSet, 13–15
fit_models, 9, 12, 17, 19, 19, 28, 30, 37, 39, 41
fit_models, deSet-method (fit_models), 19
fitFull, 17
fitFull, deFit-method (fitFull), 17
fitNull, 18
fitNull, deFit-method (fitNull), 18
fullMatrix, 21
fullMatrix, deSet-method (fullMatrix), 21
fullMatrix, deSet-method (fullMatrix), 21
fullMatrix, deSet-method (fullMatrix), 21
fullModel, 21, 22, 32
fullModel, deSet-method (fullModel), 22
fullModel, deSet-method (fullModel), 22
gibson, 23

individual, 25
individual, deSet-method (individual), 25
individual<-(individual), 25
individual<-, deSet-method (individual), 25

kidney, 26

kl_clust, 20, 27, 34, 35
kl_clust, deSet-method (kl_clust), 27
kl_clust, deSet, missing-method
 (kl_clust), 27

lrt, 5, 6, 8, 13, 20, 29, 36
lrt, deSet, deFit-method (lrt), 29
lrt, deSet, missing-method (lrt), 29

nullMatrix, 31
nullMatrix, deSet-method (nullMatrix), 31
nullMatrix, deSet-method (nullMatrix), 31
nullMatrix<-, deSet-method (nullMatrix), 31
nullModel, 32
nullModel, deSet-method (nullModel), 32
nullModel<-, (nullModel), 32
nullModel<-, deSet-method (nullModel), 32

odp, 5, 6, 8, 13, 20, 28, 30, 34, 36
odp, deSet, deFit-method (odp), 34
odp, deSet, missing-method (odp), 34

permutationPA, 3, 4

qvalue, 4, 5, 14, 15, 30, 34, 36
qvalueObj, 36
qvalueObj, deSet-method (qvalueObj), 36
qvalueObj<-, (qvalueObj), 36
qvalueObj<-, deSet-method (qvalueObj), 36

resFull, 37
resFull, deFit-method (resFull), 37
resNull, 38
resNull, deFit-method (resNull), 38

show, 39
show, deFit-method (show), 39
show, deSet-method (show), 39

snm, 6, 15
sType, 40
sType, deFit-method (sType), 40
summary, 41
summary, deFit-method (summary), 41
summary, deSet-method (summary), 41
sva, 7, 15