Package ‘edgeR’

Version 3.16.5
Date 2016-12-12
Title Empirical Analysis of Digital Gene Expression Data in R
Description Differential expression analysis of RNA-seq expression profiles with biological replication. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. As well as RNA-seq, it be applied to differential signal analysis of other types of genomic data that produce counts, including ChIP-seq, SAGE and CAGE.
Author Yunshun Chen <yuchen@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Davis McCarthy <dmccarthy@wehi.edu.au>, Xiaobei Zhou <xiaobei.zhou@uzh.ch>, Mark Robinson <mark.robinson@imls.uzh.ch>, Gordon Smyth <smyth@wehi.edu.au>
Maintainer Yunshun Chen <yuchen@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Mark Robinson <mark.robinson@imls.uzh.ch>, Davis McCarthy <dmccarthy@wehi.edu.au>, Gordon Smyth <smyth@wehi.edu.au>
License GPL (>=2)
Depends R (>= 2.15.0), limma
Imports graphics, stats, utils, methods, locfit
Suggests MASS, statmod, splines, KernSmooth
URL http://bioinf.wehi.edu.au/edgeR
biocViews GeneExpression, Transcription, AlternativeSplicing, Coverage, DifferentialExpression, DifferentialSplicing, GeneSetEnrichment, Genetics, Bayesian, Clustering, Regression, TimeCourse, SAGE, Sequencing, ChIPSeq, RNASeq, BatchEffect, MultipleComparison, Normalization, QualityControl
NeedsCompilation yes

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>edgeR-package</td>
<td>3</td>
</tr>
<tr>
<td>addPriorCount</td>
<td>4</td>
</tr>
<tr>
<td>adjustedProfileLik</td>
<td>5</td>
</tr>
<tr>
<td>as.data.frame</td>
<td>7</td>
</tr>
<tr>
<td>as.matrix</td>
<td>8</td>
</tr>
<tr>
<td>aveLogCPM</td>
<td>8</td>
</tr>
<tr>
<td>binomTest</td>
<td>10</td>
</tr>
</tbody>
</table>
calcNormFactors .. 11
camera.DGEList .. 13
commonCondLogLikDerDelta .. 14
condLogLikDerSize ... 15
cpm ... 16
cutWithMinN ... 18
deckleTestsDGE .. 19
DGEExact-class ... 20
DGEGLM-class ... 21
DGEList ... 22
DGEList-class ... 23
DGEList-class ... 24
dglmStdResid ... 25
diffSpliceDGE .. 27
dim ... 29
dimmnames ... 30
dispBinTrend ... 31
dispCoxReid ... 33
dispCoxReidInterpolateTagwise 34
dispCoxReidSplineTrend .. 36
dropEmptyLevels ... 38
dgeRUsersGuide .. 39
equalizeLibSizes .. 40
estimateCommonDisp .. 41
estimateDisp ... 43
estimateExonGenewiseDisp .. 45
estimateGLMCommonDisp ... 46
estimateGLMRobustDisp .. 48
estimateGLMTagwiseDisp ... 49
estimateGLMTrendedDisp ... 51
estimateTagwiseDisp .. 52
estimateTrendedDisp .. 54
exactTest .. 56
expandAsMatrix .. 58
getCounts ... 59
getPriorN ... 60
gini ... 61
glmFit ... 62
glmQLFit ... 64
glmTreat ... 68
goana.DGELRT .. 70
gof .. 71
goodTuring .. 73
loessByCol .. 75
makeCompressedMatrix ... 76
maPlot .. 78
maximizeInterpolant ... 79
maximizeQuadratic ... 80
meanvar ... 81
mglm .. 83
movingAverageByCol .. 85
nbhomDeviance .. 86
edgeR-package

Description

edgeR is a package for the analysis of digital gene expression data arising from RNA sequencing technologies such as SAGE, CAGE, Tag-seq or RNA-seq, with emphasis on testing for differential expression. It can also be used for other sequencing technologies from which read counts are produced, such as ChIP-seq, Hi-C or CRISPR.

Particular strengths of the package include the ability to estimate biological variation between replicate libraries, and to conduct exact tests of significance which are suitable for small counts. The package is able to make use of even minimal numbers of replicates.

The supplied counts are assumed to be those of genes in a RNA-seq experiment. However, counts can be supplied for any genomic feature of interest, e.g., tags, transcripts, exons, or even arbitrary intervals of the genome.

An extensive User’s Guide is available, and can be opened by typing `edgeRUsersGuide()` at the R prompt. Detailed help pages are also provided for each individual function.

The edgeR package implements original statistical methodology described in the publications below.
addPriorCount

Author(s)

Mark Robinson <mrobinson@wehi.edu.au>, Davis McCarthy <dmccarthy@wehi.edu.au>, Yun-shun Chen <yuchen@wehi.edu.au>, Aaron Lun <alun@wehi.edu.au>, Gordon Smyth

References

Description

Add a library size-adjusted prior count to each observation.

Usage

```r
addPriorCount(y, lib.size=NULL, offset=NULL, prior.count=1)
```

Arguments

- `y`: a numeric count matrix, with rows corresponding to genes and columns to libraries.
- `lib.size`: a numeric vector of library sizes.
- `offset`: a numeric vector or matrix of offsets.
- `prior.count`: a numeric scalar or vector of prior counts to be added to each gene.
adjustedProfileLik

Details

This function adds a positive prior count to each observation, often useful for avoiding zeroes during calculation of log-values. For example, predFC will call this function to calculate shrunken log-fold changes. aveLogCPM and cpm also use the same underlying code to calculate (average) log-counts per million.

The actual value added to the counts for each library is scaled according to the library size. This ensures that the relative contribution of the prior is the same for each library. Otherwise, a fixed prior would have little effect on a large library, but a big effect for a small library.

The library sizes are also modified, with twice the scaled prior being added to the library size for each library. To understand the motivation for this, consider that each observation is, effectively, a proportion of the total count in the library. The addition scheme implemented here represents an empirical logistic transform and ensures that the proportion can never be zero or one.

If offset is supplied, this is used in favour of lib.size where exp(offset) is defined as the vector/matrix of library sizes. If an offset matrix is supplied, this will lead to gene-specific scaling of the prior as described above.

Most use cases of this function will involve supplying a constant value to prior.count for all genes. However, it is also possible to use gene-specific values by supplying a vector of length equal to the number of rows in y.

Value

A list is returned containing y, a matrix of counts with the added priors; and offset, a compressed-Matrix containing the (log-transformed) modified library sizes.

Author(s)

Aaron Lun

See Also

aveLogCPM, cpm, predFC

adjustedProfileLik Adjusted Profile Likelihood for the Negative Binomial Dispersion Parameter

Description

Compute adjusted profile-likelihoods for estimating the dispersion parameters of genewise negative binomial glms.

Usage

adjustedProfileLik(dispersion, y, design, offset, weights=NULL, adjust=TRUE, start=NULL, get.coef=FALSE)
adjustedProfileLik

Arguments
- **dispersion**: numeric scalar or vector of dispersions.
- **y**: numeric matrix of counts.
- **design**: numeric matrix giving the design matrix.
- **offset**: numeric matrix of same size as y giving offsets for the log-linear models. Can be a scalar or a vector of length ncol(y), in which case it is expanded out to a matrix.
- **weights**: optional numeric matrix giving observation weights.
- **adjust**: logical, if TRUE then Cox-Reid adjustment is made to the log-likelihood, if FALSE then the log-likelihood is returned without adjustment.
- **start**: numeric matrix of starting values for the GLM coefficients, to be passed to `glmFit`.
- **get.coef**: logical, specifying whether fitted GLM coefficients should be returned.

Details
For each row of data, compute the adjusted profile-likelihood for estimating the dispersion parameter of the negative binomial glm. The adjusted profile likelihood is described by McCarthy et al (2012), and is based on the method of Cox and Reid (1987).

The adjusted profile likelihood is an approximate log-likelihood for the dispersion parameter, conditional on the estimated values of the coefficients in the NB log-linear models. The conditional likelihood approach is a technique for adjusting the likelihood function to allow for the fact that nuisance parameters have to be estimated in order to evaluate the likelihood. When estimating the dispersion, the nuisance parameters are the coefficients in the linear model.

This implementation calls the LAPACK library to perform the Cholesky decomposition during adjustment estimation.

The purpose of `start` and `get.coef` is to allow hot-starting for multiple calls to `adjustedProfileLik`, when only the `dispersion` is altered. Specifically, the returned GLM coefficients from one call with `get.coef==TRUE` can be used as the `start` values for the next call.

Value
- If `get.coef==FALSE`, a vector of adjusted profile log-likelihood values is returned containing one element for each row of y.
- Otherwise, a list is returned containing `apl`, the aforementioned vector of adjusted profile likelihoods; and `beta`, a numeric matrix of fitted GLM coefficients.

Author(s)
Yunshun Chen, Gordon Smyth, Aaron Lun

References

See Also

glmFit

Examples

\begin{verbatim}
 y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
apl <- adjustedProfileLik(dispersion, y, design, offset=0)
apl
\end{verbatim}

as.data.frame

Turn a TopTags Object into a Dataframe

Description

Turn a TopTags object into a data.frame.

Usage

S3 method for class 'TopTags'

\begin{verbatim}
 as.data.frame(x, row.names = NULL, optional = FALSE, ...)
\end{verbatim}

Arguments

- **x**: an object of class TopTags
- **row.names**: NULL or a character vector giving the row names for the data frame. Missing values are not allowed.
- **optional**: logical. If TRUE, setting row names and converting column names (to syntactic names) is optional.
- **...**: additional arguments to be passed to or from methods.

Details

This method combines all the components of x which have a row for each gene into a data.frame.

Value

A data.frame.

Author(s)

Gordon Smyth

See Also

as.data.frame in the base package.
as.matrix | Turn a DGEList Object into a Matrix

Description

Coerce a digital gene expression object into a numeric matrix by extracting the count values.

Usage

```r
## S3 method for class 'DGEList'
as.matrix(x, ...)  
```

Arguments

- `x` an object of class DGEList.
- `...` additional arguments, not used for these methods.

Details

This method extracts the matrix of counts.

This involves loss of information, so the original data object is not recoverable.

Value

A numeric matrix.

Author(s)

Gordon Smyth

See Also

- `as.matrix` in the base package or `as.matrix.RGList` in the limma package.

aveLogCPM | Average Log Counts Per Million

Description

Compute average log2 counts-per-million for each row of counts.

Usage

```r
## S3 method for class 'DGEList'
aveLogCPM(y, normalized.lib.sizes=TRUE, prior.count=2, dispersion=NULL, ...)  
## Default S3 method:
aveLogCPM(y, lib.size=NULL, offset=NULL, prior.count=2, dispersion=NULL, weights=NULL, ...)  
```
Arguments

- **y**: numeric matrix containing counts. Rows for genes and columns for libraries.
- **normalized.lib.sizes**: logical, use normalized library sizes?
- **prior.count**: numeric scalar or vector of length `nrow(y)`, containing the average value(s) to be added to each count to avoid infinite values on the log-scale.
- **dispersion**: numeric scalar or vector of negative-binomial dispersions. Defaults to 0.05.
- **lib.size**: numeric vector of library sizes. Defaults to `colSums(y)`. Ignored if `offset` is not `NULL`.
- **offset**: numeric matrix of offsets for the log-linear models.
- **weights**: optional numeric matrix of observation weights.
- **...**: other arguments are not currently used.

Details

This function uses `mglmOneGroup` to compute average counts-per-million (AveCPM) for each row of counts, and returns \(\log_2(\text{AveCPM}) \). An average value of `prior.count` is added to the counts before running `mglmOneGroup`. If `prior.count` is a vector, each entry will be added to all counts in the corresponding row of `y`, as described in `addPriorCount`.

This function is similar to \(\log_2(\text{rowMeans(cpm}(y, \ldots))) \), but with the refinement that larger library sizes are given more weight in the average. The two versions will agree for large values of the dispersion.

Value

Numeric vector giving \(\log_2(\text{AveCPM}) \) for each row of `y`.

Author(s)

Gordon Smyth

See Also

See `cpm` for individual logCPM values, rather than genewise averages.

Addition of the prior count is performed using the strategy described in `addPriorCount`.

The computations for `aveLogCPM` are done by `mglmOneGroup`.

Examples

```r
y <- matrix(c(0,100,30,40),2,2)
lib.size <- c(1000,10000)

# With disp large, the function is equivalent to row-wise averages of individual cpms:
aveLogCPM(y, dispersion=1e4)
cpm(y, log=TRUE, prior.count=2)

# With disp=0, the function is equivalent to pooling the counts before dividing by lib.size:
aveLogCPM(y,prior.count=0,dispersion=0)
cpms <- rowSums(y)/sum(lib.size)*1e6
```
log2(cpms)

The function works perfectly with prior.count or dispersion vectors:
aveLogCPM(y, prior.count=runif(nrow(y), 1, 5))
aveLogCPM(y, dispersion=runif(nrow(y), 0, 0.2))

binomTest

Exact Binomial Tests for Comparing Two Digital Libraries

Description

Computes p-values for differential abundance for each gene between two digital libraries, conditioning on the total count for each gene. The counts in each group as a proportion of the whole are assumed to follow a binomial distribution.

Usage

```r
binomTest(y1, y2, n1=sum(y1), n2=sum(y2), p=n1/(n1+n2))
```

Arguments

- `y1` integer vector giving the count for each gene in the first library. Non-integer values are rounded to the nearest integer.
- `y2` integer vector giving the count for each gene in the second library. Of same length as `y1`. Non-integer values are rounded to the nearest integer.
- `n1` total number of counts in the first library, across all genes. Non-integer values are rounded to the nearest integer. Not required if `p` is supplied.
- `n2` total number of counts in the second library, across all genes. Non-integer values are rounded to the nearest integer. Not required if `p` is supplied.
- `p` expected proportion of `y1` to the total for each gene under the null hypothesis.

Details

This function can be used to compare two libraries from SAGE, RNA-Seq, ChIP-Seq or other sequencing technologies with respect to technical variation.

An exact two-sided binomial test is computed for each gene. This test is closely related to Fisher’s exact test for 2x2 contingency tables but, unlike Fisher’s test, it conditions on the total number of counts for each gene. The null hypothesis is that the expected counts are in the same proportions as the library sizes, i.e., that the binomial probability for the first library is `n1/(n1+n2)`.

The two-sided rejection region is chosen analogously to Fisher’s test. Specifically, the rejection region consists of those values with smallest probabilities under the null hypothesis.

When the counts are reasonably large, the binomial test, Fisher’s test and Pearson’s chisquare all give the same results. When the counts are smaller, the binomial test is usually to be preferred in this context.

This function replaces the earlier `sage.test` functions in the statmod and sagenhaft packages. It produces the same results as `binom.test` in the stats package, but is much faster.

Value

Numeric vector of p-values.
calcNormFactors

Author(s)
Gordon Smyth

References
http://en.wikipedia.org/wiki/Binomial_test
http://en.wikipedia.org/wiki/Fisher's_exact_test
http://en.wikipedia.org/wiki/RNA-Seq

See Also
sage.test (statmod package), binom.test (stats package)

Examples
binomTest(c(0,5,10),c(0,30,50),n1=10000,n2=15000)
Univariate equivalents:
 binom.test(5,5+30,p=10000/(10000+15000))$p.value
 binom.test(10,10+50,p=10000/(10000+15000))$p.value

Description
Calculate normalization factors to scale the raw library sizes.

Usage
S3 method for class 'DGEList'
calcNormFactors(object, method=c("TMM","RLE","upperquartile","none"),
 refColumn=NULL, logratioTrim=.3, sumTrim=0.05, doWeighting=TRUE,
 Acutoff=-1e10, p=0.75, ...)
Default S3 method:
calcNormFactors(object, lib.size=NULL, method=c("TMM","RLE",
 "upperquartile","none"), refColumn=NULL, logratioTrim=.3,
 sumTrim=0.05, doWeighting=TRUE, Acutoff=-1e10, p=0.75, ...)

Arguments
object either a matrix of raw (read) counts or a DGEList object
lib.size numeric vector of library sizes of the object.
method normalization method to be used
refColumn column to use as reference for method="TMM". Can be a column number or a numeric vector of length nrow(object).
logratioTrim amount of trim to use on log-ratios ("M" values) for method="TMM"
sumTrim amount of trim to use on the combined absolute levels ("A" values) for method="TMM"
doWeighting logical, whether to compute (asymptotic binomial precision) weights for method="TMM"
calcNormFactors

Acutoff
cutoff on "A" values to use before trimming for method="TMM"

p
percentile (between 0 and 1) of the counts that is aligned when method="upperquartile"

...
further arguments that are not currently used.

Details

method="TMM" is the weighted trimmed mean of M-values (to the reference) proposed by Robinson and Oshlack (2010), where the weights are from the delta method on Binomial data. If refColumn is unspecified, the library whose upper quartile is closest to the mean upper quartile is used.

method="RLE" is the scaling factor method proposed by Anders and Huber (2010). We call it "relative log expression", as median library is calculated from the geometric mean of all columns and the median ratio of each sample to the median library is taken as the scale factor.

method="upperquartile" is the upper-quartile normalization method of Bullard et al (2010), in which the scale factors are calculated from the 75% quantile of the counts for each library, after removing genes which are zero in all libraries. This idea is generalized here to allow scaling by any quantile of the distributions.

If method="none", then the normalization factors are set to 1.

For symmetry, normalization factors are adjusted to multiply to 1. The effective library size is then the original library size multiplied by the scaling factor.

Note that rows that have zero counts for all columns are trimmed before normalization factors are computed. Therefore rows with all zero counts do not affect the estimated factors.

Value

If object is a matrix, the output is a vector with length ncol(object) giving the relative normalization factors. If object is a DGEList, then it is returned as output with the relative normalization factors in object$samples$norm.factors.

Author(s)

Mark Robinson, Gordon Smyth

References

Examples

y <- matrix(rpois(1000, lambda=5), nrow=200)
calcNormFactors(y)
Description

Test whether a set of genes is highly ranked relative to other genes in terms of differential expression, accounting for inter-gene correlation.

Usage

```r
## S3 method for class 'DGEList'
camera(y, index, design, contrast = ncol(design), weights = NULL,
       use.ranks = FALSE, allow.neg.cor=FALSE, inter.gene.cor=0.01, sort = TRUE, ...)
```

Arguments

- `y` a DGEList object containing dispersion estimates.
- `index` an index vector or a list of index vectors. Can be any vector such that `y[index,]` selects the rows corresponding to the test set. The list can be made using `ids2indices`.
- `design` design matrix.
- `contrast` contrast of the linear model coefficients for which the test is required. Can be an integer specifying a column of `design`, or else a numeric vector of same length as the number of columns of `design`.
- `weights` numeric matrix of observation weights of same size as `y`, or a numeric vector of array weights with length equal to `ncol(y)`, or a numeric vector of gene weights with length equal to `nrow(y)`.
- `use.ranks` do a rank-based test (TRUE) or a parametric test (FALSE)?
- `allow.neg.cor` should reduced variance inflation factors be allowed for negative correlations?
- `inter.gene.cor` numeric, optional preset value for the inter-gene correlation within tested sets. If NA or NULL, then an inter-gene correlation will be estimated for each tested set.
- `sort` logical, should the results be sorted by p-value?
- `...` other arguments are not currently used

Details

The camera gene set test was proposed by Wu and Smyth (2012) for microarray data. This function makes the camera test available for digital gene expression data. The negative binomial count data is converted to approximate normal deviates by computing mid-p quantile residuals (Dunn and Smyth, 1996; Routledge, 1994) under the null hypothesis that the contrast is zero. See `camera` for more description of the test and for a complete list of possible arguments.

The design matrix defaults to the `model.matrix(~y$samples$group)`.

Value

A data.frame. See `camera` for details.
commonCondLogLikDerDelta

Common conditional log-likelihood parameterized in terms of delta (phi / (phi+1))

Usage

commonCondLogLikDerDelta(y, delta, der = 0)
condLogLikDerSize

Arguments

y list with elements comprising the matrices of count data (or pseudocounts) for the different groups

delta delta (phi / (phi+1)) parameter of negative binomial

der derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Details

The common conditional log-likelihood is constructed by summing over all of the individual gene-wise conditional log-likelihoods. The common conditional log-likelihood is taken as a function of the dispersion parameter (phi), and here parameterized in terms of delta (phi / (phi+1)). The value of delta that maximizes the common conditional log-likelihood is converted back to the phi scale, and this value is the estimate of the common dispersion parameter used by all genes.

Value

numeric scalar of function/derivative evaluated at given delta

Author(s)

Davis McCarthy

See Also

estimateCommonDisp is the user-level function for estimating the common dispersion parameter.

Examples

counts<-matrix(rnbinom(20, size=1, mu=10), nrow=5)
d<-DGEList(counts=counts, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
y<-splitIntoGroups(d)
ll1<-commonCondLogLikDerDelta(y, delta=0.5, der=0)
ll2<-commonCondLogLikDerDelta(y, delta=0.5, der=1)

condLogLikDerSize Conditional Log-Likelihood of the Dispersion for a Single Group of Replicate Libraries

Description

Derivatives of the negative-binomial log-likelihood with respect to the dispersion parameter for each gene, conditional on the mean count, for a single group of replicate libraries of the same size.

Usage

condLogLikDerSize(y, r, der=1L)
condLogLikDerDelta(y, delta, der=1L)
Arguments

y matrix of counts, all counts in each row having the same population mean
r numeric vector or scalar, size parameter of negative binomial distribution, equal to 1/dispersion
delta numeric vector or scalar, delta parameter of negative binomial, equal to dispersion/(1+dispersion)
der integer specifying derivative required, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Details

The library sizes must be equalized before running this function. This function carries out the actual mathematical computations for the conditional log-likelihood and its derivatives, calculating the conditional log-likelihood for each gene. Derivatives are with respect to either the size (r) or the delta parametrization (delta) of the dispersion.

Value

vector of row-wise derivatives with respect to r or delta

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

Examples

```r
y <- matrix(rnbinom(10, size=1, mu=10), nrow=5)
condLogLikDerSize(y, r=1, der=1)
condLogLikDerDelta(y, delta=0.5, der=1)
```

Description

Computes counts per million (CPM) or reads per kilobase per million (RPKM) values.

Usage

```r
## S3 method for class 'DGEList'
cpm(x, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...)
## Default S3 method:
cpm(x, lib.size=NULL, log=FALSE, prior.count=0.25, ...)
## S3 method for class 'DGEList'
rpkm(x, gene.length=NULL, normalized.lib.sizes=TRUE, log=FALSE, prior.count=0.25, ...)
## Default S3 method:
rpkm(x, gene.length, lib.size=NULL, log=FALSE, prior.count=0.25, ...)
```
Arguments

- **x**: matrix of counts or a DGEList object
- **normalized.lib.sizes**: logical, use normalized library sizes?
- **lib.size**: library size, defaults to `colSums(x)`.
- **log**: logical, if `TRUE` then `log2` values are returned.
- **prior.count**: average count to be added to each observation to avoid taking log of zero. Used only if `log=TRUE`.
- **gene.length**: vector of length `nrow(x)` giving gene length in bases, or the name of the column `x$genes` containing the gene lengths.
- **...**: other arguments that are not currently used.

Details

CPM or RPKM values are useful descriptive measures for the expression level of a gene. By default, the normalized library sizes are used in the computation for DGEList objects but simple column sums for matrices.

If log-values are computed, then a small count, given by `prior.count` but scaled to be proportional to the library size, is added to `x` to avoid taking the log of zero.

The rpkm method for DGEList objects will try to find the gene lengths in a column of `x$genes` called `Length` or `length`. Failing that, it will look for any column name containing “length” in any capitalization.

Value

numeric matrix of CPM or RPKM values.

Note

`aveLogCPM(x), rowMeans(cpm(x, log=TRUE))` and `log2(rowMeans(cpm(x)))` all give slightly different results.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

- `aveLogCPM`

Examples

```r
y <- matrix(rnbinom(20, size=1, mu=10), 5, 4)
cpm(y)
d <- DGEList(counts=y, lib.size=1001:1004)
cpm(d)
cpm(d, log=TRUE)
d$genes$Length <- c(1000, 2000, 500, 1500, 3000)
rpkm(d)
```
cutWithMinN
Cut numeric vector into non-empty intervals

Description
Discretizes a numeric vector. Divides the range of \(x \) into intervals, so that each interval contains a minimum number of values, and codes the values in \(x \) according to which interval they fall into.

Usage
```r
cutWithMinN(x, intervals=2, min.n=1)
```

Arguments
- `x` numeric vector.
- `intervals` number of intervals required.
- `min.n` minimum number of values in any interval. Must be greater than `length(x)/intervals`.

Details
This function strikes a compromise between the base functions `cut`, which by default cuts a vector into equal length intervals, and `quantile`, which is suited to finding equally populated intervals. It finds a partition of the \(x \) values that is as close as possible to equal length intervals while keeping at least \(\text{min.n} \) values in each interval.

Tied values of \(x \) are broken by random jittering, so the partition may vary slightly from run to run if there are many tied values.

Value
A list with components:
- `group` integer vector of same length as \(x \) indicating which interval each value belongs to.
- `breaks` numeric vector of length `intervals+1` giving the left and right limits of each interval.

Author(s)
Gordon Smyth

See Also
cut, quantile.

Examples
```r
x <- c(1,2,3,4,5,6,7,100)
cutWithMinN(x,intervals=3,min.n=1)
```
decideTestsDGE

Multiple Testing Across Genes and Contrasts

Description

Classify a series of related differential expression statistics as up, down or not significant. A number of different multiple testing schemes are offered which adjust for multiple testing down the genes as well as across contrasts for each gene.

Usage

```r
decideTestsDGE(object, adjust.method="BH", p.value=0.05, lfc=0)
```

Arguments

- `object` DGEExact object, output from `exactTest`, or DGELRT object, output from `glmLRT` or `glmQLFTest`, from which p-values for differential expression and log-fold change values may be extracted.
- `adjust.method` character string specifying p-value adjustment method. Possible values are "none", "BH", "fdr" (equivalent to "BH"), "BY" and "holm". See `p.adjust` for details.
- `p.value` numeric value between 0 and 1 giving the desired size of the test
- `lfc` numeric value giving the desired absolute minimum log-fold-change

Details

These functions implement multiple testing procedures for determining whether each log-fold change in a matrix of log-fold changes should be considered significantly different from zero.

Value

An object of class `TestResults` (see `TestResults`). This is essentially a numeric matrix with elements -1, 0 or 1 depending on whether each DE p-value is classified as significant with negative log-fold change, not significant or significant with positive log-fold change, respectively.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

Adapted from `decideTests` in the limma package.
DGEExact-class
differential expression of Digital Gene Expression data - class

Description

A list-based S4 class for storing results of a differential expression analysis for DGE data.

List Components

For objects of this class, rows correspond to genomic features and columns to statistics associated with the differential expression analysis. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc.

Objects of this class contain the following list components:

- **table**: data frame containing columns for the log2-fold-change, logFC, the average log2-counts-per-million, logCPM, and the two-sided p-value PValue.
- **comparison**: vector giving the two experimental groups/conditions being compared.
- **genes**: a data frame containing information about each gene (can be NULL).

Methods

This class inherits directly from class list, so DGEExact objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting.

The dimensions, row names and column names of a DGEExact object are defined by those of table, see `dim.DGEExact` or `dimnames.DGEExact`.

DGEExact objects can be subsetted, see `subsetting`.

DGEExact objects also have a show method so that printing produces a compact summary of their contents.

Author(s)

edgeR team. First created by Mark Robinson and Davis McCarthy

See Also

Other classes defined in edgeR are DGEList-class, DGEGLM-class, DGELRT-class, TopTags-class
DGEGLM-class

Digital Gene Expression Generalized Linear Model results - class

Description

A list-based S4 class for storing results of a GLM fit to each gene in a DGE dataset.

List Components

For objects of this class, rows correspond to genomic features and columns to coefficients in the linear model. The genomic features are called gene, but in reality might correspond to transcripts, tags, exons, etc.

Objects of this class contain the following list components:

- **coefficients**: matrix containing the coefficients computed from fitting the model defined by the design matrix to each gene in the dataset.
- **df.residual**: vector containing the residual degrees of freedom for the model fit to each gene in the dataset.
- **deviance**: vector giving the deviance from the model fit to each gene.
- **design**: design matrix for the full model from the likelihood ratio test.
- **offset**: scalar, vector or matrix of offset values to be included in the GLMs for each gene.
- **samples**: data frame containing information about the samples comprising the dataset.
- **genes**: data frame containing information about the tags for which we have DGE data (can be NULL if there is no information available).
- **dispersion**: scalar or vector providing the value of the dispersion parameter used in the negative binomial GLM for each gene.
- **lib.size**: vector providing the effective library size for each sample in the dataset.
- **weights**: matrix of weights used in the GLM fitting for each gene.
- **fitted.values**: the fitted (expected) values from the GLM for each gene.
- **AveLogCPM**: numeric vector giving average log2 counts per million for each gene.

Methods

This class inherits directly from class list so any operation appropriate for lists will work on objects of this class.

The dimensions, row names and column names of a DGEGLM object are defined by those of the dataset, see `dim.DGEGLM` or `dimnames.DGEGLM`.

DGEGLM objects can be subsetted, see `subsetting`.

DGEGLM objects also have a show method so that printing produces a compact summary of their contents.

Author(s)

edgeR team. First created by Davis McCarthy.

See Also

Other classes defined in edgeR are `DGEList-class`, `DGEExact-class`, `DGELRT-class`, `TopTags-class`
Description

Creates a DGEList object from a table of counts (rows=features, columns=samples), group indicator for each column, library size (optional) and a table of feature annotation (optional).

Usage

```r
DGEList(counts = matrix(0, 0, 0), lib.size = colSums(counts),
         norm.factors = rep(1, ncol(counts)), samples = NULL,
         group = NULL, genes = NULL, remove.zeros = FALSE)
```

Arguments

- **counts**: numeric matrix of read counts.
- **lib.size**: numeric vector giving the total count (sequence depth) for each library.
- **norm.factors**: numeric vector of normalization factors that modify the library sizes.
- **samples**: data frame containing information for each sample.
- **group**: vector or factor giving the experimental group/condition for each sample/library.
- **genes**: data frame containing annotation information for each gene.
- **remove.zeros**: logical, whether to remove rows that have 0 total count.

Details

To facilitate programming pipelines, NULL values can be input for `lib.size`, `norm.factors`, `samples` or `group`, in which case the default value is used as if the argument had been missing.

Value

a DGEList object

Author(s)

edgeR team. First created by Mark Robinson.

See Also

DGEList-class

Examples

```r
y <- matrix(rnbinom(10000, mu=5, size=2), ncol=4)
DGEList(counts=y, group=rep(1:2, each=2))
dim(d)
colnames(d)
d$samples
```
DGEList-class

Digital Gene Expression data - class

Description

A list-based S4 class for storing read counts and associated information from digital gene expression or sequencing technologies.

List Components

For objects of this class, rows correspond to genomic features and columns to samples. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc. Objects of this class contain the following essential list components:

- **counts**: numeric matrix of read counts, one row for each gene and one column for each sample.
- **samples**: data.frame with a row for each sample and columns `group`, `lib.size` and `norm.factors` containing the group labels, library sizes and normalization factors. Other columns can be optionally added to give more detailed sample information.

Optional components include:

- **genes**: data.frame giving annotation information for each gene. Same number of rows as `counts`.
- **AveLogCPM**: numeric vector giving average log2 counts per million for each gene.
- **common.dispersion**: numeric scalar giving the overall dispersion estimate.
- **trended.dispersion**: numeric vector giving trended dispersion estimates for each gene.
- **tagwise.dispersion**: numeric vector giving tagwise dispersion estimates for each gene (note that ‘tag’ and ‘gene’ are synonymous here).
- **offset**: numeric matrix of same size as `counts` giving offsets for use in log-linear models.

Methods

This class inherits directly from class `list`, so DGEList objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting.

The dimensions, row names and column names of a DGEList object are defined by those of `counts`, see `dim.DGEList` or `dimnames.DGEList`.

DGEList objects can be subsetted, see `subsetting`.

DGEList objects also have a `show` method so that printing produces a compact summary of their contents.

Author(s)

edgeR team. First created by Mark Robinson.

See Also

DGEList constructs DGEList objects. Other classes defined in edgeR are DGEExact-class, DGEGLM-class, DGELRT-class, TopTags-class
Description

A list-based S4 class for storing results of a GLM-based differential expression analysis for DGE data.

List Components

For objects of this class, rows correspond to genomic features and columns to statistics associated with the differential expression analysis. The genomic features are called genes, but in reality might correspond to transcripts, tags, exons etc.

Objects of this class contain the following list components:

- table: data frame containing the log-concentration (i.e. expression level), the log-fold change in expression between the two groups/conditions and the exact p-value for differential expression, for each gene.
- coefficients.full: matrix containing the coefficients computed from fitting the full model (fit using glmFit and a given design matrix) to each gene in the dataset.
- coefficients.null: matrix containing the coefficients computed from fitting the null model to each gene in the dataset. The null model is the model to which the full model is compared, and is fit using glmFit and dropping selected column(s) (i.e. coefficient(s)) from the design matrix for the full model.
- design: design matrix for the full model from the likelihood ratio test.
- ...: if the argument y to glmLRT (which produces the DGELRT object) was itself a DGEList object, then the DGELRT will contain all of the elements of y, except for the table of counts and the table of pseudocounts.

Methods

This class inherits directly from class list, so DGELRT objects can be manipulated as if they were ordinary lists. However they can also be treated as if they were matrices for the purposes of subsetting.

The dimensions, row names and column names of a DGELRT object are defined by those of table, see dim.DGELRT or dimnames.DGELRT.

DGELRT objects can be subsetted, see subsetting.

DGELRT objects also have a show method so that printing produces a compact summary of their contents.

Author(s)

edgeR team. First created by Davis McCarthy

See Also

Other classes defined in edgeR are DGELIST-class, DGEEexact-class, DGEGLM-class, TopTags-class
dglmStdResid

Visualize the mean-variance relationship in DGE data using standardized residuals

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making inferences about differential expression. However, the standard approach to visualizing the mean-variance relationship is not appropriate for general, complicated experimental designs that require generalized linear models (GLMs) for analysis. Here are functions to compute standardized residuals from a Poisson GLM and plot them for bins based on overall expression level of genes as a way to visualize the mean-variance relationship. A rough estimate of the dispersion parameter can also be obtained from the standardized residuals.

Usage

```r
dglmStdResid(y, design, dispersion=0, offset=0, nbins=100, make.plot=TRUE, 
               xlab="Mean", ylab="Ave. binned standardized residual", ...)
getDispersions(binned.object)
```

Arguments

- `y` numeric matrix of counts, each row represents one gene, each column represents one DGE library.
- `design` numeric matrix giving the design matrix of the GLM. Assumed to be full column rank.
- `dispersion` numeric scalar or vector giving the dispersion parameter for each GLM. Can be a scalar giving one value for all genes, or a vector of length equal to the number of genes giving genewise dispersions.
- `offset` numeric vector or matrix giving the offset that is to be included in the log-linear model predictor. Can be a vector of length equal to the number of libraries, or a matrix of the same size as `y`.
- `nbins` scalar giving the number of bins (formed by using the quantiles of the genewise mean expression levels) for which to compute average means and variances for exploring the mean-variance relationship. Default is 100 bins.
- `make.plot` logical, whether or not to plot the mean standardized residual for binned data (binned on expression level). Provides a visualization of the mean-variance relationship. Default is TRUE.
- `xlab` character string giving the label for the x-axis. Standard graphical parameter. If left as the default, then the x-axis label will be set to "Mean".
- `ylab` character string giving the label for the y-axis. Standard graphical parameter. If left as the default, then the y-axis label will be set to "Ave. binned standardized residual".
- `...` further arguments passed on to `plot`.
- `binned.object` list object, which is the output of `dglmStdResid`.

Details

This function is useful for exploring the mean-variance relationship in the data. Raw or pooled variances cannot be used for complex experimental designs, so instead we can fit a Poisson model using the appropriate design matrix to each gene and use the standardized residuals in place of the pooled variance (as in plotMeanVar) to visualize the mean-variance relationship in the data. The function will plot the average standardized residual for observations split into nbins bins by overall expression level. This provides a useful summary of how the variance of the counts change with respect to average expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-variance relationship. A log-log scale is used for the plot.

The function mg1mLS is used to fit the Poisson models to the data. This code is fast for fitting models, but does not compute the value for the leverage, technically required to compute the standardized residuals. Here, we approximate the standardized residuals by replacing the usual denominator of
\((1 - \text{leverage})\) by \((1 - \frac{p}{n})\), where \(n\) is the number of observations per gene (i.e. number of libraries) and \(p\) is the number of parameters in the model (i.e. number of columns in the full-rank design matrix).

Value

dglmStdResid produces a mean-variance plot based on standardized residuals from a Poisson model fit for each gene for the DGE data. dglmStdResid returns a list with the following elements:

- **ave.means** vector of the average expression level within each bin of observations
- **ave.std.resid** vector of the average standardized Poisson residual within each bin of genes
- **bin.means** list containing the average (mean) expression level (given by the fitted value from the given Poisson model) for observations divided into bins based on amount of expression
- **bin.std.resid** list containing the standardized residual from the given Poisson model for observations divided into bins based on amount of expression
- **means** vector giving the fitted value for each observed count
- **standardized.residuals** vector giving approximate standardized residual for each observed count
- **bins** list containing the indices for the observations, assigning them to bins
- **nbins** scalar giving the number of bins used to split up the observed counts
- **ngenes** scalar giving the number of genes in the dataset
- **nlibs** scalar giving the number of libraries in the dataset

getDispersions computes the dispersion from the standardized residuals and returns a list with the following components:

- **bin.dispersion** vector giving the estimated dispersion value for each bin of observed counts, computed using the average standardized residual for the bin
- **bin.dispersion.used** vector giving the actual estimated dispersion value to be used. Some computed dispersions using the method in this function can be negative, which is not allowed. We use the dispersion value from the nearest bin of higher expression level with positive dispersion value in place of any negative dispersions.
- **dispersion** vector giving the estimated dispersion for each observation, using the binned dispersion estimates from above, so that all of the observations in a given bin get the same dispersion value.
diffSpliceDGE

Author(s)
Davis McCarthy

See Also
plotMeanVar, plotMDS.DGEList, plotSmear and maPlot provide more ways of visualizing DGE data.

Examples

```r
y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- model.matrix(~c(0,0,1,1)+c(0,1,0,1))
binned <- dglmStdResid(y, design, dispersion=0.5)
getDispersions(binned)$bin.dispersion.used # Look at the estimated dispersions for the bins
```

diffSpliceDGE

Test for Differential Exon Usage

Description

Given a negative binomial generalized log-linear model fit at the exon level, test for differential exon usage between experimental conditions.

Usage

```r
diffSpliceDGE(glmfit, coef=ncol(glmfit$design), contrast=NULL, geneid, exonid=NULL, prior.count=0.125, verbose=TRUE)
```

Arguments

- **glmfit**: an DGEGLM fitted model object produced by glmFit or glmQLFit. Rows should correspond to exons.
- **coef**: integer indicating which coefficient of the generalized linear model is to be tested for differential exon usage. Defaults to the last coefficient.
- **contrast**: numeric vector specifying the contrast of the linear model coefficients to be tested for differential exon usage. Length must equal to the number of columns of design. If specified, then takes precedence over coef.
- **geneid**: gene identifiers. Either a vector of length nrow(glmfit) or the name of the column of glmfit$genes containing the gene identifiers. Rows with the same ID are assumed to belong to the same gene.
- **exonid**: exon identifiers. Either a vector of length nrow(glmfit) or the name of the column of glmfit$genes containing the exon identifiers.
- **prior.count**: average prior count to be added to observation to shrink the estimated log-fold-changes towards zero.
- **verbose**: logical, if TRUE some diagnostic information about the number of genes and exons is output.
Details
This function tests for differential exon usage for each gene for a given coefficient of the generalized linear model.
Testing for differential exon usage is equivalent to testing whether the exons in each gene have the same log-fold-changes as the other exons in the same gene. At exon-level, the log-fold-change of each exon is compared to the log-fold-change of the entire gene which contains that exon. At gene-level, two different tests are provided. One is converting exon-level p-values to gene-level p-values by the Simes method. The other is using exon-level test statistics to conduct gene-level tests.

Value
diffSpliceDGE produces an object of class DGELRT containing the component design from glmfit plus the following new components:

- comparison character string describing the coefficient being tested.
- coefficients numeric vector of coefficients on the natural log scale. Each coefficient is the difference between the log-fold-change for that exon versus the log-fold-change for the entire gene which contains that exon.
- genes data.frame of exon annotation.
- genecolname character string giving the name of the column of genes containing gene IDs.
- exoncolname character string giving the name of the column of genes containing exon IDs.
- exon.df.test numeric vector of testing degrees of freedom for exons.
- exon.p.value numeric vector of p-values for exons.
- gene.df.test numeric vector of testing degrees of freedom for genes.
- gene.p.value numeric vector of gene-level testing p-values.
- gene.genes data.frame of gene annotation.

Some components of the output depend on whether glmfit is produced by glmFit or glmQLFit. If glmfit is produced by glmFit, then the following components are returned in the output object:

- exon.LR numeric vector of LR-statistics for exons.

If glmfit is produced by glmQLFit, then the following components are returned in the output object:

- exon.F numeric vector of F-statistics for exons.
- gene.df.prior numeric vector of prior degrees of freedom for genes.
- gene.df.residual numeric vector of residual degrees of freedom for genes.

The information and testing results for both exons and genes are sorted by geneid and by exonid within gene.

Author(s)
Yunshun Chen and Gordon Smyth
Examples

Gene exon annotation
Gene <- paste("Gene", 1:100, sep="")
Gene <- rep(Gene, each=10)
Exon <- paste("Ex", 1:10, sep="")
Gene.Exon <- paste(Gene, Exon, sep=".")
genes <- data.frame(GeneID=Gene, Gene.Exon=Gene.Exon)

group <- factor(rep(1:2, each=3))
design <- model.matrix(~group)
mu <- matrix(100, nrow=1000, ncol=6)
knock-out the first exon of Gene1 by 90%
mu[1,4:6] <- 10
generate exon counts
counts <- matrix(rnbinom(6000,mu=mu,size=20),1000,6)
y <- DGEList(counts=counts, lib.size=rep(1e6,6), genes=genes)
gfit <- glmFit(y, design, dispersion=0.05)

ds <- diffSpliceDGE(gfit, geneid="GeneID")
topSpliceDGE(ds)
plotSpliceDGE(ds)

dim

Retrieve the Dimensions of a DGEList, DGEEexact, DGEGLM, DGELRT or TopTags Object

Description

Retrieve the number of rows (genes) and columns (libraries) for a DGEList, DGEEexact or TopTags Object.

Usage

S3 method for class 'DGEList'
dim(x)

S3 method for class 'DGEList'
length(x)

Arguments

x an object of class DGEList, DGEEexact, TopTags, DGEGLM or DGELRT

Details

Digital gene expression data objects share many analogies with ordinary matrices in which the rows correspond to genes and the columns to arrays. These methods allow one to extract the size of microarray data objects in the same way that one would do for ordinary matrices.

A consequence is that row and column commands nrow(x), ncol(x) and so on also work.

Value

Numeric vector of length 2. The first element is the number of rows (genes) and the second is the number of columns (libraries).
dimnames

Retrieve the Dimension Names of a DGE Object

Description

Retrieve the dimension names of a digital gene expression data object.

Usage

```r
## S3 method for class 'DGEList'
.dimnames(x)
## S3 replacement method for class 'DGEList'
.dimnames(x) <- value
```

Arguments

- `x` an object of class DGEList, DGEEexact, DGELM, DGELRT or TopTags
- `value` a possible value for `dimnames(x)`, see `dimnames`

Details

The dimension names of a DGE data object are the same as those of the most important component of that object.

Setting dimension names is currently only permitted for DGEList or DGELM objects.

A consequence of these methods is that `rownames`, `colnames`, `rownames<-` and `colnames<-` will also work as expected on any of the above object classes.

Value

Either `NULL` or a list of length 2. If a list, its components are either `NULL` or a character vector the length of the appropriate dimension of `x`.

Examples

```r
M <- A <- matrix(11:14,4,2)
rownames(M) <- rownames(A) <- c("a","b","c","d")
colnames(M) <- colnames(A) <- c("A1","A2")
MA <- new("MAList",list(M=M,A=A))
dim(M)
ncol(M)
nrow(M)
length(M)
```
dispBinTrend

Author(s)

Gordon Smyth

See Also

dimnames in the base package.

dispBinTrend

Estimate Dispersion Trend by Binning for NB GLMs

Description

Estimate the abundance-dispersion trend by computing the common dispersion for bins of genes of similar AveLogCPM and then fitting a smooth curve.

Usage

dispBinTrend(y, design=NULL, offset=NULL, df = 5, span=0.3, min.n=400,
method.bin="CoxReid", method.trend="spline", AveLogCPM=NULL,
weights=NULL, ...)

Arguments

y numeric matrix of counts
design numeric matrix giving the design matrix for the GLM that is to be fit.
offset numeric scalar, vector or matrix giving the offset (in addition to the log of the effective library size) that is to be included in the NB GLM for the genes. If a scalar, then this value will be used as an offset for all genes and libraries. If a vector, it should be have length equal to the number of libraries, and the same vector of offsets will be used for each gene. If a matrix, then each library for each gene can have a unique offset, if desired. In adjustedProfileLik the offset must be a matrix with the same dimension as the table of counts.
df degrees of freedom for spline curve.
span span used for loess curve.
min.n minimum number of genes in a bins.
method.bin method used to estimate the dispersion in each bin. Possible values are "CoxReid", "Pearson" or "deviance".
method.trend type of curve to smooth the bins. Possible values are "spline" for a natural cubic regression spline or "loess" for a linear lowess curve.
AveLogCPM numeric vector giving average log2 counts per million for each gene
weights optional numeric matrix giving observation weights
... other arguments are passed to estimateGLMCommonDisp
dispBinTrend

Details

Estimate a dispersion parameter for each of many negative binomial generalized linear models by computing the common dispersion for genes sorted into bins based on overall AveLogCPM. A regression natural cubic splines or a linear loess curve is used to smooth the trend and extrapolate a value to each gene.

If there are fewer than min.n rows of y with at least one positive count, then one bin is used. The number of bins is limited to 1000.

Value

list with the following components:

- AveLogCPM numeric vector containing the overall AveLogCPM for each gene
- dispersion numeric vector giving the trended dispersion estimate for each gene
- bin.AveLogCPM numeric vector of length equal to nbins giving the average (mean) AveLogCPM for each bin
- bin.dispersion numeric vector of length equal to nbins giving the estimated common dispersion for each bin

Author(s)

Davis McCarthy and Gordon Smyth

References

See Also

estimateGLMTrendedDisp

Examples

```r
ngenes <- 1000
nlibs <- 4
means <- seq(5,10000,length.out=ngenes)
y <- matrix(rnbinom(ngenes*nlibs,mu=rep(means,nlibs),size=0.1*means),nrow=ngenes,ncol=nlibs)
keep <- rowSums(y) > 0
y <- y[keep,]
group <- factor(c(1,1,2,2))
design <- model.matrix(~group) # Define the design matrix for the full model
out <- dispBinTrend(y, design, min.n=100, span=0.3)
with(out, plot(AveLogCPM, sqrt(dispersion)))
```
dispCoxReid

Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimate a common dispersion parameter across multiple negative binomial generalized linear models.

Usage

dispCoxReid(y, design=NULL, offset=NULL, weights=NULL, AveLogCPM=NULL, interval=c(0,4),
tol=1e-5, min.row.sum=5, subset=10000)
dispDeviance(y, design=NULL, offset=NULL, interval=c(0,4), tol=1e-5, min.row.sum=5,
subset=10000, AveLogCPM=NULL, robust=FALSE, trace=FALSE)
dispPearson(y, design=NULL, offset=NULL, min.row.sum=5, subset=10000,
AveLogCPM=NULL, tol=1e-6, trace=FALSE, initial.dispersion=0.1)

Arguments

y numeric matrix of counts. A glm is fitted to each row.
design numeric design matrix, as for glmFit.
offset numeric vector or matrix of offsets for the log-linear models, as for glmFit. Defaults to log(colSums(y)).
weights optional numeric matrix giving observation weights
AveLogCPM numeric vector giving average log2 counts per million.
interval numeric vector giving minimum and maximum allowable values for the dispersion, passed to optimize.
tol the desired accuracy, see optimize or uniroot.
min.row.sum integer. Only rows with at least this number of counts are used.
subset integer, number of rows to use in the calculation. Rows used are chosen evenly spaced by AveLogCPM.
trace logical, should iteration information be output?
robust logical, should a robust estimator be used?
initial.dispersion starting value for the dispersion

Details

These are low-level (non-object-orientated) functions called by estimateGLMCommonDisp. dispCoxReid maximizes the Cox-Reid adjusted profile likelihood (Cox and Reid, 1987). dispPearson sets the average Pearson goodness of fit statistics to its (asymptotic) expected value. This is also known as the pseudo-likelihood estimator. dispDeviance sets the average residual deviance statistic to its (asymptotic) expected values. This is also known as the quasi-likelihood estimator.

Robinson and Smyth (2008) and McCarthy et al (2011) showed that the Pearson (pseudo-likelihood) estimator typically under-estimates the true dispersion. It can be seriously biased when the number of libraries (ncol(y) is small. On the other hand, the deviance (quasi-likelihood) estimator typically over-estimates the true dispersion when the number of libraries is small. Robinson and Smyth
dispCoxReidInterpolateTagwise

(2008) and McCarthy et al (2011) showed the Cox-Reid estimator to be the least biased of the three
options.
dispCoxReid uses optimize to maximize the adjusted profile likelihood. dispDeviance uses uniroot to solve the estimating equation. The robust options use an order statistic instead the mean statistic, and have the effect that a minority of genes with very large (outlier) dispersions should have limited influence on the estimated value. dispPearson uses a globally convergent Newton iteration.

Value

Numeric vector of length one giving the estimated common dispersion.

Author(s)

Gordon Smyth

References

See Also

estimateGLMCommonDisp, optimize, uniroot

Examples

```r
ngenes <- 100
nlibs <- 4
y <- matrix(rnbinom(ngenes*nlibs,mu=10,size=10),nrow=ngenes,ncol=nlibs)
group <- factor(c(1,1,2,2))
lib.size <- rowSums(y)
design <- model.matrix(~group)
disp <- dispCoxReid(y, design, offset=log(lib.size), subset=100)
```

dispCoxReidInterpolateTagwise

Estimate Genewise Dispersion for Negative Binomial GLMs by Cox-Reid Adjusted Profile Likelihood

Description

Estimate genewise dispersion parameters across multiple negative binomial generalized linear models using weighted Cox-Reid Adjusted Profile-likelihood and cubic spline interpolation over a genewise grid.
Usage

dispCoxReidInterpolateTagwise(y, design, offset=NULL, dispersion, trend=TRUE,
AveLogCPM=NULL, min.row.sum=5, prior.df=10,
span=0.3, grid.npts=11, grid.range=c(-6,6),
weights=NULL)

Arguments

y numeric matrix of counts
design numeric matrix giving the design matrix for the GLM that is to be fit.
offset numeric scalar, vector or matrix giving the offset (in addition to the log of the
effective library size) that is to be included in the NB GLM for the genes. If a
scalar, then this value will be used as an offset for all genes and libraries. If a
vector, it should be have length equal to the number of libraries, and the same
vector of offsets will be used for each gene. If a matrix, then each library for
each gene can have a unique offset, if desired. In adjustedProfileLik the
offset must be a matrix with the same dimension as the table of counts.
dispersion numeric scalar or vector giving the dispersion(s) towards which the genewise
dispersion parameters are shrunk.
trend logical, whether abundance-dispersion trend is used for smoothing.
AveLogCPM numeric vector giving average log2 counts per million for each gene.
min.row.sum numeric scalar giving a value for the filtering out of low abundance genes. Only
genes with total sum of counts above this value are used. Low abundance genes
can adversely affect the estimation of the common dispersion, so this argument
allows the user to select an appropriate filter threshold for the gene abundance.
prior.df numeric scalar, prior degsmoothing parameter that indicates the weight to give
to the common likelihood compared to the individual gene’s likelihood; default
getcPriorN(object) gives a value for prior.n that is equivalent to giving the
common likelihood 20 prior degrees of freedom in the estimation of the ge-
newise dispersion.
span numeric parameter between 0 and 1 specifying proportion of data to be used in
the local regression moving window. Larger numbers give smoother fits.
grid.npts numeric scalar, the number of points at which to place knots for the spline-based
estimation of the genewise dispersion estimates.
grid.range numeric vector of length 2, giving relative range, in terms of log2(dispersion),
on either side of trendline for each gene for spline grid points.
weights optional numeric matrix giving observation weights

Details

In the edgeR context, dispCoxReidInterpolateTagwise is a low-level function called by estimateGLMTagwiseDisp.
dispCoxReidInterpolateTagwise calls the function maximizeInterpolant to fit cubic spline
interpolation over a genewise grid.

Note that the terms ‘tag’ and ‘gene’ are synonymous here. The function is only named ‘Tagwise’
for historical reasons.

Value

dispCoxReidInterpolateTagwise produces a vector of genewise dispersions having the same
length as the number of genes in the count data.
dispCoxReidSplineTrend

Estimate Dispersion Trend for Negative Binomial GLMs

Description

Estimate trended dispersion parameters across multiple negative binomial generalized linear models using Cox-Reid adjusted profile likelihood.

Usage

dispCoxReidSplineTrend(y, design, offset=NULL, df = 5, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0)
dispCoxReidPowerTrend(y, design, offset=NULL, subset=10000, AveLogCPM=NULL, method.optim="Nelder-Mead", trace=0)

Arguments

y numeric matrix of counts
design numeric matrix giving the design matrix for the GLM that is to be fit.
offset numeric scalar, vector or matrix giving the offset (in addition to the log of the effective library size) that is to be included in the NB GLM for the genes. If a scalar, then this value will be used as an offset for all genes and libraries. If a vector, it should be have length equal to the number of libraries, and the same vector of offsets will be used for each gene. If a matrix, then each library for each gene can have a unique offset, if desired. In adjustedProfileLik the offset must be a matrix with the same dimension as the table of counts.

References

See Also

`estimateGLMTagwiseDisp`, `maximizeInterpolant`

Examples

```r
y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
design <- matrix(1, 4, 1)
dispersion <- 0.5
d <- dispCoxReidInterpolateTagwise(y, design, dispersion=dispersion)
d```

Author(s)

Yunshun Chen, Gordon Smyth
`dispCoxReidSplineTrend`  

**df**  
integer giving the degrees of freedom of the spline function, see `ns` in the splines package.

**subset**  
integer, number of rows to use in the calculation. Rows used are chosen evenly spaced by `AveLogCPM` using `cutWithMinN`.

**AveLogCPM**  
numeric vector giving average log2 counts per million for each gene.

**method.optim**  
the method to be used in `optim`. See `optim` for more detail.

**trace**  
logical, should iteration information be output?

**Details**

In the edgeR context, these are low-level functions called by `estimateGLMTrendedDisp`. `dispCoxReidSplineTrend` and `dispCoxReidPowerTrend` fit abundance trends to the genewise dispersions. `dispCoxReidSplineTrend` fits a regression spline whereas `dispCoxReidPowerTrend` fits a log-linear trend of the form $a \times \exp(abundance)^b + c$. In either case, `optim` is used to maximize the adjusted profile likelihood (Cox and Reid, 1987).

**Value**

List containing numeric vectors `dispersion` and `abundance` containing the estimated dispersion and abundance for each gene. The vectors are of the same length as `nrow(y)`.

**Author(s)**

Yunshun Chen, Davis McCarthy, Gordon Smyth

**References**


**See Also**

`estimateGLMTrendedDisp`

**Examples**

```r  
design <- matrix(1,4,1)
y <- matrix(rnbinom(400,mu=100,size=5)),100,4)
d1 <- dispCoxReidSplineTrend(y, design, df=3)
d2 <- dispCoxReidPowerTrend(y, design)
with(d2,plot(AveLogCPM,sqrt(dispersion)))```
dropEmptyLevels
Drop Levels of a Factor that Never Occur

Description

Reform a factor so that only necessary levels are kept.

Usage

```r
dropEmptyLevels(x)
```

Arguments

- `x`
a factor or a vector to be converted to a factor.

Details

In general, the levels of a factor, `levels(x)`, may include values that never actually occur. This function drops any levels of that do not occur.

If `x` is not a factor, then the function returns `factor(x)`. If `x` is a factor, then the function returns the same value as `factor(x)` or `x[,drop=TRUE]` but somewhat more efficiently.

Value

A factor with the same values as `x` but with a possibly reduced set of levels.

Author(s)

Gordon Smyth

See Also

`factor`.

Examples

```r
x <- factor(c("a","b"), levels=c("c","b","a"))
x
dropEmptyLevels(x)
```
edgeRUsersGuide

Description
Finds the location of the edgeR User’s Guide and optionally opens it.

Usage
edgeRUsersGuide(view=TRUE)

Arguments
view logical, should the document be opened using the default PDF document reader?

Details
The function vignette("edgeR") will find the short edgeR Vignette which describes how to obtain the edgeR User’s Guide. The User’s Guide is not itself a true vignette because it is not automatically generated using Sweave during the package build process. This means that it cannot be found using vignette, hence the need for this special function.

If the operating system is other than Windows, then the PDF viewer used is that given by Sys.getenv("R_PDFVIEWER"). The PDF viewer can be changed using Sys.putenv(R_PDFVIEWER=).

Value
Character string giving the file location. If view=TRUE, the PDF document reader is started and the User’s Guide is opened, as a side effect.

Author(s)
Gordon Smyth

See Also
system

Examples
To get the location:
edgeRUsersGuide(view=FALSE)
To open in pdf viewer:
Not run: edgeRUsersGuide()
equalizeLibSizes

 Equalize Library Sizes by Quantile-to-Quantile Normalization

Description

Adjusts counts so that the effective library sizes are equal, preserving fold-changes between groups and preserving biological variability within each group.

Usage

S3 method for class 'DGEList'
equalizeLibSizes(y, dispersion=NULL, ...)
Default S3 method:
equalizeLibSizes(y, group=NULL, dispersion=NULL, lib.size=NULL, ...)

Arguments

- **y**: matrix of counts or a DGEList object.
- **dispersion**: numeric scalar or vector of dispersion parameters. By default, is extracted from y or, if y contains no dispersion information, is set to 0.05.
- **group**: vector or factor giving the experimental group/condition for each library.
- **lib.size**: numeric vector giving the total count (sequence depth) for each library.
- **...**: other arguments that are not currently used.

Details

Thus function implements the quantile-quantile normalization method of Robinson and Smyth (2008). It computes normalized counts, or pseudo-counts, used by exactTest and estimateCommonDisp. The output pseudo-counts are the counts that would have theoretically arisen had the effective library sizes been equal for all samples. The pseudo-counts are computed in such a way as to preserve fold-change differences between the groups defined by y$samples$group as well as biological variability within each group. Consequently, the results will depend on how the groups are defined.

Note that the column sums of the pseudo.counts matrix will not generally be equal, because the effective library sizes are not necessarily the same as actual library sizes and because the normalized pseudo counts are not equal to expected counts.

Value

equalizeLibSizes.DGEList returns a DGEList object with the following new components:

- **pseudo.counts**: numeric matrix of normalized pseudo-counts
- **pseudo.lib.size**: normalized library size

equalizeLibSizes.default returns a list with components pseudo.counts and pseudo.lib.size.

Note

This function is intended mainly for internal edgeR use. It is not normally called directly by users.
estimateCommonDisp

Description

Maximizes the negative binomial conditional common likelihood to estimate a common dispersion value across all genes.

Usage

```r
## S3 method for class 'DGEList'
estimateCommonDisp(y, tol=1e-06, rowsum.filter=5, verbose=FALSE, ...)
## Default S3 method:
estimateCommonDisp(y, group=NULL, lib.size=NULL, tol=1e-06, 
rowsum.filter=5, verbose=FALSE, ...)
```

Arguments

- `y` matrix of counts or a DGEList object.
- `tol` the desired accuracy, passed to `optimize`.
- `rowsum.filter` genes with total count (across all samples) below this value will be filtered out before estimating the dispersion.
- `verbose` logical, if TRUE then the estimated dispersion and BCV will be printed to standard output.
estimateCommonDisp

group vector or factor giving the experimental group/condition for each library.
lib.size numeric vector giving the total count (sequence depth) for each library.
... other arguments that are not currently used.

Details

Implements the conditional maximum likelihood (CML) method proposed by Robinson and Smyth (2008) for estimating a common dispersion parameter. This method proves to be accurate and nearly unbiased even for small counts and small numbers of replicates.

The CML method involves computing a matrix of quantile-quantile normalized counts, called pseudo-counts. The pseudo-counts are adjusted in such a way that the library sizes are equal for all samples, while preserving differences between groups and variability within each group. The pseudo-counts are included in the output of the function, but are intended mainly for internal edgeR use.

Value

estimateCommonDisp.DGEList adds the following components to the input DGEList object:

common.dispersion estimate of the common dispersion.
pseudo.counts numeric matrix of pseudo-counts.
pseudo.lib.size the common library size to which the pseudo-counts have been adjusted.
AveLogCPM numeric vector giving log2(AveCPM) for each row of y.

estimateCommonDisp.default returns a numeric scalar of the common dispersion estimate.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

See Also

equalizeLibSizes, estimateTrendedDisp, estimateTagwiseDisp

Examples

True dispersion is 1/5=0.2
y <- matrix(rnbinom(250*4,mu=20,size=5),nrow=250,ncol=4)
dge <- DGEList(counts=y,group=c(1,1,2,2))
dge <- estimateCommonDisp(dge, verbose=TRUE)
estimateDisp

Estimate Common, Trended and Tagwise Negative Binomial dispersions by weighted likelihood empirical Bayes

Description

Maximizes the negative binomial likelihood to give the estimate of the common, trended and tagwise dispersions across all tags.

Usage

```r
## S3 method for class 'DGEList'
estimateDisp(y, design=NULL, prior.df=NULL, trend.method="locfit", mixed.df=FALSE,
            tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21, grid.range=c(-10,10), robust=FALSE,
            winsor.tail.p=c(0.05,0.1), tol=1e-06, ...)
## Default S3 method:
estimateDisp(y, design=NULL, group=NULL, lib.size=NULL, offset=NULL, prior.df=NULL,
            trend.method="locfit", mixed.df=FALSE, tagwise=TRUE, span=NULL, min.row.sum=5, grid.length=21,
            grid.range=c(-10,10), robust=FALSE, winsor.tail.p=c(0.05,0.1), tol=1e-06, weights=NULL, ...)
```

Arguments

- `y` matrix of counts or a DGEList object.
- `design` numeric design matrix
- `prior.df` prior degrees of freedom. It is used in calculating prior.n.
- `trend.method` method for estimating dispersion trend. Possible values are "none", "movingave", "loess" and "locfit" (default).
- `mixed.df` logical, only used when trend.method="locfit". If FALSE, locfit uses a polynomial of degree 0. If TRUE, locfit uses a polynomial of degree 1 for lowly expressed genes. Care is taken to smooth the curve.
- `tagwise` logical, should the tagwise dispersions be estimated?
- `span` width of the smoothing window, as a proportion of the data set.
- `min.row.sum` numeric scalar giving a value for the filtering out of low abundance tags. Only tags with total sum of counts above this value are used. Low abundance tags can adversely affect the dispersion estimation, so this argument allows the user to select an appropriate filter threshold for the tag abundance.
- `grid.length` the number of points on which the interpolation is applied for each tag.
- `grid.range` the range of the grid points around the trend on a log2 scale.
- `robust` logical, should the estimation of prior.df be robustified against outliers?
- `winsor.tail.p` numeric vector of length 1 or 2, giving left and right tail proportions of the deviances to Winsorize when estimating prior.df.
- `tol` the desired accuracy, passed to `optimize`
- `group` vector or factor giving the experimental group/condition for each library.
- `lib.size` numeric vector giving the total count (sequence depth) for each library.
- `offset` offset matrix for the log-linear model, as for glmFit. Defaults to the log-effective library sizes.
- `weights` optional numeric matrix giving observation weights
- `...` other arguments that are not currently used.
Details

This function calculates a matrix of likelihoods for each tag at a set of dispersion grid points, and then applies weighted likelihood empirical Bayes method to obtain posterior dispersion estimates. If there is no design matrix, it calculates the quantile conditional likelihood for each tag and then maximizes it. In this case, it is similar to the function estimateCommonDisp and estimateTagwiseDisp. If a design matrix is given, it calculates the adjusted profile log-likelihood for each tag and then maximizes it. In this case, it is similar to the functions estimateGLMCommonDisp, estimateGLMTrendedDisp and estimateGLMTagwiseDisp.

Note that the terms ‘tag’ and ‘gene’ are synonymous here.

Value

estimateDisp.DGEList adds the following components to the input DGEList object:

- design: the design matrix.
- common.dispersion: estimate of the common dispersion.
- trended.dispersion: estimates of the trended dispersions.
- tagwise.dispersion: tagwise estimates of the dispersion parameter if tagwise=TRUE.
- AveLogCPM: numeric vector giving log2(AveCPM) for each row of y.
- trend.method: method for estimating dispersion trend as given in the input.
- prior.df: prior degrees of freedom. It is a vector when robust method is used.
- prior.n: estimate of the prior weight, i.e. the smoothing parameter that indicates the weight to put on the common likelihood compared to the individual tag’s likelihood.
- span: width of the smoothing window used in estimating dispersions.

estimateDisp.default returns a list containing common.dispersion, trended.dispersion, tagwise.dispersion (if tagwise=TRUE), span, prior.df and prior.n.

Note

The estimateDisp function doesn’t give exactly the same estimates as the traditional calling sequences.

Author(s)

Yunshun Chen, Gordon Smyth

References

estimateExonGenewiseDisp

Estimate Genewise Dispersions from Exon-Level Count Data

Description

Estimate a dispersion value for each gene from exon-level count data by collapsing exons into the
genes to which they belong.

Usage

estimateExonGenewiseDisp(y, geneID, group=NULL)

Arguments

y

either a matrix of exon-level counts or a DGEList object with (at least) elements
counts (table of counts summarized at the exon level) and samples (data frame
containing information about experimental group, library size and normalization
factor for the library size). Each row of y should represent one exon.

geneID

vector of length equal to the number of rows of y, which provides the gene
identifier for each exon in y. These identifiers are used to group the relevant
exons into genes for the gene-level analysis of splice variation.

group

factor supplying the experimental group/condition to which each sample (col-
umn of y) belongs. If NULL (default) the function will try to extract if from y,
which only works if y is a DGEList object.

Details

This function can be used to compute genewise dispersion estimates (for an experiment with a one-
way, or multiple group, layout) from exon-level count data. estimateCommonDisp and estimateTagwiseDisp
are used to do the computation and estimation, and the default arguments for those functions are
used.

Value

estimateExonGenewiseDisp returns a vector of genewise dispersion estimates, one for each unique
geneID.
estimateGLMCommonDisp

Estimate Common Dispersion for Negative Binomial GLMs

Description

Estimates a common negative binomial dispersion parameter for a DGE dataset with a general experimental design.

Usage

```r
## S3 method for class 'DGEList'
estimateGLMCommonDisp(y, design=NULL, method="CoxReid", subset=10000, verbose=FALSE, ...)
## Default S3 method:
estimateGLMCommonDisp(y, design=NULL, offset=NULL, method="CoxReid", subset=10000, AveLogCPM=NULL, verbose=FALSE, weights=NULL,...)
```

Arguments

- `y` object containing read counts, as for `glmFit`.
- `design` numeric design matrix, as for `glmFit`.
- `offset` numeric vector or matrix of offsets for the log-linear models, as for `glmFit`.
- `method` method for estimating the dispersion. Possible values are "CoxReid", "Pearson" or "deviance".
- `subset` maximum number of rows of `y` to use in the calculation. Rows used are chosen evenly spaced by AveLogCPM using `systematicSubset`.
- `AveLogCPM` numeric vector giving average log2 counts per million for each gene.
- `verbose` logical, if TRUE estimated dispersion and BCV will be printed to standard output.
- `weights` optional numeric matrix giving observation weights
- `...` other arguments are passed to lower-level functions. See `dispCoxReid`, `dispPearson` and `dispDeviance` for details.
Details

This function calls `dispCoxReid`, `dispPearson` or `dispDeviance` depending on the method specified. See `dispCoxReid` for details of the three methods and a discussion of their relative performance.

Value

The default method returns a numeric vector of length 1 containing the estimated common dispersion.

The `DGEList` method returns the same `DGEList` `y` as input but with `common.dispersion` as an added component. The output object will also contain a component `AveLogCPM` if it was not already present in `y`.

Author(s)

Gordon Smyth, Davis McCarthy, Yunshun Chen

References

See Also

dispCoxReid, dispPearson, dispDeviance

`estimateGLMCommonDisp` for trended dispersions or `estimateGLMTrendedDisp` for genewise dispersions in the context of a generalized linear model.

`estimateCommonDisp` for the common dispersion or `estimateTagwiseDisp` for genewise dispersions in the context of a multiple group experiment (one-way layout).

Examples

```r
# True dispersion is 1/size=0.1
y <- matrix(rnbinom(1000,mu=10,size=10),ncol=4)
d <- DGEList(counts=y,group=c(1,1,2,2))
design <- model.matrix(~group, data=d$samples)
d1 <- estimateGLMCommonDisp(d, design, verbose=TRUE)

# Compare with classic CML estimator:
d2 <- estimateCommonDisp(d, verbose=TRUE)

# See example(glmFit) for a different example
```
Description

Compute a robust estimate of the negative binomial dispersion parameter for each gene, with expression levels specified by a log-linear model, using observation weights. These observation weights will be stored and used later for estimating regression parameters.

Usage

```r
estimateGLMRobustDisp(y, design = NULL, prior.df = 10, update.trend = TRUE,
  trend.method = "bin.loess", maxit = 6, k = 1.345,
  residual.type = "pearson", verbose = FALSE,
  record = FALSE)
```

Arguments

- `y`: a DGEList object.
- `design`: numeric design matrix, as for `glmFit`.
- `prior.df`: prior degrees of freedom.
- `update.trend`: logical. Should the trended dispersion be re-estimated at each iteration?
- `trend.method`: method (low-level function) used to estimated the trended dispersions. `estimateGLMTrendedDisp`
- `maxit`: maximum number of iterations for weighted `estimateGLMTagwiseDisp`.
- `k`: the tuning constant for Huber estimator. If the absolute value of residual (r) is less than k, its observation weight is 1, otherwise k/abs(r).
- `residual.type`: type of residual (r) used for estimation observation weight
- `verbose`: logical. Should verbose comments be printed?
- `record`: logical. Should information for each iteration be recorded (and returned as a list)?

Details

Moderation of dispersion estimates towards a trend can be sensitive to outliers, resulting in an increase in false positives. That is, since the dispersion estimates are moderated downwards toward the trend and because the regression parameter estimates may be affected by the outliers, some genes are incorrectly deemed to be significantly differentially expressed. This function uses an iterative procedure where weights are calculated from residuals and estimates are made after re-weighting. The robustly computed genewise estimates are reported in the `tagwise.dispersion` vector of the returned DGEList. The terms ‘tag’ and ‘gene’ are synonymous in this context.

Note: it is not necessary to first calculate the common, trended and genewise dispersion estimates. If these are not available, the function will first calculate this (in an unweighted) fashion.
Value

estimateGLMRobustDisp produces a DGEList object, which contains the (robust) genewise dispersion parameter estimate for each gene for the negative binomial model that maximizes the weighted Cox-Reid adjusted profile likelihood, as well as the observation weights. The observation weights are calculated using residuals and the Huber function.

Note that when record=TRUE, a simple list of DGEList objects is returned, one for each iteration (this is for debugging or tracking purposes).

Author(s)

Xiaobei Zhou, Mark D. Robinson

References

See Also

This function calls estimateGLMTrendedDisp and estimateGLMTagwiseDisp.

Examples

```r
y <- matrix(rnbinom(100*6,mu=10,size=1/0.1),ncol=6)
d <- DGEList(counts=y,group=c(1,1,1,2,2,2),lib.size=c(1000:1005))
d <- calcNormFactors(d)
design <- model.matrix(~group, data=d$samples) # Define the design matrix for the full model
d <- estimateGLMRobustDisp(d, design)
summary(d$tagwise.dispersion)
```

estimateGLMTagwiseDisp

Empirical Bayes Tagwise Dispersions for Negative Binomial GLMs

Description

Compute an empirical Bayes estimate of the negative binomial dispersion parameter for each tag, with expression levels specified by a log-linear model.

Usage

```r
# S3 method for class 'DGEList'
estimateGLMTagwiseDisp(y, design=NULL, prior.df=10,
  trend=!is.null(y$trended.dispersion), span=NULL, ...)
# Default S3 method:
estimateGLMTagwiseDisp(y, design=NULL, offset=NULL, dispersion,
  prior.df=10, trend=TRUE, span=NULL, AveLogCPM=NULL,
  weights=NULL, ...)
```
estimateGLMTagwiseDisp

Arguments

- **y**: matrix of counts or a DGEList object.
- **design**: numeric design matrix, as for `glmFit`.
- **trend**: logical. Should the prior be the trended dispersion (TRUE) or the common dispersion (FALSE)?
- **offset**: offset matrix for the log-linear model, as for `glmFit`. Defaults to the log-effective library sizes.
- **dispersion**: common or trended dispersion estimates, used as an initial estimate for the tagwise estimates.
- **prior.df**: prior degrees of freedom.
- **span**: width of the smoothing window, in terms of proportion of the data set. Default value decreases with the number of tags.
- **AveLogCPM**: numeric vector giving average log2 counts per million for each tag.
- **weights**: optional numeric matrix giving observation weights.
- **...**: other arguments are passed to `dispCoxReidInterpolateTagwise`.

Details

This function implements the empirical Bayes strategy proposed by McCarthy et al (2012) for estimating the tagwise negative binomial dispersions. The experimental conditions are specified by design matrix allowing for multiple explanatory factors. The empirical Bayes posterior is implemented as a conditional likelihood with tag-specific weights, and the conditional likelihood is computed using Cox-Reid approximate conditional likelihood (Cox and Reid, 1987).

The prior degrees of freedom determines the weight given to the global dispersion trend. The larger the prior degrees of freedom, the more the tagwise dispersions are squeezed towards the global trend.

Note that the terms ‘tag’ and ‘gene’ are synonymous here. The function is only named ‘Tagwise’ for historical reasons.

This function calls the lower-level function `dispCoxReidInterpolateTagwise`.

Value

- `estimateGLMTagwiseDisp.DGEList` produces a DGEList object, which contains the tagwise dispersion parameter estimate for each tag for the negative binomial model that maximizes the Cox-Reid adjusted profile likelihood. The tagwise dispersions are simply added to the DGEList object provided as the argument to the function.
- `estimateGLMTagwiseDisp.default` returns a vector of the tagwise dispersion estimates.

Author(s)

Gordon Smyth, Davis McCarthy

References

estimateGLMTrendedDisp

Estimate Trended Dispersion for Negative Binomial GLMs

Description

Estimates the abundance-dispersion trend by Cox-Reid approximate profile likelihood.

Usage

S3 method for class 'DGEList'
estimateGLMTrendedDisp(y, design=NULL, method="auto", ...)

Default S3 method:
estimateGLMTrendedDisp(y, design=NULL, offset=NULL, AveLogCPM=NULL,
 method="auto", weights=NULL, ...)

Arguments

y a matrix of counts or a DGEList object.
design numeric design matrix, as for glmFit.
method method (low-level function) used to estimated the trended dispersions. Possible values are "auto" (default, switch to "bin.spline" method if the number of genes is great than 200 and "power" method otherwise), "bin.spline", "bin.loess" (which both result in a call to dispBinTrend), "power" (call to dispCoxReidPowerTrend), or "spline" (call to dispCoxReidSplineTrend).
offset numeric scalar, vector or matrix giving the linear model offsets, as for glmFit.
AveLogCPM numeric vector giving average log2 counts per million for each gene.
weights optional numeric matrix giving observation weights
... other arguments are passed to lower-level functions dispBinTrend, dispCoxReidPowerTrend or dispCoxReidSplineTrend.
estimateTagwiseDisp

Details

Estimates the dispersion parameter for each gene with a trend that depends on the overall level of expression for that gene. This is done for a DGE dataset for general experimental designs by using Cox-Reid approximate conditional inference for a negative binomial generalized linear model for each gene with the unadjusted counts and design matrix provided.

The function provides an object-orientated interface to lower-level functions.

Value

When the input object is a DGEList, estimateGLMTrendedDisp produces a DGEList object, which contains the estimates of the trended dispersion parameter for the negative binomial model according to the method applied.

When the input object is a numeric matrix, it returns a vector of trended dispersion estimates calculated by one of the lower-level functions dispBinTrend, dispCoxReidPowerTrend and dispCoxReidSplineTrend.

Author(s)

Gordon Smyth, Davis McCarthy, Yunshun Chen

References

See Also

dispBinTrend, dispCoxReidPowerTrend and dispCoxReidSplineTrend for details on how the calculations are done.

Examples

ngenes <- 250
nlibs <- 4
y <- matrix(rnbinom(ngenes*nlibs,mu=10,size=10),ngenes,nlibs)
d <- DGEList(counts=y,group=c(1,1,2,2),lib.size=c(1000:1003))
design <- model.matrix(~group, data=d$samples)
disp <- estimateGLMTrendedDisp(d, design, min.n=25, df=3)
plotBCV(disp)

estimateTagwiseDisp Estimate Empirical Bayes Tagwise Dispersion Values

Description

Estimates tagwise dispersion values by an empirical Bayes method based on weighted conditional maximum likelihood.
estimateTagwiseDisp

Usage

S3 method for class 'DGEList'
estimateTagwiseDisp(y, prior.df=10, trend="movingave", span=NULL, method="grid",
 grid.length=11, grid.range=c(-6,6), tol=1e-06, verbose=FALSE, ...)
Default S3 method:
estimateTagwiseDisp(y, group=NULL, lib.size=NULL, dispersion, AveLogCPM=NULL,
 prior.df=10, trend="movingave", span=NULL, method="grid", grid.length=11,
 grid.range=c(-6,6), tol=1e-06, verbose=FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>matrix of counts or a DGEList object.</td>
</tr>
<tr>
<td>prior.df</td>
<td>prior degrees of freedom.</td>
</tr>
<tr>
<td>trend</td>
<td>method for estimating dispersion trend. Possible values are "movingave" (default), "loess" and "none".</td>
</tr>
<tr>
<td>span</td>
<td>width of the smoothing window, as a proportion of the data set.</td>
</tr>
<tr>
<td>method</td>
<td>method for maximizing the posterior likelihood. Possible values are "grid" (default) for interpolation on grid points or "optimize" to call the function of the same name.</td>
</tr>
<tr>
<td>grid.length</td>
<td>for method="grid", the number of points on which the interpolation is applied for each tag.</td>
</tr>
<tr>
<td>grid.range</td>
<td>for method="grid", the range of the grid points around the trend on a log2 scale.</td>
</tr>
<tr>
<td>tol</td>
<td>for method="optimize", the tolerance for Newton-Rhapson iterations.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical, if TRUE then diagnostic output is produced during the estimation process.</td>
</tr>
<tr>
<td>group</td>
<td>vector or factor giving the experimental group/condition for each library.</td>
</tr>
<tr>
<td>lib.size</td>
<td>numeric vector giving the total count (sequence depth) for each library.</td>
</tr>
<tr>
<td>dispersion</td>
<td>common dispersion estimate, used as an initial estimate for the tagwise estimates.</td>
</tr>
<tr>
<td>AveLogCPM</td>
<td>numeric vector giving average log2 counts per million for each tag</td>
</tr>
<tr>
<td>...</td>
<td>other arguments that are not currently used.</td>
</tr>
</tbody>
</table>

Details

This function implements the empirical Bayes strategy proposed by Robinson and Smyth (2007) for estimating the tagwise negative binomial dispersions. The experimental design is assumed to be a one-way layout with one or more experimental groups. The empirical Bayes posterior is implemented as a conditional likelihood with tag-specific weights.

The prior values for the dispersions are determined by a global trend. The individual tagwise dispersions are then squeezed towards this trend. The prior degrees of freedom determines the weight given to the prior. The larger the prior degrees of freedom, the more the tagwise dispersions are squeezed towards the global trend. If the number of libraries is large, the prior becomes less important and the tagwise dispersion are determined more by the individual tagwise data.

If trend="none", then the prior dispersion is just a constant, the common dispersion. Otherwise, the trend is determined by a moving average (trend="movingave") or loess smoother applied to the tagwise conditional log-likelihood. method="loess" applies a loess curve of degree 0 as implemented in loessByCol.

method="optimize" is not recommended for routine use as it is very slow. It is included for testing purposes.
Note that the terms ‘tag’ and ‘gene’ are synonymous here. The function is only named ‘Tagwise’ for historical reasons.

Value

`estimateTagwiseDisp.DGEList` adds the following components to the input `DGEList` object:

- `prior.df` prior degrees of freedom.
- `prior.n` estimate of the prior weight.
- `tagwise.dispersion` numeric vector of the tagwise dispersion estimates.
- `span` width of the smoothing window, in terms of proportion of the data set.

`estimateTagwiseDisp.default` returns a numeric vector of the tagwise dispersion estimates.

Author(s)

Mark Robinson, Davis McCarthy, Yunshun Chen and Gordon Smyth

References

See Also

`estimateCommonDisp` is usually run before `estimateTagwiseDisp`. `movingAverageByCol` and `loessByCol` implement the moving average or loess smoothers.

Examples

```r
# True dispersion is 1/5=0.2
y <- matrix(rnbinom(250*4,mu=20,size=5),nrow=250,ncol=4)
dge <- DGEList(counts=y,group=c(1,1,2,2))
dge <- estimateCommonDisp(dge)
dge <- estimateTagwiseDisp(dge)
```

Description

Estimates trended dispersion values by an empirical Bayes method.

Usage

```r
# S3 method for class 'DGEList'
estimateTrendedDisp(y, method="bin.spline", df=5, span=2/3, ...)
# Default S3 method:
estimateTrendedDisp(y, group=NULL, lib.size=NULL, AveLogCPM=NULL, method="bin.spline", df=5, span=2/3, ...)
```
estimateTrendedDisp

Arguments

- `y`: matrix of counts or a DGEList object.
- `method`: method used to estimated the trended dispersions. Possible values are "bin.spline", and "bin.loess".
- `df`: integer giving the degrees of freedom of the spline function if "bin.spline" method is used, see `ns` in the splines package. Default is 5.
- `span`: scalar, passed to `loess` to determine the amount of smoothing for the loess fit when "loess" method is used. Default is 2/3.
- `group`: vector or factor giving the experimental group/condition for each library.
- `lib.size`: numeric vector giving the total count (sequence depth) for each library.
- `AveLogCPM`: numeric vector giving average log2 counts per million for each tag
- other arguments that are not currently used.

Details

This function takes the binned common dispersion and abundance, and fits a smooth curve through these binned values using either natural cubic splines or loess. From this smooth curve it predicts the dispersion value for each gene based on the gene’s overall abundance. This results in estimates for the NB dispersion parameter which have a dependence on the overall expression level of the gene, and thus have an abundance-dependent trend.

Value

An object of class DGEList with the same components as for `estimateCommonDisp` plus the trended dispersion estimates for each gene.

Author(s)

Yunshun Chen and Gordon Smyth

See Also

`estimateCommonDisp` estimates a common value for the dispersion parameter for all genes - should generally be run before `estimateTrendedDisp`.

Examples

```r
ngenes <- 1000
nlib <- 4
log2cpm <- seq(from=0,to=16,length=ngenes)
lib.size <- 1e7
mu <- 2^log2cpm * lib.size * 1e-6
dispersion <- 1/sqrt(mu) + 0.1
counts <- rbinom(ngenes*nlib, mu=mu, size=1/dispersion)
counts <- matrix(counts,ngenes,nlib)
y <- DGEList(counts,lib.size=rep(lib.size,nlib))
y <- estimateCommonDisp(y)
y <- estimateTrendedDisp(y)
```
exactTest

Exact Tests for Differences between Two Groups of Negative-Binomial Counts

Description
Compute gene-wise exact tests for differences in the means between two groups of negative-binomially distributed counts.

Usage
```r
exactTest(object, pair=1:2, dispersion="auto", rejection.region="doubletail",
          big.count=900, prior.count=0.125)
exactTestDoubleTail(y1, y2, dispersion=0, big.count=900)
exactTestBySmallP(y1, y2, dispersion=0)
exactTestByDeviance(y1, y2, dispersion=0)
extTestBetaApprox(y1, y2, dispersion=0)
```

Arguments
- **object**: an object of class `DGEList`.
- **pair**: vector of length two, either numeric or character, providing the pair of groups to be compared; if a character vector, then should be the names of two groups (e.g. two levels of `object$samples$group`); if numeric, then groups to be compared are chosen by finding the levels of `object$samples$group` corresponding to those numeric values and using those levels as the groups to be compared; if `NULL`, then first two levels of `object$samples$group` (a factor) are used. Note that the first group listed in the pair is the baseline for the comparison—so if the pair is `c("A","B")` then the comparison is `B - A`, so genes with positive log-fold change are up-regulated in group B compared with group A (and vice versa for genes with negative log-fold change).
- **dispersion**: either a numeric vector of dispersions or a character string indicating that dispersions should be taken from the data object. If a numeric vector, then can be either of length one or of length equal to the number of genes. Allowable character values are "common", "trended", "tagwise" or "auto". Default behavior ("auto" is to use most complex dispersions found in data object).
- **rejection.region**: type of rejection region for two-sided exact test. Possible values are "doubletail", "smallp" or "deviance".
- **big.count**: count size above which asymptotic beta approximation will be used.
- **prior.count**: average prior count used to shrink log-fold-changes. Larger values produce more shrinkage.
- **y1**: numeric matrix of counts for the first the two experimental groups to be tested for differences. Rows correspond to genes and columns to libraries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts from the output of `equalizeLibSizes`.
- **y2**: numeric matrix of counts for the second of the two experimental groups to be tested for differences. Rows correspond to genes and columns to libraries. Libraries are assumed to be equal in size - e.g. adjusted pseudocounts from the output of `equalizeLibSizes`. Must have the same number of rows as `y1`.
Details

The functions test for differential expression between two groups of count libraries. They implement the exact test proposed by Robinson and Smyth (2008) for a difference in mean between two groups of negative binomial random variables. The functions accept two groups of count libraries, and a test is performed for each row of data. For each row, the test is conditional on the sum of counts for that row. The test can be viewed as a generalization of the well-known exact binomial test (implemented in `binomTest`) but generalized to overdispersed counts.

`exactTest` is the main user-level function, and produces an object containing all the necessary components for downstream analysis. `exactTest` calls one of the low level functions `exactTestDoubleTail`, `exactTestBetaApprox`, `exactTestBySmallP` or `exactTestByDeviance` to do the p-value computation. The low level functions all assume that the libraries have been normalized to have the same size, i.e., to have the same expected column sum under the null hypothesis. `exactTest` equalizes the library sizes using `equalizeLibSizes` before calling the low level functions.

The functions `exactTestDoubleTail`, `exactTestBySmallP` and `exactTestByDeviance` correspond to different ways to define the two-sided rejection region when the two groups have different numbers of samples. `exactTestBySmallP` implements the method of small probabilities as proposed by Robinson and Smyth (2008). This method corresponds exactly to `binomTest` as the dispersion approaches zero, but gives poor results when the dispersion is very large. `exactTestDoubleTail` computes two-sided p-values by doubling the smaller tail probability. `exactTestByDeviance` uses the deviance goodness of fit statistics to define the rejection region, and is therefore equivalent to a conditional likelihood ratio test.

Note that `rejection.region="smallp"` is no longer recommended. It is preserved as an option only for backward compatibility with early versions of edgeR. `rejection.region="deviance"` has good theoretical statistical properties but is relatively slow to compute. `rejection.region="doubletail"` is just slightly more conservative than `rejection.region="deviance"`, but is recommended because of its much greater speed. For general remarks on different types of rejection regions for exact tests see Gibbons and Pratt (1975).

`exactTestBetaApprox` implements an asymptotic beta distribution approximation to the conditional count distribution. It is called by the other functions for rows with both group counts greater than `big.count`.

Value

`exactTest` produces an object of class `DGEExact` containing the following components:

- **table**: data frame containing columns for the log2-fold-change, logFC, the average log2-counts-per-million, logCPM, and the two-sided p-value PValue
- **comparison**: character vector giving the names of the two groups being compared
- **genes**: optional data frame containing annotation for each gene; taken from object

The low-level functions, `exactTestDoubleTail` etc, produce a numeric vector of genewise p-values, one for each row of `y1` and `y2`.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

References

See Also

`equalizeLibSizes`, `binomTest`

Examples

```r
# generate raw counts from NB, create list object
y <- matrix(rnbinom(80, size=1/0.2, mu=10), nrow=20, ncol=4)
d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=rep(1000,4))
de <- exactTest(d, dispersion=0.2)
topTags(de)

# same p-values using low-level function directly
p.value <- exactTestDoubleTail(y[,1:2], y[,3:4], dispersion=0.2)
sort(p.value)[1:10]
```

Description

Expand scalar or vector to a matrix.

Usage

```r
expandAsMatrix(x, dim=NULL, byrow=TRUE)
```

Arguments

- `x`: scalar, vector, matrix or compressedMatrix.
- `dim`: integer vector of length 2 specifying the required dimensions of the output matrix.
- `byrow`: logical scalar specifying if matrix should be filled by columns or rows for a vector `x`.

Details

This function expands a scalar, row/column vector or compressedMatrix to be a matrix of dimensions `dim`. It is used internally in edgeR to convert offsets, weights and other values to a matrix for consistent handling. If `dim` is NULL, the function is equivalent to calling `as.matrix(x)`.

If `x` is a vector, its length must match one of the output dimensions. The matrix will then be filled by repeating the matrix across the matching dimension. For example, if `length(x)` == `dim[1]`, the matrix will be filled such that each row contains `x`. If both dimensions match, filling is determined by `byrow`, with filling by rows as the default.

If `x` compressedMatrix object, the size of any non-repeated dimensions must be consistent with corresponding output dimension. The `byrow` argument will be ignored as the repeat specifications will dictate how expansion should be performed. See `?compressedMatrix` for more details.
getCounts

Value

Numeric matrix of dimension dim.

Author(s)

Gordon Smyth

Examples

```r
expandAsMatrix(1:3,c(4,3))
expandAsMatrix(1:4,c(4,3))
```

getCounts

Extract Specified Component of a DGEList Object

Description

getCounts(y) returns the matrix of read counts y$counts.

getOffset(y) returns offsets for the log-linear predictor account for sequencing depth and possibly other normalization factors. Specifically it returns the matrix y$offset if it is non-null, otherwise it returns the log product of lib.size and norm.factors from y$samples.

getDispersion(y) returns the most complex dispersion estimates (common, trended or genewise) found in y.

Usage

```r
getCounts(y)
getOffset(y)
getDispersion(y)
```

Arguments

- **y**

 DGEList object containing (at least) the elements counts (table of raw counts), group (factor indicating group) and lib.size (numeric vector of library sizes)

Value

getCounts returns the matrix of counts. getOffset returns a numeric matrix or vector. getDispersion returns vector of dispersion values.

Author(s)

Mark Robinson, Davis McCarthy, Gordon Smyth

See Also

[DGEList-class](#)
getPriorN

Get a Recommended Value for Prior N from DGEList Object

Description

Returns the lib.size component of the samples component of DGEList object multiplied by the norm.factors component

Usage

getPriorN(y, design=NULL, prior.df=20)

Arguments

y a DGEList object with (at least) elements counts (table of unadjusted counts) and samples (data frame containing information about experimental group, library size and normalization factor for the library size)
design numeric matrix (optional argument) giving the design matrix for the GLM that is to be fit. Must be of full column rank. If provided design is used to determine the number of parameters to be fit in the statistical model and therefore the residual degrees of freedom. If left as the default (NULL) then the y$samples$group element of the DGEList object is used to determine the residual degrees of freedom.
prior.df numeric scalar giving the weight, in terms of prior degrees of freedom, to be given to the common parameter likelihood when estimating genewise dispersion estimates.

Details

When estimating genewise dispersion values using estimateTagwiseDisp or estimateGLMTagwiseDisp we need to decide how much weight to give to the common parameter likelihood in order to smooth (or stabilize) the dispersion estimates. The best choice of value for the prior.n parameter varies between datasets depending on the number of samples in the dataset and the complexity of the model to be fit. The value of prior.n should be inversely proportional to the residual degrees of freedom. We have found that choosing a value for prior.n that is equivalent to giving the common parameter likelihood 20 degrees of freedom generally gives a good amount of smoothing for the genewise dispersion estimates. This function simply recommends an appropriate value for prior.n—to be used as an argument for estimateTagwiseDisp or estimateGLMTagwiseDisp—given the experimental design at hand and the chosen prior degrees of freedom.

Value

getPriorN returns a numeric scalar

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(20,size=5,mu=10),5,4)
d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=1001:1004)
getCounts(d)
getOffset(d)
d <- estimateCommonDisp(d)
getDispersion(d)

getPriorN y, design=NULL, prior.df=20

Arguments

y a DGEList object with (at least) elements counts (table of unadjusted counts) and samples (data frame containing information about experimental group, library size and normalization factor for the library size)
design numeric matrix (optional argument) giving the design matrix for the GLM that is to be fit. Must be of full column rank. If provided design is used to determine the number of parameters to be fit in the statistical model and therefore the residual degrees of freedom. If left as the default (NULL) then the y$samples$group element of the DGEList object is used to determine the residual degrees of freedom.
prior.df numeric scalar giving the weight, in terms of prior degrees of freedom, to be given to the common parameter likelihood when estimating genewise dispersion estimates.

Details

When estimating genewise dispersion values using estimateTagwiseDisp or estimateGLMTagwiseDisp we need to decide how much weight to give to the common parameter likelihood in order to smooth (or stabilize) the dispersion estimates. The best choice of value for the prior.n parameter varies between datasets depending on the number of samples in the dataset and the complexity of the model to be fit. The value of prior.n should be inversely proportional to the residual degrees of freedom. We have found that choosing a value for prior.n that is equivalent to giving the common parameter likelihood 20 degrees of freedom generally gives a good amount of smoothing for the genewise dispersion estimates. This function simply recommends an appropriate value for prior.n—to be used as an argument for estimateTagwiseDisp or estimateGLMTagwiseDisp—given the experimental design at hand and the chosen prior degrees of freedom.

Value

getPriorN returns a numeric scalar
gini

Author(s)

Davis McCarthy, Gordon Smyth

See Also

DGEList for more information about the DGEList class. as.matrix.DGEList.

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(20, size=1, mu=10), nrow=5)
d <- DGEList(counts=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
getPriorN(d)

<table>
<thead>
<tr>
<th>gini</th>
<th>Gini dispersion index</th>
</tr>
</thead>
</table>

Description

Gini index for each column of a matrix.

Usage

gini(x)

Arguments

x

non-negative numeric matrix

Details

The Gini coefficient or index is a measure of inequality or diversity. It is zero if all the values of x are equal. It reaches a maximum value of 1/nrow(x) when all values are zero except for one.

The Gini index is only interpretable for non-negative quantities. It is not meaningful if x contains negative values.

Value

Numeric vector of length ncol(x).

Author(s)

Gordon Smyth

References

Examples

x <- matrix(rpois(20, lambda=5), 10, 2)
gini(x)
glmFit

Genewise Negative Binomial Generalized Linear Models

Description

Fit a negative binomial generalized log-linear model to the read counts for each gene. Conduct genewise statistical tests for a given coefficient or coefficient contrast.

Usage

S3 method for class 'DGEList'
glmFit(y, design=NULL, dispersion=NULL, prior.count=0.125, start=NULL, ...)

Default S3 method:
glmFit(y, design=NULL, dispersion=NULL, offset=NULL, lib.size=NULL, weights=NULL, prior.count=0.125, start=NULL, ...)

glmLRT(glmfit, coef=ncol(glmfit$design), contrast=NULL)

Arguments

y an object that contains the raw counts for each library (the measure of expression level); alternatively, a matrix of counts, or a DGEList object with (at least) elements counts (table of unadjusted counts) and samples (data frame containing information about experimental group, library size and normalization factor for the library size).
design numeric matrix giving the design matrix for the genewise linear models. Must be of full column rank. Defaults to a single column of ones, equivalent to treating the columns as replicate libraries.
dispersion numeric scalar, vector or matrix of negative binomial dispersions. Can be a common value for all genes, a vector of dispersion values with one for each gene, or a matrix of dispersion values with one for each observation. If NULL will be extracted from y, with order of precedence: genewise dispersion, trended dispersions, common dispersion.
offset numeric matrix of same size as y giving offsets for the log-linear models. Can be a scalar or a vector of length ncol(y), in which case it is expanded out to a matrix.
weights optional numeric matrix giving prior weights for the observations (for each library and gene) to be used in the GLM calculations.
lib.size numeric vector of length ncol(y) giving library sizes. Only used if offset=NULL, in which case offset is set to log(lib.size). Defaults to colSums(y).
prior.count average prior count to be added to observation to shrink the estimated log-fold-changes towards zero.
start optional numeric matrix of initial estimates for the linear model coefficients.
... other arguments are passed to lower level fitting functions.
glmfit a DGEGLM object, usually output from glmFit.
coef integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. Values must be columns or column names of design. Defaults to the last coefficient. Ignored if contrast is specified.
contrast numeric vector or matrix specifying one or more contrasts of the linear model coefficients to be tested equal to zero. Number of rows must equal to the number of columns of design. If specified, then takes precedence over coef.
Details

glmFit and glmLRT implement generalized linear model (glm) methods developed by McCarthy et al (2012).

glmFit fits gene-wise negative binomial glms, all with the same design matrix but possibly different dispersions, offsets and weights. When the design matrix defines a one-way layout, or can be re-parametrized to a one-way layout, the glms are fitting very quickly using mgLmOneGroup. Otherwise the default fitting method, implemented in mgLmLevenberg, uses a Fisher scoring algorithm with Levenberg-style damping.

Positive prior.count cause the returned coefficients to be shrunk in such a way that fold-changes between the treatment conditions are decreased. In particular, infinite fold-changes are avoided. Larger values cause more shrinkage. The returned coefficients are affected but not the likelihood ratio tests or p-values.

glmLRT conducts likelihood ratio tests for one or more coefficients in the linear model. If coef is used, the null hypothesis is that all the coefficients indicated by coef are equal to zero. If contrast is non-null, then the null hypothesis is that the specified contrasts of the coefficients are equal to zero. For example, a contrast of c(0,1,-1), assuming there are three coefficients, would test the hypothesis that the second and third coefficients are equal.

Value

glmFit produces an object of class DGEGLM containing components counts, samples, genes and abundance from y plus the following new components:

- design: design matrix as input.
- weights: matrix of weights as input.
- df.residual: numeric vector of residual degrees of freedom, one for each gene.
- offset: numeric matrix of linear model offsets.
- dispersion: vector of dispersions used for the fit.
- coefficients: numeric matrix of estimated coefficients from the glm fits, on the natural log scale, of size nrow(y) by ncol(design).
- unshrunk.coefficients: numeric matrix of estimated coefficients from the glm fits when no log-fold-changes shrinkage is applied, on the natural log scale, of size nrow(y) by ncol(design). It exists only when prior.count is not 0.
- fitted.values: matrix of fitted values from glm fits, same number of rows and columns as y.
- deviance: numeric vector of deviances, one for each gene.

glmLRT produces objects of class DGEGLRT with the same components as for glmfit plus the following:

- table: data frame with the same rows as y containing the log2-fold-changes, likelihood ratio statistics and p-values, ready to be displayed by topTags.
- comparison: character string describing the coefficient or the contrast being tested.

The data frame table contains the following columns:

- logFC: log2-fold change of expression between conditions being tested.
- logCPM: average log2-counts per million, the average taken over all libraries in y.
- LR: likelihood ratio statistics.
- PValue: p-values.
Author(s)

Davis McCarthy and Gordon Smyth

References

See Also

Low-level computations are done by `mglmOneGroup` or `mglmLevenberg`. `topTags` displays results from `glmLRT`.

Examples

```r
nlibs <- 3
genesis <- 100
dispersion.true <- 0.1

# Make first gene respond to covariate x
x <- 0:2
design <- model.matrix(~x)
beta.true <- cbind(Beta1=2,Beta2=c(2,rep(0,genesis-1)))
mu.true <- 2^(beta.true %x% t(design))

# Generate count data
y <- rnbinom(genesis*nlibs,mu=mu.true,size=1/dispersion.true)
y <- matrix(y,genesis,nlibs)
colnames(y) <- c("x0","x1","x2")
rownames(y) <- paste("gene",1:genesis,sep=".")
d <- DGEList(y)

# Normalize
d <- calcNormFactors(d)

# Fit the NB GLMs
fit <- glmFit(d, design, dispersion=dispersion.true)

# Likelihood ratio tests for trend
results <- glmLRT(fit, coef=2)
topTags(results)

# Estimate the dispersion (may be unreliable with so few genes)
d <- estimateGLMCommonDisp(d, design, verbose=TRUE)
```

glmQLFit

Genewise Negative Binomial Generalized Linear Models with Quasi-likelihood Tests

Description

Fit a quasi-likelihood negative binomial generalized log-linear model to count data. Conduct genewise statistical tests for a given coefficient or contrast.
Usage

```r
## S3 method for class 'DGEList'
glmQLFit(y, design=NULL, dispersion=NULL, offset=NULL, abundance.trend=TRUE,
robust=FALSE, winsor.tail.p=c(0.05, 0.1), ...)

## Default S3 method:
glmQLFit(y, design=NULL, dispersion=NULL, offset=NULL, lib.size=NULL,
weights=NULL, abundance.trend=TRUE, AveLogCPM=NULL, robust=FALSE,
winsor.tail.p=c(0.05, 0.1), ...)

glmQLFTest(glmfit, coef=ncol(glmfit$design), contrast=NULL, poisson.bound=TRUE)
```

Arguments

- `y` a matrix of counts, or a DGEList object with (at least) elements counts (table of unadjusted counts) and samples (data frame containing information about experimental group, library size and normalization factor for the library size).
- `design` numeric matrix giving the design matrix for the genewise linear models.
- `dispersion` numeric scalar, vector or matrix of negative binomial dispersions. If NULL, then will be extracted from the DGEList object `y`, with order of precedence: trended dispersions, common dispersion, a constant value of 0.05.
- `offset` numeric matrix of same size as `y` giving offsets for the log-linear models. Can be a scalar or a vector of length `ncol(y)`, in which case it is expanded out to a matrix. If NULL will be computed by `getOffset(y)`.
- `lib.size` numeric vector of length `ncol(y)` giving library sizes. Only used if offset=NULL, in which case offset is set to `log(lib.size)`. Defaults to `colSums(y)`.
- `weights` numeric matrix of same size as `y` giving weights for the log-linear models. If NULL, will be set to unity for all observations.
- `abundance.trend` logical, whether to allow an abundance-dependent trend when estimating the prior values for the quasi-likelihood multiplicative dispersion parameter.
- `AveLogCPM` average log2-counts per million, the average taken over all libraries in y. If NULL will be computed by `aveLogCPM(y)`.
- `robust` logical, whether to estimate the prior QL dispersion distribution robustly.
- `winsor.tail.p` numeric vector of length 2 giving proportion to trim (Winsorize) from lower and upper tail of the distribution of genewise deviances when estimating the hyperparameters. Positive values produce robust empirical Bayes ignoring outlier small or large deviances. Only used when robust=TRUE.
- `...` other arguments are passed to `glmFit`.
- `glmfit` a DGEGLM object, usually output from `glmQLFit`.
- `coef` integer or character index vector indicating which coefficients of the linear model are to be tested equal to zero. Ignored if contrast is not NULL.
- `contrast` numeric vector or matrix specifying one or more contrasts of the linear model coefficients to be tested equal to zero.
- `poisson.bound` logical, if TRUE then the p-value returned will never be less than would be obtained for a likelihood ratio test with NB dispersion equal to zero.
glmQLFit and glmQLFTest implement the quasi-likelihood (QL) methods of Lund et al (2012), with some enhancements and with slightly different glm, trend and FDR methods. See Lun et al (2015) for a tutorial describing the use of glmQLFit and glmQLFTest as part of a complete analysis pipeline. Another case study using glmQLFit and glmQLFTest is given in Section 4.7 of the edgeR User’s Guide.

glmQLFit is similar to glmFit except that it also estimates QL dispersion values. It calls the limma function squeezeVar to conduct empirical Bayes moderation of the genewise QL dispersions. If robust=TRUE, then the robust hyperparameter estimation features of squeezeVar are used (Phipson et al, 2013). If abundance.trend=TRUE, then a prior trend is estimated based on the average logCPMs.

glmQLFit gives special attention to handling of zero counts, and in particular to situations when fitted values of zero provide no useful residual degrees of freedom for estimating the QL dispersion. The usual residual degrees of freedom are returned as df.residual while the adjusted residual degrees of freedom are returned as df.residuals.zeros.

glmQLFTest is similar to glmLRT except that it replaces likelihood ratio tests with empirical Bayes quasi-likelihood F-tests. The p-values from glmQLFTest are always greater than or equal to those that would be obtained from glmLRT using the same negative binomial dispersions.

Value

glmQLFit produces an object of class DGEGLM with the same components as produced by glmFit, plus:

df.residual.zeros

- a numeric vector containing the number of effective residual degrees of freedom for each gene, taking into account any treatment groups with all zero counts.

df.prior

- a numeric vector or scalar, giving the prior degrees of freedom for the QL dispersions.

var.prior

- a numeric vector of scalar, giving the location of the prior distribution for the QL dispersions.

var.post

- a numeric vector containing the posterior empirical Bayes QL dispersions.

df.prior is a vector of length nrow(y) if robust=TRUE, otherwise it has length 1. var.prior is a vector of length nrow(y) if abundance.trend=TRUE, otherwise it has length 1.

glmQLFTest produce an object of class DGEGLRT with the same components as produced by glmLRT, except that the table$LR column becomes table$F and contains quasi-likelihood F-statistics. It also stores df.total, a numeric vector containing the denominator degrees of freedom for the F-test, equal to df.prior + df.residual.zeros.

Note

The negative binomial dispersions dispersion supplied to glmQLFit and glmQLFTest must be based on a global model, that is, they must be either trended or common dispersions. It is not correct to supply genewise dispersions because glmQLFTest estimates genewise variability using the QL dispersion.

Author(s)

Yunshun Chen, Aaron Lun, Davis McCarthy and Gordon Smyth
References

See Also

topTags displays results from *glmQLFTest*.

plotQLDisp can be used to visualize the distribution of QL dispersions after EB shrinkage from *glmQLFit*.

The QuasiSeq package gives an alternative implementation of the Lund et al (2012) methods.

Examples

```r
nlibs <- 4
genomes <- 1000
dispersion.true <- 1/rchisq(genomes, df=10)
design <- model.matrix(~factor(c(1,1,2,2)))

# Generate count data
y <- rnbinom(genomes*nlibs,mu=20,size=1/dispersion.true)
y <- matrix(y,genomes,nlibs)
d <- DGEList(y)
d <- calcNormFactors(d)

# Fit the NB GLMs with QL methods
d <- estimateDisp(d, design)
fit <- glmQLFit(d, design)
results <- glmQLFTest(fit)
topTags(results)
fit <- glmQLFit(d, design, robust=TRUE)
results <- glmQLFTest(fit)
topTags(results)
fit <- glmQLFit(d, design, abundance.trend=FALSE)
results <- glmQLFTest(fit)
topTags(results)
```
glmTreat

Test for Differential Expression Relative to a Threshold

Description

Conduct genewise statistical tests for a given coefficient or contrast relative to a specified fold-change threshold.

Usage

```r
glmTreat(glmfit, coef = ncol(glmfit$design), contrast = NULL, lfc = 0, null = "interval")
```

Arguments

- `glmfit` : a DGEGLM object, usually output from `glmFit` or `glmQLFit`.
- `coef` : integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. Values must be columns or column names of `design`. Defaults to the last coefficient. Ignored if `contrast` is specified.
- `contrast` : numeric vector specifying the contrast of the linear model coefficients to be tested against the log2-fold-change threshold. Length must equal to the number of columns of `design`. If specified, then takes precedence over `coef`.
- `lfc` : numeric scalar specifying the absolute value of the log2-fold change threshold above which differential expression is to be considered.
- `null` : character string, choices are "worst.case" or "interval". If "worst.case", then the null hypothesis assumes that the true logFC is on the boundary of the possible values, either at `lfc` or `-lfc`, whichever gives the largest p-value. This gives the most conservative results. If "interval", then the null hypotheses assumes the true logFC to belong to a bounded interval of possible values.

Details

`glmTreat` implements a test for differential expression relative to a minimum required fold-change threshold. Instead of testing for genes which have log-fold-changes different from zero, it tests whether the log2-fold-change is greater than `lfc` in absolute value. `glmTreat` is analogous to the TREAT approach developed by McCarthy and Smyth (2009) for microarrays.

`glmTreat` detects whether `glmfit` was produced by `glmFit` or `glmQLFit`. In the former case, it conducts a modified likelihood ratio test (LRT) against the fold-change threshold. In the latter case, it conducts a quasi-likelihood (QL) F-test against the threshold.

If `lfc=0`, then `glmTreat` is equivalent to `glmLRT` or `glmQLFTest`, depending on whether likelihood or quasi-likelihood is being used.

If there is no shrinkage on log-fold-changes, i.e., fitting glms with `prior.count=0`, then `unshrunk.logFC` and `logFC` are essentially the same. Hence they are merged into one column of `logFC` in `table`. Note that `glmTreat` constructs test statistics using `unshrunk.logFC` rather than `logFC`.

`glmTreat` with positive `lfc` gives larger p-values than would be obtained with `lfc=0`. If `null="worst.case"`, then `glmTreat` conducts a test closely analogous to the `treat` function in the limma package. This conducts a test if which the null hypothesis puts the true logFC on the boundary of the `[-lfc, lfc]` interval closest to the observed logFC. If `null="interval"`, then the null hypotheses assumes an interval of possible values for the true logFC. This approach is somewhat less conservative.
glmTreat produces an object of class DGELRT with the same components as for glmfit plus the following:

- **lfc**: absolute value of the specified log2-fold-change threshold.
- **table**: data frame with the same rows as glmfit containing the log2-fold-changes, average log2-counts per million and p-values, ready to be displayed by topTags.
- **comparison**: character string describing the coefficient or the contrast being tested.

The data frame table contains the following columns:

- **logFC**: shrunk log2-fold-change of expression between conditions being tested.
- **unshrunk.logFC**: unshrunk log2-fold-change of expression between conditions being tested. Exists only when prior.count is not equal to 0 for glmfit.
- **logCPM**: average log2-counts per million, the average taken over all libraries.
- **PValue**: p-values.

Note: glmTreat was previously called treatDGE.

Author(s)

Yunshun Chen and Gordon Smyth

References

See Also

topTags displays results from glmTreat.
treat is the corresponding function in the limma package, designed on normally distributed expression data rather than negative binomial counts.

Examples

```r
ngenes <- 100
n1 <- 3
n2 <- 3
nlibs <- n1+n2
mu <- 100
phi <- 0.1
group <- c(rep(1,n1), rep(2,n2))
design <- model.matrix(~as.factor(group))

### 4-fold change for the first 5 genes
i <- 1:5
fc <- 4
mu <- matrix(mu, ngenes, nlibs)
mu[i, 1:n1] <- mu[i, 1:n1]*fc
```
counts <- matrix(rnbinom(ngenes*nlibs, mu=mu, size=1/phi), ngenes, nlibs)
d <- DGEList(counts=counts,lib.size=rep(1e6, nlibs), group=group)
gfit <- glmFit(d, design, dispersion=phi)
tr <- glmTreat(gfit, coef=2, lfc=1)
topTags(tr)

goana.DGELRT

Gene Ontology or KEGG Analysis of Differentially Expressed Genes

Description

Test for over-representation of gene ontology (GO) terms or KEGG pathways in the up and down differentially expressed genes from a linear model fit.

Usage

```r
## S3 method for class 'DGELRT'
goana(de, geneid = rownames(de), FDR = 0.05, trend = FALSE, ...)
## S3 method for class 'DGELRT'
kegga(de, geneid = rownames(de), FDR = 0.05, trend = FALSE, ...)
```

Arguments

de: an DGELRT object.
geneid: Entrez Gene identifiers. Either a vector of length nrow(de) or the name of the column of de$genes containing the Entrez Gene IDs.
FDR: false discovery rate cutoff for differentially expressed genes. Numeric value between 0 and 1.
trend: adjust analysis for gene length or abundance? Can be logical, or a numeric vector of covariate values, or the name of the column of de$genes containing the covariate values. If TRUE, then de$AveLogCPM is used as the covariate.
...
any other arguments are passed to goana.default or kegga.default.

Details

goana performs Gene Ontology enrichment analyses for the up and down differentially expressed genes from a linear model analysis. kegga performs the corresponding analysis for KEGG pathways. The Entrez Gene ID must be supplied for each gene.

If trend=FALSE, the function computes one-sided hypergeometric tests equivalent to Fisher’s exact test.

If trend=TRUE or a covariate is supplied, then a trend is fitted to the differential expression results and the method of Young et al (2010) is used to adjust for this trend. The adjusted test uses Wallenius’ noncentral hypergeometric distribution.
goana produces a data.frame with a row for each GO term and the following columns:

- **Term**: GO term.
- **Ont**: ontology that the GO term belongs to. Possible values are "BP", "CC" and "MF".
- **N**: Number of genes in the GO term.
- **Up**: number of up-regulated differentially expressed genes.
- **Down**: number of down-regulated differentially expressed genes.
- **P.Up**: p-value for over-representation of GO term in up-regulated genes.
- **P.Down**: p-value for over-representation of GO term in down-regulated genes.

The row names of the data frame give the GO term IDs.

kegga produces a data.frame as above except that the rownames are KEGG pathway IDs, Term become Path and there is no Ont column.

Author(s)

Yunshun Chen and Gordon Smyth

References

See Also

- goana, topGO, kegga, topKEGG

Examples

```r
## Not run:
fit <- glmFit(y, design)
lrt <- glmLRT(fit)
go <- goana(lrt, species="Hs")
topGO(go, ont="BP", sort = "up")
topGO(go, ont="BP", sort = "down")
## End(Not run)
```

gof

Goodness of Fit Tests for Multiple GLM Fits

Description

Conducts deviance goodness of fit tests for each fit in a DGEGLM object

Usage

```r
gof(glmfit, pcutoff = 0.1, adjust = "holm", plot = FALSE, main = "qq-plot of residual deviances", ...)
```
Arguments

glmfit a DGEGLM object containing results from fitting NB GLMs to genes in a DGE dataset with a global dispersion model. Usually this is output from glmfit.

pcutoff scalar giving the cut-off value for the Holm-adjusted p-value. Genes with Holm-adjusted p-values lower than this cutoff value are flagged as ‘dispersion outlier’ genes.

adjust method used to adjust goodness of fit p-values for multiple testing.

plot logical, if TRUE a qq-plot is produced.

main character, title for the plot.

... other arguments are passed to qqnorm.

Details

This function is useful for evaluating the adequacy of a global dispersion model, such as a constant or trended dispersion. If plot=TRUE, then it produces a qq-plot similar to those in Figure 2 of McCarthy et al (2012).

Value

A list with the following components:

gof.statistics numeric vector of deviance statistics, which are the statistics used for the goodness of fit test

gof.pvalues numeric vector of p-values providing evidence of poor fit; computed from the chi-square distribution on the residual degrees of freedom from the GLM fits.

outlier logical vector indicating whether or not each gene is a ‘dispersion outlier’ (i.e., the model fit is poor for that gene indicating that the dispersion estimate is not good for that gene).

df scalar, the residual degrees of freedom from the GLM fit for which the goodness of fit statistics have been computed. Also the degrees of freedom for the goodness of fit statistics for the LR (chi-square) test for significance.

If plot=TRUE, then a plot is also produced on the current graphics device.

Note

This function should not be used with tagwise estimated dispersions such as those from estimateGLMTagwiseDisp or estimateDisp. glmfit should contain trended or constant dispersions.

Author(s)

Davis McCarthy and Gordon Smyth

References

Good-Turing Frequency Estimation

Description

Non-parametric empirical Bayes estimates of the frequencies of observed (and unobserved) species.

Usage

```r
goodTuring(x, conf=1.96)
goodTuringPlot(x)
goodTuringProportions(counts)
```

Arguments

- `x` numeric vector of non-negative integers, representing the observed frequency of each species.
- `conf` confidence factor, as a quantile of the standard normal distribution, used to decide for what values the log-linear relationship between frequencies and frequencies of frequencies is acceptable.
- `counts` matrix of counts
Details

Observed counts are assumed to be Poisson distributed. Using an non-parametric empirical Bayes strategy, the algorithm evaluates the posterior expectation of each species mean given its observed count. The posterior means are then converted to proportions. In the empirical Bayes step, the counts are smoothed by assuming a log-linear relationship between frequencies and frequencies of frequencies. The fundamentals of the algorithm are from Good (1953). Gale and Sampson (1995) proposed a simplified algorithm with a rule for switching between the observed and smoothed frequencies, and it is Gale and Sampson’s simplified algorithm that is implemented here. The number of zero values in x is not used as part of the algorithm, but is returned by this function.

Sampson gives a C code version on his webpage at http://www.grsampson.net/RGoodTur.html which gives identical results to this function.

goodTuringPlot plots log-probability (i.e., log frequencies of frequencies) versus log-frequency.
goodTuringProportions runs goodTuring on each column of data, then uses the results to predict the proportion of each gene in each library.

Value

goodTuring returns a list with components

- **count**: observed frequencies, i.e., the unique positive values of x
- **n**: frequencies of frequencies
- **n0**: frequency of zero, i.e., number of zeros found in x
- **proportion**: estimated proportion of each species given its count
- **P0**: estimated combined proportion of all undetected species

goodTuringProportions returns a matrix of proportions of the same size as counts.

Author(s)

Aaron Lun and Gordon Smyth, adapted from Sampson’s C code from http://www.grsampson.net/RGoodTur.html

References

Examples

```r
# True means of observed species
lambda <- rbinom(10000, mu=2, size=1/10)
lambda <- lambda[lambda>1]

# Observed frequencies
Ntrue <- length(lambda)
x <- rpois(Ntrue, lambda=lambda)
freq <- goodTuring(x)
goodTuringPlot(x)
```
loessByCol

Locally Weighted Mean By Column

Description
Smooth columns of matrix by non-robust loess curves of degree 0.

Usage

```r
loessByCol(y, x=NULL, span=0.5)
locfitByCol(y, x=NULL, weights=1, span=0.5, degree=0)
```

Arguments

- `y`: numeric matrix of response variables.
- `x`: numeric covariate vector of length `nrow(y)`, defaults to equally spaced.
- `span`: width of the smoothing window, in terms of proportion of the data set. Larger values produce smoother curves.
- `weights`: relative weights of each observation, one for each covariate value.
- `degree`: degree of local polynomial fit

Details
Fits a loess curve with degree 0 to each column of the response matrix, using the same covariate vector for each column. The smoothed column values are tricube-weighted means of the original values.

`locfitByCol` uses the `locfit.raw` function of the `locfit` package.

Value
A list containing a numeric matrix with smoothed columns and a vector of leverages for each covariate value.

`locfitByCol` returns a numeric matrix.

Author(s)
Aaron Lun for `loessByCol`, replacing earlier R code by Davis McCarthy. Gordon Smyth for `locfitByCol`.

See Also
- `loess`

Examples

```r
y <- matrix(rnorm(100*3), nrow=100, ncol=3)
head(y)
out <- loessByCol(y)
head(out$fitted.values)
```
Description

Construct a compressedMatrix object from a scalar, vector or matrix.

Usage

makeCompressedMatrix(x, byrow=TRUE)

S3 method for class 'compressedMatrix'
x[i, j, ...]

S3 method for class 'compressedMatrix'
as.matrix(x, ...)

Arguments

x For makeCompressedMatrix, a scalar, vector, matrix or compressedMatrix object. For the S3 methods, a compressedMatrix object.

byrow logical. If x is a vector, should it be repeated across rows (default) or across columns?

i, j subset indices to apply to x.

... additional arguments, ignored.

Details

This function creates a compressedMatrix object from x. The compressedMatrix class inherits from a matrix and holds two logical scalar attributes repeat.row and repeat.col. Each attribute specifies whether the values are to be repeated across rows and/or across columns. This avoids the need to store redundant values in a full-sized matrix of dimensions dim, as would be done with expandAsMatrix.

To illustrate, consider that rows usually correspond to genes while columns usually correspond to libraries. If we have a vector of library sizes, this will hold one unique value per library that is the same for all genes. Thus, we should use byrow=TRUE, which will construct a compressedMatrix object storing one row containing this vector. Here, repeat.row=TRUE and repeat.col=FALSE, indicating that the row is to be repeated for all genes.

On the other hand, we may have a vector of gene-specific values that is the same for all libraries (e.g., dispersions). In this case, we should use byrow=FALSE to construct the compressedMatrix object. This will store one column with repeat.row=FALSE and repeat.col=TRUE, indicating that the column should be repeated across libraries.

In cases where x is a scalar, byrow is ignored and both repeat.row and repeat.col will be TRUE by default. If x is a matrix, both attributes will be FALSE. If x is a compressedMatrix, it will be returned without modification.

Subsetting of a compressedMatrix object depends on the values of repeat.row and repeat.col. If the rows are repeated, any subsetting by row will be ignored. Similarly, if the columns are repeated, any subsetting by column will be ignored. This reflects the fact that the repeated dimension has no fixed size, so subsetting on it is meaningless. If neither are repeated, subsetting behaves as it would for a normal matrix.
Calling `as.matrix` will return the raw matrix without attributes or classes. If either the columns or rows are repeated, the corresponding dimension in the returned matrix will be of length 1. Otherwise, it will be of arbitrary length depending on the size/length of `x` used originally to construct `y`. A compressedMatrix object can also be used as input to `expandAsMatrix`, which will expand it to the specified dimensions.

The compressedMatrix is used throughout edgeR to save space in storing offsets and (to a lesser extent) weights. This is because, for routine analyses, offsets are the same for all genes so it makes little sense to expand it to the full dimensions of the count matrix. Most functions will accept a compressedMatrix as input to `offset` or `weights` arguments.

Value

An object of class compressedMatrix, containing `x` and the additional attributes `repeat.row` and `repeat.col`.

Author(s)

Aaron Lun

See Also

`expandAsMatrix`

Examples

```r
# Repeated rows:
library.sizes <- runif(4, 1e6, 2e6)
lib.mat <- makeCompressedMatrix(library.sizes, byrow=TRUE)
lib.mat
lib.mat[,1:2] # subset by column works as expected
lib.mat[1:10,] # subset by row has no effect (see Details)
as.matrix(lib.mat)
expandAsMatrix(lib.mat, dim=c(10, 4))

# Repeated columns:
gene.disp <- runif(10, 0.01, 0.1)
disp.mat <- makeCompressedMatrix(gene.disp, byrow=FALSE)
disp.mat
disp.mat[,1:2] # subset by column has no effect
disp.mat[1:5,] # subset by row works as expected
as.matrix(disp.mat)
expandAsMatrix(disp.mat, dim=c(10, 4), byrow=FALSE)

# Scalar:
weights <- makeCompressedMatrix(1)
weights[1:10,] # subsetting has no effect
weights[,1:10]
as.matrix(weights)
expandAsMatrix(weights, dim=c(10, 4))

# Matrix:
offsets <- makeCompressedMatrix(matrix(runif(40), 10, 4))
offsets[1:5,]
offsets[,1:2]
```
as.matrix(offsets)
expandAsMatrix(offsets, dim=c(10, 4))

maPlot

Plots Log-Fold Change versus Log-Concentration (or, M versus A) for Count Data

Description

To represent counts that were low (e.g. zero in 1 library and non-zero in the other) in one of the two conditions, a ‘smear’ of points at low A value is presented.

Usage

maPlot(x, y, logAbundance=NULL, logFC=NULL, normalize=FALSE, plot.it=FALSE, smearWidth=1, col=NULL, allCol="black", lowCol="orange", deCol="red", de.tags=NULL, smooth.scatter=FALSE, lowess=FALSE, ...

Arguments

x vector of counts or concentrations (group 1)
y vector of counts or concentrations (group 2)
logAbundance vector providing the abundance of each gene on the log2 scale. Purely optional (default is NULL), but in combination with logFC provides a more direct way to create an MA-plot if the log-abundance and log-fold change are available.
logFC vector providing the log-fold change for each gene for a given experimental contrast. Default is NULL, only to be used together with logAbundance as both need to be non-null for their values to be used.
normalize logical, whether to divide x and y vectors by their sum
plot.it logical, whether to produce a plot
smearWidth scalar, width of the smear
col vector of colours for the points (if NULL, uses allCol and lowCol)
allCol colour of the non-smeared points
lowCol colour of the smeared points
deCol colour of the DE (differentially expressed) points
de.tags indices for genes identified as being differentially expressed; use exactTest or glmLRT to identify DE genes. Note that ‘tag’ and ‘gene’ are synonymous here.
smooth.scatter logical, whether to produce a ‘smooth scatter’ plot using the KernSmooth::smoothScatter function or just a regular scatter plot; default is FALSE, i.e. produce a regular scatter plot
lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give an indication of any trend in the log-fold change with log-concentration
... further arguments passed on to plot

Details

The points to be smeared are identified as being equal to the minimum in one of the two groups. The smear is created by using random uniform numbers of width smearWidth to the left of the minimum A value.
maximizeInterpolant

Value

a plot to the current device (if plot.it=TRUE), and invisibly returns the M (logFC) and A (logConc) values used for the plot, plus identifiers w and v of genes for which M and A values, or just M values, respectively, were adjusted to make a nicer looking plot.

Author(s)

Mark Robinson, Davis McCarthy

See Also

plotSmear

Examples

y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
maPlot(y[,1], y[,2])

maximizeInterpolant Maximize a function given a table of values by spline interpolation.

Description

Maximize a function given a table of values by spline interpolation.

Usage

maximizeInterpolant(x, y)

Arguments

x numeric vector of the inputs of the function.
y numeric matrix of function values at the values of x. Columns correspond to x values and each row corresponds to a different function to be maximized.

Details

Calculates the cubic spline interpolant for each row the method of Forsythe et al (1977) using the function fmm_spline from splines.c in the stats package. Then calculates the derivatives of the spline segments adjacent to the input with the maximum function value. This allows identification of the maximum of the interpolating spline.

Value

numeric vector of input values at which the function maximums occur.

Author(s)

Aaron Lun, improving on earlier code by Gordon Smyth
maximizeQuadratic

References

Examples
x <- seq(0,1,length=10)
y <- rnorm(10,1,1)
maximizeInterpolant(x,y)

maximizeQuadratic
Maximize a function given a table of values by quadratic interpolation.

Description
Maximize a function given a table of values by quadratic interpolation.

Usage
maximizeQuadratic(y, x=1:ncol(y))

Arguments
y numeric matrix of response values.
x numeric matrix of inputs of the function of same dimension as y. If a vector, must be a row vector of length equal to ncol(y).

Details
For each row of y, finds the three x values bracketing the maximum of y, interpolates a quadratic polynomial through these y for these three values and solves for the location of the maximum of the polynomial.

Value
numeric vector of length equal to nrow(y) giving the x-value at which y is maximized.

Author(s)
Yunshun Chen and Gordon Smyth

See Also
maximizeInterpolant

Examples
y <- matrix(rnorm(5*9),5,9)
maximizeQuadratic(y)
Explore the mean-variance relationship for DGE data

Description

Appropriate modelling of the mean-variance relationship in DGE data is important for making inferences about differential expression. Here are functions to compute gene means and variances, as well at looking at these quantities when data is binned based on overall expression level.

Usage

```
plotMeanVar(object, meanvar=NULL, show.raw.vars=FALSE, show.tagwise.vars=FALSE,
    show.binned.common.disp.vars=FALSE, show.ave.raw.vars=TRUE,
    scalar=NULL, NBline=FALSE, nbins=100, log.axes="xy", xlab=NULL,
    ylab=NULL, ...)  
binMeanVar(x, group, nbins=100, common.dispersion=FALSE, object=NULL)
```

Arguments

object

DGEList object containing the raw data and dispersion value. According the method desired for computing the dispersion, either `estimateCommonDisp` and (possibly) `estimateTagwiseDisp` should be run on the DGEList object before using `plotMeanVar`. The argument `object` must be supplied in the function `binMeanVar` if common dispersion values are to be computed for each bin.

meanvar

list (optional) containing the output from `binMeanVar` or the returned value of `plotMeanVar`. Providing this object as an argument will save time in computing the gene means and variances when producing a mean-variance plot.

show.raw.vars

logical, whether or not to display the raw (pooled) genewise variances on the mean-variance plot. Default is `FALSE`.

show.tagwise.vars

logical, whether or not to display the estimated genewise variances on the mean-variance plot (note that ‘tag’ and ‘gene’ are synonymous). Default is `FALSE`.

show.binned.common.disp.vars

logical, whether or not to compute the common dispersion for each bin of genes and show the variances computed from those binned common dispersions and the mean expression level of the respective bin of genes. Default is `FALSE`.

show.ave.raw.vars

logical, whether or not to show the average of the raw variances for each bin of genes plotted against the average expression level of the genes in the bin. Averages are taken on the square root scale as regular arithmetic means are likely to be upwardly biased for count data, whereas averaging on the square scale gives a better summary of the mean-variance relationship in the data. The default is `TRUE`.

scalar

vector (optional) of scaling values to divide counts by. Would expect to have this the same length as the number of columns in the count matrix (i.e. the number of libraries).

NBline

logical, whether or not to add a line on the graph showing the mean-variance relationship for a NB model with common dispersion.
nbins

scalar giving the number of bins (formed by using the quantiles of the genewise mean expression levels) for which to compute average means and variances for exploring the mean-variance relationship. Default is 100 bins

log.axes

character vector indicating if any of the axes should use a log scale. Default is "xy", which makes both y and x axes on the log scale. Other valid options are "x" (log scale on x-axis only), "y" (log scale on y-axis only) and "" (linear scale on x- and y-axis).

xlab

character string giving the label for the x-axis. Standard graphical parameter. If left as the default NULL, then the x-axis label will be set to "logConc".

ylab

character string giving the label for the y-axis. Standard graphical parameter. If left as the default NULL, then the x-axis label will be set to "logConc".

... further arguments passed on to plot

x

matrix of count data, with rows representing genes and columns representing samples

group

factor giving the experimental group or condition to which each sample (i.e. column of x or element of y) belongs

common.dispersion

logical, whether or not to compute the common dispersion for each bin of genes.

Details

This function is useful for exploring the mean-variance relationship in the data. Raw variances are, for each gene, the pooled variance of the counts from each sample, divided by a scaling factor (by default the effective library size). The function will plot the average raw variance for genes split into nbins bins by overall expression level. The averages are taken on the square-root scale as for count data the arithmetic mean is upwardly biased. Taking averages on the square-root scale provides a useful summary of how the variance of the gene counts change with respect to expression level (abundance). A line showing the Poisson mean-variance relationship (mean equals variance) is always shown to illustrate how the genewise variances may differ from a Poisson mean-variance relationship. Optionally, the raw variances and estimated genewise variances can also be plotted. Estimated genewise variances can be calculated using either qCML estimates of the genewise dispersions (estimateTagwiseDisp) or Cox-Reid conditional inference estimates (CRDisp). A log-log scale is used for the plot.

Value

plotMeanVar produces a mean-variance plot for the DGE data using the options described above. plotMeanVar and binMeanVar both return a list with the following components:

avemeans

vector of the average expression level within each bin of genes, with the average taken on the square-root scale

avevars

vector of the average raw pooled gene-wise variance within each bin of genes, with the average taken on the square-root scale

bin.means

list containing the average (mean) expression level for genes divided into bins based on amount of expression

bin.vars

list containing the pooled variance for genes divided into bins based on amount of expression

means

vector giving the mean expression level for each gene

vars

vector giving the pooled variance for each gene

bins

list giving the indices of the genes in each bin, ordered from lowest expression bin to highest
Author(s)

Davis McCarthy

See Also

plotMDS.DGEList, plotSmear and maPlot provide more ways of visualizing DGE data.

Examples

```r
y <- matrix(rnbinom(1000, mu=10, size=2), ncol=4)
d <- DGEList(counts=y, group=c(1,1,2,2), lib.size=c(1000:1003))
plotMeanVar(d) # Produce a straight-forward mean-variance plot
# Produce a mean-variance plot with the raw variances shown and save the means
# and variances for later use
meanvar <- plotMeanVar(d, show.raw.vars=TRUE)
## If we want to show estimated genewise variances on the plot, we must first estimate them!
d <- estimateCommonDisp(d) # Obtain an estimate of the dispersion parameter
d <- estimateTagwiseDisp(d) # Obtain genewise dispersion estimates
# Use previously saved object to speed up plotting
plotMeanVar(d, meanvar=meanvar, show.tagwise.vars=TRUE, NBline=TRUE)
## We could also estimate common/genewise dispersions using the Cox-Reid methods with an
## appropriate design matrix
```

mglm

Fit Negative Binomial Generalized Linear Model to Multiple Response Vectors: Low Level Functions

Description

Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of a matrix of counts.

Usage

```r
mglmOneGroup(y, dispersion=0, offset=0, weights=NULL, maxit=50, tol=1e-10, verbose=FALSE, coef.start=NULL)
mglmOneWay(y, design=NULL, dispersion=0, offset=0, weights=NULL, maxit=50, tol=1e-10, coef.start=NULL)
mglmLevenberg(y, design, dispersion=0, offset=0, weights=NULL, coef.start=NULL, start.method="null", maxit=200, tol=1e-06)
designAsFactor(design)
```

Arguments

- **y**: numeric matrix containing the negative binomial counts. Rows for genes and columns for libraries.
- **design**: numeric matrix giving the design matrix of the GLM. Assumed to be full column rank.
- **dispersion**: numeric scalar or vector giving the dispersion parameter for each GLM. Can be a scalar giving one value for all genes, or a vector of length equal to the number of genes giving genewise dispersions.
offset numeric vector or matrix giving the offset that is to be included in the log-linear model predictor. Can be a scalar, a vector of length equal to the number of libraries, or a matrix of the same size as \(y \).

weights numeric vector or matrix of non-negative quantitative weights. Can be a vector of length equal to the number of libraries, or a matrix of the same size as \(y \).

coeff.start numeric matrix of starting values for the linear model coefficients. Number of rows should agree with \(y \) and number of columns should agree with design.

start.method method used to generate starting values when coeff.stat=NULL. Possible values are "null" to start from the null model of equal expression levels or "y" to use the data as starting value for the mean.

tol numeric scalar giving the convergence tolerance. For mglmOneGroup, convergence is judged successful when the step size falls below tol in absolute size.

maxit scalar giving the maximum number of iterations for the Fisher scoring algorithm.

verbose logical. If TRUE, warnings will be issued when maxit iterations are exceeded before convergence is achieved.

Details

The functions mglmOneGroup, mglmOneWay and mglmLevenberg all fit negative binomial generalized linear models, with the same design matrix but possibly different dispersions, offsets and weights, to a series of response vectors. The functions are all low-level functions in that they operate on atomic objects such as matrices. They are used as work-horses by higher-level functions in the edgeR package, especially by glmFit.

mglmOneGroup fit the null model, with intercept term only, to each response vector. In other words, it treats the libraries as belonging to one group. It implements Fisher scoring with a score-statistic stopping criterion for each gene. Excellent starting values are available for the null model, so this function seldom has any problems with convergence. It is used by other edgeR functions to compute the overall abundance for each gene.

mglmLevenberg fits an arbitrary log-linear model to each response vector. It implements a Levenberg-Marquardt modification of the glm scoring algorithm to prevent divergence. The main computation is implemented in C++.

All these functions treat the dispersion parameter of the negative binomial distribution as a known input.

deviances.function chooses the appropriate deviance function to use given a scalar or vector of dispersion parameters. If the dispersion values are zero, then the Poisson deviance function is returned; if the dispersion values are positive, then the negative binomial deviance function is returned.

Value

mglmOneGroup produces a vector of length equal to the number of genes (number of rows of \(y \)) providing the single coefficient from the GLM fit for each gene. This can be interpreted as a measure of the ‘average expression’ level of the gene.

mglmLevenberg produces a list with the following components:

coefficients matrix of estimated coefficients for the linear models
fitted.values matrix of fitted values
deviance residual deviances
Description

Apply a moving average smoother to the columns of a matrix.

Usage

```r
movingAverageByCol(x, width=5, full.length=TRUE)
```
nbinomDeviance

Arguments

- **x**: numeric matrix
- **width**: integer, width of window of rows to be averaged
- **full.length**: logical value, should output have same number of rows as input?

Details

If `full.length=TRUE`, narrower windows are used at the start and end of each column to make a column of the same length as input. If `FALSE`, all values are averager of `width` input values, so the number of rows is less than input.

Value

Numeric matrix containing smoothed values. If `full.length=TRUE`, of same dimension as `x`. If `full.length=FALSE`, has `width-1` fewer rows than `x`.

Author(s)

Gordon Smyth

Examples

```r
x <- matrix(rpois(20,lambda=5),10,2)
movingAverageByCol(x,3)
```

nbinomDeviance
Negative Binomial Deviance

Description

Fit the same log-link negative binomial or Poisson generalized linear model (GLM) to each row of a matrix of counts.

Usage

```r
nbinomUnitDeviance(y, mean, dispersion=0)
nbinomDeviance(y, mean, dispersion=0, weights=NULL)
```

Arguments

- **y**: numeric vector or matrix containing the negative binomial counts. If a matrix, then rows for genes and columns for libraries. `nbinomDeviance` treats a vector as a matrix with one row.
- **mean**: numeric vector matrix of expected values, of same dimension as `y`.
- **dispersion**: numeric vector or matrix of negative binomial dispersions. Can be a scalar, or a vector of length equal to the number of genes, or a matrix of same dimensions as `y`.
- **weights**: numeric vector or matrix of non-negative weights, as for `glmFit`.
normalizeChIPtoInput

Details

nbinomUnitDeviance computes the unit deviance for each y observation. nbinomDeviance computes the total residual deviance for each row of y observation, i.e., weighted row sums of the unit deviations.

Care is taken to ensure accurate computation for small dispersion values.

Value

nbinomUnitDeviance returns a numeric vector or matrix of the same size as y.
nbinomDeviance returns a numeric vector of length equal to the number of rows of y.

Author(s)

References

Examples

```r
y <- matrix(1:6,3,2)
mu <- matrix(3,3,2)
nbinomUnitDeviance(y,mu,dispersion=0.2)
nbinomDeviance(y,mu,dispersion=0.2)
```

normalizeChIPtoInput Normalize ChIP-Seq Read Counts to Input and Test for Enrichment

Description

Normalize ChIP-Seq read counts to input control values, then test for significant enrichment relative to the control.

Usage

```r
normalizeChIPtoInput(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE, verbose=FALSE, ...)
calcNormOffsetsforChIP(input, response, dispersion=0.01, niter=6, loss="p", plot=FALSE, verbose=FALSE, ...)
```
normalizeChIPtoInput

Arguments

input numeric vector of non-negative input values, not necessarily integer.
response vector of non-negative integer counts of some ChIP-Seq mark for each gene or other genomic feature.
dispersion negative binomial dispersion, must be positive.
niter number of iterations.
loss loss function to be used when fitting the response counts to the input: "p" for cumulative probabilities or "z" for z-value.
plot if TRUE, a plot of the fit is produced.
verbose if TRUE, working estimates from each iteration are output.
... other arguments are passed to the plot function.

Details

normalizeChIPtoInput identifies significant enrichment for a ChIP-Seq mark relative to input values. The ChIP-Seq mark might be for example transcriptional factor binding or an epigenetic mark. The function works on the data from one sample. Replicate libraries are not explicitly accounted for, and would normally be pooled before using this function.

ChIP-Seq counts are assumed to be summarized by gene or similar genomic feature of interest.

This function makes the assumption that a non-negligible proportion of the genes, say 25% or more, are not truly marked by the ChIP-Seq feature of interest. Unmarked genes are further assumed to have counts at a background level proportional to the input. The function aligns the counts to the input so that the counts for the unmarked genes behave like a random sample. The function estimates the proportion of marked genes, and removes marked genes from the fitting process. For this purpose, marked genes are those with a Holm-adjusted mid-p-value less than 0.5.

The read counts are treated as negative binomial. The dispersion parameter is not estimated from the data; instead a reasonable value is assumed to be given.

calcNormOffsetsforChIP returns a numeric matrix of offsets, ready for linear modelling.

Value

normalizeChIPtoInput returns a list with components

p.value numeric vector of p-values for enrichment.
scaling.factor factor by which input is scaled to align with response counts for unmarked genes.
prop.enriched proportion of marked genes, as internally estimated

calcNormOffsetsforChIP returns a numeric matrix of offsets.

Author(s)

Gordon Smyth
plotBCV

Plot Biological Coefficient of Variation

Description

Plot the genewise biological coefficient of variation (BCV) against gene abundance (in log2 counts per million).

Usage

```r
plotBCV(y, xlab="Average log CPM", ylab="Biological coefficient of variation", pch=16, cex=0.2, col.common="red", col.trend="blue", col.tagwise="black", ...)
```

Arguments

- `y` a DGEList object.
- `xlab` label for the x-axis.
- `ylab` label for the y-axis.
- `pch` the plotting symbol. See `points` for more details.
- `cex` plot symbol expansion factor. See `points` for more details.
- `col.common` color of line showing common dispersion
- `col.trend` color of line showing dispersion trend
- `col.tagwise` color of points showing genewise dispersions. Note that ‘tag’ and ‘gene’ are synonymous here.
- `...` any other arguments are passed to `plot`.

Details

The BCV is the square root of the negative binomial dispersion. This function displays the common, trended and genewise BCV estimates.

Value

A plot is created on the current graphics device.

Author(s)

Davis McCarthy, Yunshun Chen, Gordon Smyth

Examples

```r
BCV.true <- 0.1
y <- DGEList(matrix(rnbinom(6000, size = 1/BCV.true^2, mu = 10),1000,6))
y <- estimateCommonDisp(y)
y <- estimateTrendedDisp(y)
y <- estimateTagwiseDisp(y)
plotBCV(y)
```
plotExonUsage

Create a Plot of Exon Usage from Exon-Level Count Data

Description

Create a plot of exon usage for a given gene by plotting the (un)transformed counts for each exon, coloured by experimental group.

Usage

plotExonUsage(y, geneID, group=NULL, transform="none", counts.per.million=TRUE,
legend.coords=NULL, ...)

Arguments

y either a matrix of exon-level counts, a list containing a matrix of counts for each exon or a DGEList object with (at least) elements counts (table of counts summarized at the exon level) and samples (data frame containing information about experimental group, library size and normalization factor for the library size). Each row of y should represent one exon.
geneID character string giving the name of the gene for which exon usage is to be plotted.
group factor supplying the experimental group/condition to which each sample (column of y) belongs. If NULL (default) the function will try to extract if from y, which only works if y is a DGEList object.
transform character, supplying the method of transformation to be applied to the exon counts, if any. Options are "none" (original counts are preserved), "sqrt" (square-root transformation) and "log2" (log2 transformation). Default is "none".
counts.per.million logical, if TRUE then counts per million (as determined from total library sizes) will be plotted for each exon, if FALSE the raw read counts will be plotted. Using counts per million effectively normalizes for different read depth among the different samples, which can make the exon usage plots easier to interpret.
legend.coords optional vector of length 2 giving the x- and y-coordinates of the legend on the plot. If NULL (default), the legend will be automatically placed near the top right corner of the plot.
... optional further arguments to be passed on to plot.

Details

This function produces a simple plot for comparing exon usage between different experimental conditions for a given gene.

Value

plotExonUsage (invisibly) returns the transformed matrix of counts for the gene being plotted and produces a plot to the current device.

Author(s)

Davis McCarthy, Gordon Smyth
plotMD.DGEList

See Also

spliceVariants for methods to detect genes with evidence for alternative exon usage.

Examples

generate exon counts from NB, create list object
y<-matrix(rnbinom(40,size=1,mu=10),nrow=10)
rownames(y) <- rep(c("gene.1","gene.2"), each=5)
d<-DGEList(counts=y,group=rep(1:2,each=2))
plotExonUsage(d, "gene.1")

plotMD.DGEList Mean-Difference Plot of Count Data

Description

Creates a mean-difference plot (aka MA plot) with color coding for highlighted points.

Usage

S3 method for class 'DGEList'
plotMD(object, column = 1, xlab = "Average log CPM (this sample and others)",
ylab = "log-ratio (this sample vs others)",
main = colnames(object)[column], status=object$genes$Status,
zero.weights = FALSE, prior.count = 3, ...)
S3 method for class 'DGEGLM'
plotMD(object, column = ncol(object), coef = NULL, xlab = "Average log CPM",
ylab = "log-fold-change", main = colnames(object)[column],
status=object$genes$Status, zero.weights = FALSE, ...)
S3 method for class 'DGEGLM'
plotMD(object, xlab = "Average log CPM",
ylab = "log-fold-change", main = object$comparison,
status=object$genes$Status, ...)
S3 method for class 'DGEExact'
plotMD(object, xlab = "Average log CPM",
ylab = "log-fold-change", main = NULL,
status=object$genes$Status, ...)

Arguments

object an object of class DGEList, DGEGLM, DGEGLM or DGEEexact.
column integer, column of object to be plotted.
coef alternative to column for fitted model objects. If specified, then column is ignored.
xlab character string, label for x-axis
ylab character string, label for y-axis
main character string, title for plot
status vector giving the control status of each spot on the array, of same length as the number of rows of object. If NULL, then all points are plotted in the default color, symbol and size.
zero.weights logical, should spots with zero or negative weights be plotted?
prior.count the average prior count to be added to each observation. Larger values produce more shrinkage.
...
other arguments are passed to plotWithHighlights.

Details

A mean-difference plot (MD-plot) is a plot of log fold changes (differences) versus average log values (means). The history of mean-difference plots and MA-plots is reviewed in Ritchie et al (2015).

For DGEList objects, a between-sample MD-plot is produced. Counts are first converted to log2-CPM values. An artificial array is produced by averaging all the samples other than the sample specified. A mean-difference plot is then produced from the specified sample and the artificial sample. This procedure reduces to an ordinary mean-difference plot when there are just two arrays total.

If object is an DGEGLM object, then the plot is an fitted model MD-plot in which the estimated coefficient is on the y-axis and the average logCPM value is on the x-axis. If object is an DGEExact or DGELRT object, then the MD-plot displays the logFC vs the logCPM values from the results table.

The status vector can correspond to any grouping of the probes that is of interest. If object is a fitted model object, then status vector is often used to indicate statistically significance, so that differentially expressed points are highlighted.

The status can be included as the component object$genes$Status instead of being passed as an argument to plotMD.

See plotWithHighlights for how to set colors and graphics parameters for the highlighted and non-highlighted points.

Value

A plot is created on the current graphics device.

Author(s)

Gordon Smyth

References

See Also

plotSmear

The driver function for plotMD is plotWithHighlights.
Plot samples on a two-dimensional scatterplot so that distances on the plot approximate the expression differences between the samples.

Usage

```r
## S3 method for class 'DGEList'
plotMDS(x, top = 500, labels = NULL, pch = NULL, cex = 1,
dim.plot = c(1,2), ndim = max(dim.plot), gene.selection = "pairwise",
xlab = NULL, ylab = NULL, method = "logFC", prior.count = 2, plot = TRUE, ...)
```

Arguments

- **x**: a DGEList object.
- **top**: number of top genes used to calculate pairwise distances.
- **labels**: character vector of sample names or labels. If x has no column names, then defaults the index of the samples.
- **pch**: plotting symbol or symbols. See `points` for possible values. Ignored if labels is non-NULL.
- **cex**: numeric vector of plot symbol expansions. See `text` for possible values.
- **dim.plot**: which two dimensions should be plotted, numeric vector of length two.
- **ndim**: number of dimensions in which data is to be represented
- **gene.selection**: character, "pairwise" to choose the top genes separately for each pairwise comparison between the samples, or "common" to select the same genes for all comparisons. Only used when method="logFC".
- **xlab**: x-axis label
- **ylab**: y-axis label
- **method**: method used to compute distances. Possible values are "logFC" or "bcv".
- **prior.count**: average prior count to be added to observation to shrink the estimated log-fold-changes towards zero. Only used when method="logFC".
- **plot**: logical. If TRUE then a plot is created on the current graphics device.
- **...**: any other arguments are passed to plot.

Details

The default method (method=\"logFC\") is to convert the counts to log-counts-per-million using `cpm` and to pass these to the limma `plotMDS` function. This method calculates distances between samples based on log2 fold changes. See the `plotMDS` help page for details.

The alternative method (method=\"bcv\") calculates distances based on biological coefficient of variation. A set of top genes are chosen that have largest biological variation between the libraries (those with largest genewise dispersion treating all libraries as one group). Then the distance between each
plotQLDisp

Plot the quasi-likelihood dispersion

Description

Plot the genewise quasi-likelihood dispersion against the gene abundance (in log2 counts per million).

pair of libraries (columns) is the biological coefficient of variation (square root of the common dispersion) between those two libraries alone, using the top genes.

The number of genes (top) chosen for this exercise should roughly correspond to the number of differentially expressed genes with materially large fold-changes. The default setting of 500 genes is widely effective and suitable for routine use, but a smaller value might be chosen for when the samples are distinguished by a specific focused molecular pathway. Very large values (greater than 1000) are not usually so effective.

Note that the "bcv" method is slower than the "logFC" method when there are many libraries.

Value

An object of class MDS is invisibly returned and (if plot=TRUE) a plot is created on the current graphics device.

Author(s)

Yunshun Chen, Mark Robinson and Gordon Smyth

See Also

plotMDS, cmdscale, as.dist

Examples

Simulate DGE data for 1000 genes and 6 samples.
Samples are in two groups
First 200 genes are differentially expressed in second group

gen genes <- 1000
nlib <- 6
counts <- matrix(rnbinom(ngen genes*nlib, size=1/10, mu=20),ngen es,nlib)
rownames(counts) <- paste("gene",1:ngen es, sep=".")
group <- gl(2,3,labels=c("Grp1","Grp2"))
counts[1:200,group=="Grp2"] <- counts[1:200,group=="Grp2"] + 10
y <- DGEList(counts,group=group)
y <- calcNormFactors(y)

without labels, indexes of samples are plotted.
col <- as.numeric(group)
mds <- plotMDS(y, top=200, col=col)

or labels can be provided, here group indicators:
plotMDS(mds, col=col, labels=group)
Usage

plotQLDisp(glmfit, xlab="Average Log2 CPM", ylab="Quarter-Root Mean Deviance", pch=16, cex=0.2, col.shrunk="red", col.trend="blue", col.raw="black", ...)

Arguments

- **glmfit**: a DGEGLM object produced by `glmQLFit`.
- **xlab**: label for the x-axis.
- **ylab**: label for the y-axis.
- **pch**: the plotting symbol. See `points` for more details.
- **cex**: plot symbol expansion factor. See `points` for more details.
- **col.shrunk**: color of the points representing the squeezed quasi-likelihood dispersions.
- **col.trend**: color of line showing dispersion trend.
- **col.raw**: color of points showing the unshrunk dispersions.
- ...: any other arguments are passed to `plot`.

Details

This function displays the quarter-root of the quasi-likelihood dispersions for all genes, before and after shrinkage towards a trend. If `glmfit` was constructed without an abundance trend, the function instead plots a horizontal line (of colour `col.trend`) at the common value towards which dispersions are shrunk. The quarter-root transformation is applied to improve visibility for dispersions around unity.

Value

A plot is created on the current graphics device.

Author(s)

Aaron Lun, Davis McCarthy, Gordon Smyth, Yunshun Chen.

References

Examples

```r
nbdisp <- 1/rchisq(1000, df=10)
y <- DGEList(matrix(rnbinom(6000, size = 1/nbdisp, mu = 10),1000,6))
design <- model.matrix(~factor(c(1,1,1,2,2,2)))
y <- estimateDisp(y, design)
fit <- glmQLFit(y, design)
plotQLDisp(fit)
fit <- glmQLFit(y, design, abundance.trend=FALSE)
plotQLDisp(fit)
```
plotSmear

Description

Make a mean-difference plot of two libraries of count data with smearing of points with very low counts, especially those that are zero for one of the columns.

Usage

plotSmear(object, pair=NULL, de.tags=NULL, xlab="Average logCPM", ylab="logFC", pch=19, cex=0.2, smearWidth=0.5, panel.first=grid(), smooth.scatter=FALSE, lowess=FALSE, ...)

Arguments

object DGEList, DGEExact or DGELRT object containing data to produce an MA-plot.
pair pair of experimental conditions to plot (if NULL, the first two conditions are used). Ignored if object is a DGELRT object.
de.tags rownames for genes identified as being differentially expressed; use exactTest or glmLRT to identify DE genes. Note that ‘tag’ and ‘gene’ are synonymous here.
xlab x-label of plot
ylab y-label of plot
pch scalar or vector giving the character(s) to be used in the plot; default value of 19 gives a round point.
cex character expansion factor, numerical value giving the amount by which plotting text and symbols should be magnified relative to the default; default cex=0.2 to make the plotted points smaller
smearWidth width of the smear
panel.first an expression to be evaluated after the plot axes are set up but before any plotting takes place; the default grid() draws a background grid to aid interpretation of the plot
smooth.scatter logical, whether to produce a ‘smooth scatter’ plot using the KernSmooth::smoothScatter function or just a regular scatter plot; default is FALSE, i.e. produce a regular scatter plot
lowess logical, indicating whether or not to add a lowess curve to the MA-plot to give an indication of any trend in the log-fold change with log-concentration
...
... further arguments passed on to plot

Details

plotSmear produces a type of mean-difference plot (or MA plot) with a special representation (smearing) of log-ratios that are infinite. plotSmear resolves the problem of plotting genes that have a total count of zero for one of the groups by adding the ‘smear’ of points at low A value. The points to be smeared are identified as being equal to the minimum estimated concentration in one of the two groups. The smear is created by using random uniform numbers of width smearWidth to the left of the minimum A. plotSmear also allows easy highlighting of differentially expressed (DE) genes.
plotSpliceDGE

Value

Invisibly returns the x and y coordinates of the plotted points, and a plot is created on the current device.

Author(s)

Mark Robinson, Davis McCarthy

See Also

maPlot, plotMD.DGEList

Examples

```r
y <- matrix(rnbinom(10000,mu=5,size=2),ncol=4)
d <- DGEList(counts=y, group=rep(1:2,each=2), lib.size=colSums(y))
rownames(d$counts) <- paste("gene",1:nrow(d$counts),sep=".")
d <- estimateCommonDisp(d)
plotSmear(d)

# find differential expression
de <- exactTest(d)

# highlighting the top 500 most DE genes
de.genes <- rownames(topTags(de, n=500)$table)
plotSmear(d, de.tags=de.genes)
```

Description

Plot relative log-fold changes by exons for the specified gene and highlight the significantly spliced exons.

Usage

```r
plotSpliceDGE(lrt, geneid=NULL, genecolname=NULL, rank=1L, FDR=0.05)
```

Arguments

- `lrt` : D格尔RT object produced by `diffSpliceDGE`.
- `geneid` : character string, ID of the gene to plot.
- `genecolname` : column name of `lrt$genes` containing gene IDs. Defaults to `lrt$genecolname`.
- `rank` : integer, if `geneid=NULL` then this ranked gene will be plotted.
- `FDR` : numeric, mark exons with false discovery rate less than this cutoff.

Details

Plot relative log2-fold-changes by exon for the specified gene. The relative logFC is the difference between the exon’s logFC and the overall logFC for the gene, as computed by `diffSpliceDGE`. The significantly spliced individual exons are highlighted as red dots. The size of the red dots are weighted by its significance.
predFC

Value

A plot is created on the current graphics device.

Author(s)

Yunshun Chen, Yifang Hu and Gordon Smyth

See Also

diffSpliceDGE, topSpliceDGE.

predFC

Predictive log-fold changes

Description

Computes estimated coefficients for a NB glm in such a way that the log-fold-changes are shrunk towards zero.

Usage

```r
## S3 method for class 'DGEList'
predFC(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=NULL, weights=NULL, ...)
## Default S3 method:
predFC(y, design=NULL, prior.count=0.125, offset=NULL, dispersion=0, weights=NULL, ...)
```

Arguments

- `y` : a matrix of counts or a DGEList object
- `design` : the design matrix for the experiment
- `prior.count` : the average prior count to be added to each observation. Larger values produce more shrinkage.
- `offset` : numeric vector or matrix giving the offset in the log-linear model predictor, as for glmFit. Usually equal to log library sizes.
- `dispersion` : numeric vector of negative binomial dispersions.
- `weights` : optional numeric matrix giving observation weights
- `...` : other arguments are passed to glmFit.

Details

This function computes predictive log-fold changes (pfc) for a NB GLM. The pfc are posterior Bayesian estimators of the true log-fold-changes. They are predictive of values that might be replicated in a future experiment.

Specifically, the function adds a small prior count to each observation before fitting the GLM (see `addPriorCount` for details). The actual prior count that is added is proportion to the library size. This has the effect that any log-fold-change that was zero prior to augmentation remains zero and non-zero log-fold-changes are shrunk towards zero.

The prior counts can be viewed as equivalent to a prior belief that the log-fold changes are small, and the output can be viewed as posterior log-fold-changes from this Bayesian viewpoint. The
processAmplicons

output coefficients are called *predictive* log fold-changes because, depending on the prior, they may be a better prediction of the true log fold-changes than the raw estimates.

Log-fold changes for genes with low counts are shrunk more than those for genes with high counts. In particular, infinite log-fold-changes arising from zero counts are avoided. The exact degree to which this is done depends on the negative binomial dispersion.

If `design=NULL`, then the function returns a matrix of the same size as `y` containing log2 counts-per-million, with zero values for the counts avoided. This equivalent to choosing `design` to be the identity matrix with the same number of columns as `y`.

Value

Numeric matrix of linear model coefficients (if `design` is given) or logCPM (if `design=NULL`) on the log2 scale.

Author(s)

Belinda Phipson and Gordon Smyth

References

See Also

`glmFit`, `exactTest`, `addPriorCount`

Examples

```r
# generate counts for a two group experiment with n=2 in each group and 100 genes
dispersion <- 0.1
y <- matrix(rnbinom(400, size=1/dispersion, mu=4), nrow=100)
y <- DGEList(y, group=c(1,1,2,2))
design <- model.matrix(~group, data=y$samples)

#estimate the predictive log fold changes
predlfc <- predFC(y, design, dispersion=dispersion, prior.count=1)
logfc <- predFC(y, design, dispersion=dispersion, prior.count=0)
logfc.truncated <- pmax(pmin(logfc, 100), -100)

#plot predFC's vs logFC's
plot(predlfc[,2], logfc.truncated[,2], xlab="Predictive log fold changes", ylab="Raw log fold changes")
abline(a=0, b=1)
```

processAmplicons Process raw data from pooled genetic sequencing screens
Description

Given a list of sample-specific index (barcode) sequences and hairpin/sgRNA-specific sequences from an amplicon sequencing screen, generate a DGEList of counts from the raw fastq file(s) containing the sequence reads. Assumes fixed structure of amplicon sequences (i.e. both the sample-specific index sequences and hairpin/sgRNA sequences can be found at particular locations within each read).

Usage

```r
processAmplicons(readfile, readfile2=NULL, barcodefile, hairpinfile,
                  barcodeStart=1, barcodeEnd=5,
                  barcode2Start=NULL, barcode2End=NULL,
                  barcodeStartRev=NULL, barcodeEndRev=NULL,
                  hairpinStart=37, hairpinEnd=57,
                  allowShifting=FALSE, shiftingBase=3,
                  allowMismatch=FALSE, barcodeMismatchBase=1,
                  hairpinMismatchBase=2, allowShiftedMismatch=FALSE,
                  verbose=FALSE)
```

Arguments

- `readfile`: character vector giving one or more fastq filenames
- `readfile2`: character vector giving one or more fastq filenames for reverse read, default to NULL
- `barcodefile`: filename containing sample-specific barcode ids and sequences
- `hairpinfile`: filename containing hairpin/sgRNA-specific ids and sequences
- `barcodeStart`: numeric value, starting position (inclusive) of barcode sequence in reads
- `barcodeEnd`: numeric value, ending position (inclusive) of barcode sequence in reads
- `barcode2Start`: numeric value, starting position (inclusive) of second barcode sequence in forward reads
- `barcode2End`: numeric value, ending position (inclusive) of second barcode sequence in forward reads
- `barcodeStartRev`: numeric value, starting position (inclusive) of barcode sequence in reverse reads, default to NULL
- `barcodeEndRev`: numeric value, ending position (inclusive) of barcode sequence in reverse reads, default to NULL
- `hairpinStart`: numeric value, starting position (inclusive) of hairpin/sgRNA sequence in reads
- `hairpinEnd`: numeric value, ending position (inclusive) of hairpin/sgRNA sequence in reads
- `allowShifting`: logical, indicates whether a given hairpin/sgRNA can be matched to a neighbouring position
- `shiftingBase`: numeric value of maximum number of shifted bases from input hairpinStart and hairpinEnd should the program check for a hairpin/sgRNA match when allowShifting is TRUE
- `allowMismatch`: logical, indicates whether sequence mismatch is allowed
- `barcodeMismatchBase`: numeric value of maximum number of base sequence mismatches allowed in a barcode sequence when allowShifting is TRUE
- `hairpinMismatchBase`: numeric value of maximum number of base sequence mismatches allowed in a hairpin/sgRNA sequence when allowShifting is TRUE
- `allowShiftedMismatch`: logical, indicates whether sequence mismatch is allowed when shifting is applied
The processAmplicons function assumes the sequences in your fastq files have a fixed structure (as per Figure 1A of Dai et al, 2014).

The input barcode file and hairpin/sgRNA files are tab-separated text files with at least two columns (named 'ID' and 'Sequences') containing the sample or hairpin/sgRNA ids and a second column indicating the sample index or hairpin/sgRNA sequences to be matched. If barcode2Start and barcode2End are specified, a third column 'Sequences2' is expected in the barcode file. If readfile2, barcodeStartRev and barcodeEndRev are specified, another column 'SequencesReverse' is expected in the barcode file. The barcode file may also contain a 'group' column that indicates which experimental group a sample belongs to. Additional columns in each file will be included in the respective $samples or $genes data.frames of the final codeDGEList object. These files, along with the fastq file/(s) are assumed to be in the current working directory.

To compute the count matrix, matching to the given barcodes and hairpins/sgRNAs is conducted in two rounds. The first round looks for an exact sequence match for the given barcode sequences and hairpin/sgRNA sequences at the locations specified. If allowShifting is set to TRUE, the program also checks if a given hairpin/sgRNA sequence can be found at a neighbouring position in the read. If a match isn’t found, the program performs a second round of matching which allows for sequence mismatches if allowMismatch is set to TRUE. The program also checks parameter allowShiftedMismatch which accommodates mismatches at the shifted positions. The maximum number of mismatch bases in barcode and hairpin/sgRNA are specified by the parameters barcodeMismatchBase and hairpinMismatchBase.

The program outputs a DGEList object, with a count matrix indicating the number of times each barcode and hairpin/sgRNA combination could be matched in reads from input fastq file(s).

For further examples and data, refer to the case studies available from http://bioinf.wehi.edu.au/shRNAseq.

Value

Returns a DGEList object with following components:

- **counts**: read count matrix tallying up the number of reads with particular barcode and hairpin/sgRNA matches. Each row is a hairpin and each column is a sample
- **genes**: In this case, hairpin/sgRNA-specific information (ID, sequences, corresponding target gene) may be recorded in this data.frame
- **lib.size**: auto-calculated column sum of the counts matrix

Note

This function replaced the earlier function processHairpinReads in edgeR 3.7.17.

This function cannot be used if the hairpins/sgRNAs/sample index sequences are in random locations within each read. If that is the case, then analysts will need to customise their own sequence processing pipeline, although edgeR can still be used for downstream analysis.
Author(s)

Zhiyin Dai and Matthew Ritchie

References

q2qnbinom

Quantile to Quantile Mapping between Negative-Binomial Distributions

Description

Interpolated quantile to quantile mapping between negative-binomial distributions with the same dispersion but different means. The Poisson distribution is a special case.

Usage

```r
q2qpois(x, input.mean, output.mean)
q2qnbinom(x, input.mean, output.mean, dispersion=0)
```

Arguments

- `x`: numeric matrix of counts.
- `input.mean`: numeric matrix of population means for `x`. If a vector, then of the same length as `nrow(x)`.
- `output.mean`: numeric matrix of population means for the output values. If a vector, then of the same length as `nrow(x)`.
- `dispersion`: numeric scalar, vector or matrix giving negative binomial dispersion values.

Details

This function finds the quantile with the same left and right tail probabilities relative to the output mean as `x` has relative to the input mean. `q2qpois` is equivalent to `q2qnbinom` with `dispersion=0`.
In principle, `q2qnbinom` gives similar results to calling `pnbinom` followed by `qnbinom` as in the example below. However this function avoids infinite values arising from rounding errors and does appropriate interpolation to return continuous values.
`q2qnbinom` is called by `equalizeLibSizes` to perform quantile-to-quantile normalization.

Value

numeric matrix of same dimensions as `x`, with `output.mean` as the new nominal population mean.

Author(s)

Gordon Smyth
readDGE

See Also

equalizeLibSizes

Examples

```r
x <- 15
input.mean <- 10
output.mean <- 20
dispersion <- 0.1
q2qnbinom(x,input.mean,output.mean,dispersion)

# Similar in principle:
qnbinom(pnbinom(x,mu=input.mean,size=1/dispersion),mu=output.mean,size=1/dispersion)
```

Description

Reads and merges a set of files containing gene expression counts.

Usage

```r
readDGE(files, path=NULL, columns=c(1,2), group=NULL, labels=NULL, ...)
```

Arguments

- `files` character vector of filenames, or a data.frame of sample information containing a column called `files`.
- `path` character string giving the directory containing the files. Defaults to the current working directory.
- `columns` numeric vector stating which columns of the input files contain the gene names and counts respectively.
- `group` optional vector or factor indicating the experimental group to which each file belongs.
- `labels` character vector giving short names to associate with the files. Defaults to the file names.
- `...` other arguments are passed to `read.delim`.

Details

Each file is assumed to contain digital gene expression data for one genomic sample or count library, with gene identifiers in the first column and counts in the second column. Gene identifiers are assumed to be unique and not repeated in any one file. The function creates a combined table of counts with rows for genes and columns for samples. A count of zero will be entered for any gene that was not found in any particular sample.

By default, the files are assumed to be tab-delimited and to contain column headings. Other file formats can be handled by adding arguments to be passed to `read.delim`. For example, use `header=FALSE` if there are no column headings and use `sep="\"` to read a comma-separated file. Instead of being a vector, the argument files can be a data.frame containing all the necessary sample information. In that case, the filenames and group identifiers can be given as columns `files` and `group` respectively, and the labels can be given as the row.names of the data.frame.
Value

A `DGEList` object containing a matrix of counts, with a row for each unique tag found in the input files and a column for each input file.

Author(s)

Mark Robinson and Gordon Smyth

See Also

See `read.delim` for other possible arguments that can be accepted. `DGEList-class`, `DGEList`.

Examples

```r
# Read all .txt files from current working directory
## Not run: files <- dir(pattern="*\.txt$")
RG <- readDGE(files)
## End(Not run)
```

Description

Rotation gene set testing for Negative Binomial generalized linear models.

Usage

```r
## S3 method for class 'DGEList'
roast(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
       set.statistic = "mean", gene.weights = NULL, ...)

## S3 method for class 'DGEList'
mroast(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
       set.statistic = "mean", gene.weights = NULL,
       adjust.method = "BH", midp = TRUE, sort = "directional", ...)

## S3 method for class 'DGEList'
fry(y, index = NULL, design = NULL, contrast = ncol(design), geneid = NULL,
     sort = "directional", ...)
```

Arguments

- `y` DGEList object.
- `index` index vector specifying which rows (probes) of `y` are in the test set. Can be a vector of integer indices, or a logical vector of length `nrow(y)`, or a vector of gene IDs corresponding to entries in `geneid`. Alternatively it can be a data.frame with the first column containing the index vector and the second column containing directional gene weights. For `mroast` or `fry`, `index` is a list of index vectors or a list of data.frames.
design design matrix
contrast contrast for which the test is required. Can be an integer specifying a column
 of design, or the name of a column of design, or a numeric contrast vector of
 length equal to the number of columns of design.
geneid gene identifiers corresponding to the rows of y. Can be either a vector of length
 nrow(y) or the name of the column of y$genes containing the gene identifiers.
 Defaults to rownames(y).
set.statistic summary set statistic. Possibilities are "mean","floormean","mean50" or "msq".
gene.weights numeric vector of directional (positive or negative) genewise weights. For mroast
 or fry, this vector must have length equal to nrow(y). For roast, can be of
 length nrow(y) or of length equal to the number of genes in the test set.
adjust.method method used to adjust the p-values for multiple testing. See p.adjust for pos-
 sible values.
midp logical, should mid-p-values be used in instead of ordinary p-values when ad-
 justing for multiple testing?
sort character, whether to sort output table by directional p-value ("directional"),
 non-directional p-value ("mixed"), or not at all ("none").
... other arguments are currently ignored.

Details

The roast gene set test was proposed by Wu et al (2010) for microarray data. This function makes the
roast test available for digital gene expression data. The negative binomial count data is converted
to approximate normal deviates by computing mid-p quantile residuals (Dunn and Smyth, 1996;
Routledge, 1994) under the null hypothesis that the contrast is zero. See roast for more description
of the test and for a complete list of possible arguments.

The design matrix defaults to the model.matrix(~y$samples$group).
mroast performs roast tests for a multiple of gene sets.

Value

roast produces an object of class Roast. See roast for details.
mroast and fry produce a data.frame. See mroast for details.

Author(s)

Yunshun Chen and Gordon Smyth

References

103-110.

ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176-
See Also

roast, camera.DGEList

Examples

```r
mu <- matrix(10, 100, 4)
group <- factor(c(0,0,1,1))
design <- model.matrix(~group)

# First set of 10 genes that are genuinely differentially expressed
iset1 <- 1:10
mu[iset1,3:4] <- mu[iset1,3:4]+10

# Second set of 10 genes are not DE
iset2 <- 11:20

# Generate counts and create a DGEList object
y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4)
y <- DGEList(counts=y, group=group)

# Estimate dispersions
y <- estimateDisp(y, design)
roast(y, iset1, design, contrast=2)
mroast(y, iset1, design, contrast=2)
mroast(y, list(set1=iset1, set2=iset2), design, contrast=2)
```

romer.DGEList

Rotation Gene Set Tests for Digital Gene Expression Data

Description

Rotation gene set testing for Negative Binomial generalized linear models.

Usage

```r
## S3 method for class 'DGEList'
romer(y, index, design=NULL, contrast=ncol(design), ...)
```

Arguments

- `y` DGEList object.
- `index` list of indices specifying the rows of `y` in the gene sets. The list can be made using `ids2indices`.
- `design` design matrix
- `contrast` contrast for which the test is required. Can be an integer specifying a column of design, or the name of a column of design, or else a contrast vector of length equal to the number of columns of design.
- `...` other arguments passed to `romer.default`.
Details

The ROMER procedure described by Majewski et al (2010) is implemented in `romer` in the `limma` package. This function makes the romer test available for digital gene expression data such as RNA-Seq data. The negative binomial count data is converted to approximate normal deviates by computing mid-p quantile residuals (Dunn and Smyth, 1996; Routledge, 1994) under the null hypothesis that the contrast is zero. See `romer` for more description of the test and for a complete list of possible arguments.

The design matrix defaults to the `model.matrix(~y$samples$group)`.

Value

Numeric matrix giving p-values and the number of matched genes in each gene set. Rows correspond to gene sets. There are four columns giving the number of genes in the set and p-values for the alternative hypotheses up, down or mixed. See `romer` for details.

Author(s)

Yunshun Chen and Gordon Smyth

References

See Also

`romer`

Examples

```r
mu <- matrix(10, 100, 4)
group <- factor(c(0,0,1,1))
design <- model.matrix(~group)

# First set of 10 genes that are genuinely differentially expressed
iset1 <- 1:10
mu[iset1,3:4] <- mu[iset1,3:4]+20

# Second set of 10 genes are not DE
iset2 <- 11:20

# Generate counts and create a DGEList object
y <- matrix(rnbinom(100*4, mu=mu, size=10),100,4)
y <- DGEList(counts=y, group=group)

# Estimate dispersions
y <- estimateDisp(y, design)
```
scaleOffset

Scale offsets

Description

Ensures scale of offsets are consistent with library sizes.

Usage

S3 method for class 'DEGList'
scaleOffset(y, offset, ...)

Default S3 method:
scaleOffset(y, offset, ...)

Arguments

y numeric vector or matrix of counts, or a DEGList object.
offset numeric vector or matrix of offsets to be scaled.
... other arguments that are not currently used.

Details

scaleOffset ensures that the scale of offsets are consistent with library sizes. This is done by ensuring that the mean offset for each gene is the same as the mean log-library size. The length or dimensions of offset should be consistent with the number of libraries in y.

Value

numeric vector or matrix of scaled offsets.

Author(s)

Aaron Lun, Yunshun Chen

Examples

```r
y <- matrix(rnbinom(40, size=1, mu=100), 10, 4)
offset <- rnorm(4)
scaleOffset(y, offset)
```
spliceVariants

Identify Genes with Splice Variants

Description

Identify genes exhibiting evidence for splice variants (alternative exon usage/transcript isoforms) from exon-level count data using negative binomial generalized linear models.

Usage

spliceVariants(y, geneID, dispersion=NULL, group=NULL, estimate.genewise.disp=TRUE, trace=FALSE)

Arguments

- **y**: either a matrix of exon-level counts or a DGEList object with (at least) elements counts (table of counts summarized at the exon level) and samples (data frame containing information about experimental group, library size and normalization factor for the library size). Each row of y should represent one exon.
- **geneID**: vector of length equal to the number of rows of y, which provides the gene identifier for each exon in y. These identifiers are used to group the relevant exons into genes for the gene-level analysis of splice variation.
- **dispersion**: scalar (in future a vector will also be allowed) supplying the negative binomial dispersion parameter to be used in the negative binomial generalized linear model.
- **group**: factor supplying the experimental group/condition to which each sample (column of y) belongs. If NULL (default) the function will try to extract if from y, which only works if y is a DGEList object.
- **estimate.genewise.disp**: logical, should genewise dispersions (as opposed to a common dispersion value) be computed if the dispersion argument is NULL?
- **trace**: logical, whether or not verbose comments should be printed as function is run. Default is FALSE.

Details

This function can be used to identify genes showing evidence of splice variation (i.e. alternative splicing, alternative exon usage, transcript isoforms). A negative binomial generalized linear model is used to assess evidence, for each gene, given the counts for the exons for each gene, by fitting a model with an interaction between exon and experimental group and comparing this model (using a likelihood ratio test) to a null model which does not contain the interaction. Genes that show significant evidence for an interaction between exon and experimental group by definition show evidence for splice variation, as this indicates that the observed differences between the exon counts between the different experimental groups cannot be explained by consistent differential expression of the gene across all exons. The function topTags can be used to display the results of spliceVariants with genes ranked by evidence for splice variation.
Value

spliceVariants returns a DGEExact object, which contains a table of results for the test of differential splicing between experimental groups (alternative exon usage), a data frame containing the gene identifiers for which results were obtained and the dispersion estimate(s) used in the statistical models and testing.

Author(s)

Davis McCarthy, Gordon Smyth

See Also

estimateExonGenewiseDisp for more information about estimating genewise dispersion values from exon-level counts. DGEList for more information about the DGEList class. topTags for more information on displaying ranked results from spliceVariants. estimateCommonDisp and related functions for estimating the dispersion parameter for the negative binomial model.

Examples

generate exon counts from NB, create list object
y<-matrix(rnbinom(40,size=1, mu=10), nrow=10)
d<-DGEList(counts=y, group=rep(1:2, each=2))
genes <- rep(c("gene.1","gene.2"), each=5)
disp <- 0.2
spliceVariants(d, genes, disp)

splitIntoGroups Split the Counts or Pseudocounts from a DGEList Object According To Group

Description

Split the counts from a DGEList object according to group, creating a list where each element consists of a numeric matrix of counts for a particular experimental group. Given a pair of groups, split pseudocounts for these groups, creating a list where each element is a matrix of pseudocounts for a particular group.

Usage

S3 method for class 'DGEList'
splitIntoGroups(y, ...)
Default S3 method:
splitIntoGroups(y, group=NULL, ...)
splitIntoGroupsPseudo(pseudo, group, pair)

Arguments

y matrix of counts or a DGEList object.
group vector or factor giving the experimental group/condition for each library.
pseudo numeric matrix of quantile-adjusted pseudocounts to be split
pair vector of length two stating pair of groups to be split for the pseudocounts
... other arguments that are not currently used.
Value

splitIntoGroups outputs a list in which each element is a matrix of count counts for an individual group. splitIntoGroupsPseudo outputs a list with two elements, in which each element is a numeric matrix of (pseudo-)count data for one of the groups specified.

Author(s)

Davis McCarthy

Examples

generate raw counts from NB, create list object
y <- matrix(rnbinom(80, size=1, mu=10), nrow=20)
d <- DGEList(counts=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
rownames(d$counts) <- paste("gene", 1:nrow(d$counts), sep=".")
z1 <- splitIntoGroups(d)
z2 <- splitIntoGroupsPseudo(d$counts, d$group, pair=c(1,2))

subsetting

Subset DGEList, DGEGLM, DGEEexact and DGELRT Objects

Description

Extract a subset of a DGEList, DGEGLM, DGEEexact or DGELRT object.

Usage

S3 method for class 'DGEList'
object[i, j, keep.lib.sizes=TRUE]
S3 method for class 'DGEGLM'
object[i, j]
S3 method for class 'DGEEexact'
object[i, j]
S3 method for class 'DGELRT'
object[i, j]
S3 method for class 'TopTags'
object[i, j]

Arguments

object object of class DGEList, DGEGLM, DGEEexact or DGELRT. For subsetListOfArrays, any list of conformal matrices and vectors.
i, j elements to extract. i subsets the genes while j subsets the libraries. Note that columns of DGEGLM, DGEEexact and DGELRT objects cannot be subsetted.
keep.lib.sizes logical, if TRUE the lib.sizes will be kept unchanged on output, otherwise they will be recomputed as the column sums of the counts of the remaining rows.

Details

i, j may take any values acceptable for the matrix components of object of class DGEList. See the Extract help entry for more details on subsetting matrices. For DGEGLM, DGEEexact and DGELRT objects, only rows (i.e. i) may be subsetted.
sumTechReps

Value
An object of the same class as object holding data from the specified subset of rows and columns.

Author(s)
Davis McCarthy, Gordon Smyth

See Also
Extract in the base package.

Examples
d <- matrix(rnbinom(16, size=1, mu=10), 4, 4)
rownames(d) <- c("a", "b", "c", "d")
colnames(d) <- c("A1", "A2", "B1", "B2")
d <- DGEList(counts=d, group=factor(c("A", "A", "B", "B")))
d[1:2,]
d[1:2,2]
d[,2]
d <- estimateCommonDisp(d)
results <- exactTest(d)
results[1:2,]
NB: cannot subset columns for DGEExact objects

sumTechReps

Description
Condense the columns of a matrix or DGEList object so that counts are summed over technical replicate samples.

Usage
Default S3 method:
sumTechReps(x, ID=colnames(x), ...)
S3 method for class 'DGEList'
sumTechReps(x, ID=colnames(x), ...)

Arguments

x a numeric matrix or DGEList object.
ID sample identifier.
... other arguments are not currently used.

Details
A new matrix or DGEList object is computed in which the counts for technical replicate samples are replaced by their sums.
Value

A data object of the same class as x with a column for each unique value of ID. Columns are in the same order as the ID values first occur in the ID vector.

Author(s)

Gordon Smyth and Yifang Hu

See Also

rowsum.

Examples

x <- matrix(rpois(8*3, lambda=5), 8, 3)
colnames(x) <- c("a", "a", "b")
sumTechReps(x)

systematicSubset(n, order.by)

Arguments

n integer giving the size of the subset.
order.by numeric vector of the values by which the indices are ordered.

Value

systematicSubset returns a vector of size n.

Author(s)

Gordon Smyth

See Also

order

Examples

y <- rnorm(100, 1, 1)
systematicSubset(20, y)
thinCounts

Binomial or Multinomial Thinning of Counts

Description

Reduce the size of Poisson-like counts by binomial thinning.

Usage

```r
thinCounts(x, prob=NULL, target.size=min(colSums(x)))
```

Arguments

- `x` numeric vector or array of non-negative integers.
- `prob` numeric scalar or vector of same length as `x`, the expected proportion of the events to keep.
- `target.size` integer scale or vector of the same length as `NCOL(x)`, the desired total column counts. Must be not greater than column sum of `x`. Ignored if `prob` is not `NULL`.

Details

If `prob` is not `NULL`, then this function calls `rbinom` with `size=x` and `prob=prob` to generate the new counts. This is classic binomial thinning. The new column sums are random, with expected values determined by `prob`.

If `prob` is `NULL`, then this function does multinomial thinning of the counts to achieve specified column totals. The default behavior is to thin the columns to have the same column sum, equal to the smallest column sum of `x`.

If the elements of `x` are Poisson, then binomial thinning produces new Poisson random variables with expected values reduced by factor `prob`. If the elements of each column of `x` are multinomial, then multinomial thinning produces a new multinomial observation with a reduced sum.

Value

A vector or array of the same dimensions as `x`, with thinned counts.

Author(s)

Gordon Smyth

Examples

```r
x <- rpois(10, lambda=10)
thinCounts(x, prob=0.5)
```
Description

Top table ranking the most differentially spliced genes or exons.

Usage

topSpliceDGE(lrt, test="Simes", number=10, FDR=1)

Arguments

lrt
DGELRT object produced by `diffSpliceDGE`.

test
character string, possible values are "Simes", "gene" or "exon". "exon" gives exon-level tests for each exon. "gene" gives gene-level tests for each gene. "Simes" gives gene-wise p-values derived from the exon-level tests after Simes adjustment for each gene.

number
integer, maximum number of rows to output.

FDR
numeric, only show exons or genes with false discovery rate less than this cutoff.

Details

Ranks genes or exons by evidence for differential splicing. The exon-level tests test for differences between each exon and all the exons for the same gene. The gene-level tests test for any differences in exon usage between experimental conditions.

The Simes method processes the exon-level p-values to give an overall call of differential splicing for each gene. It returns the minimum Simes-adjusted p-values for each gene.

The gene-level tests are likely to be powerful for genes in which several exons are differentially spliced. The Simes p-values is likely to be more powerful when only a minority of the exons for a gene are differentially spliced. The exon-level tests are not recommended for formal error rate control.

Value

A data.frame with any annotation columns found in lrt plus the following columns

- **NEExons**: number of exons if test="Simes" or "gene"
- **Gene.Exon**: exon annotation if test="exon"
- **logFC**: log-fold change of one exon vs all the exons for the same gene (if test="exon")
- **exon.LR**: LR-statistics for exons (if test="exon" and the object for `diffSpliceDGE` was produced by glmFit)
- **exon.F**: F-statistics for exons (if test="exon" and the object for `diffSpliceDGE` was produced by glmQLFit)
- **gene.LR**: LR-statistics for genes (if test="gene" and the object for `diffSpliceDGE` was produced by glmFit)
- **gene.F**: F-statistics for genes (if test="gene" and the object for `diffSpliceDGE` was produced by glmQLFit)
- **P.Value**: p-value
- **FDR**: false discovery rate
Author(s)
Yunshun Chen and Gordon Smyth

See Also
diffSpliceDGE.

topTags

Table of the Top Differentially Expressed Tags

Description
Extracts the top DE tags in a data frame for a given pair of groups, ranked by p-value or absolute log-fold change.

Usage
topTags(object, n=10, adjust.method="BH", sort.by="PValue", p.value=1)

Arguments

object a DGEExact object (output from exactTest) or a DGELRT object (output from glmLRT), containing the (at least) the elements table: a data frame containing the log-concentration (i.e. expression level), the log-fold change in expression between the two groups/conditions and the p-value for differential expression, for each tag. If it is a DGEExact object, then topTags will also use the comparison element, which is a vector giving the two experimental groups/conditions being compared. The object may contain other elements that are not used by topTags.

n scalar, number of tags to display/return

adjust.method character string stating the method used to adjust p-values for multiple testing, passed on to p.adjust

sort.by character string, should the top tags be sorted by p-value ("PValue"), by absolute log-fold change ("logFC"), or not sorted ("none").

p.value cutoff value for adjusted p-values. Only tags with lower p-values are listed.

Value
an object of class TopTags containing the following elements for the top n most differentially expressed tags as determined by sort.by:

table a data frame containing the elements logFC, the log-abundance ratio, i.e. fold change, for each tag in the two groups being compared, logCPM, the log-average concentration/abundance for each tag in the two groups being compared, PValue, exact p-value for differential expression using the NB model, FDR, the p-value adjusted for multiple testing as found using p.adjust using the method specified.

adjust.method character string stating the method used to adjust p-values for multiple testing.

comparison a vector giving the names of the two groups being compared.
test character string stating the name of the test.

The dimensions, row names and column names of a TopTags object are defined by those of table, see `dim.TopTags` or `dimnames.TopTags`.

TopTags objects also have a `show` method so that printing produces a compact summary of their contents.

Note that the terms ‘tag’ and ‘gene’ are synonymous here. The function is only named as ‘Tags’ for historical reasons.

Author(s)
Mark Robinson, Davis McCarthy, Gordon Smyth

References

See Also

`exactTest, glmLRT, p.adjust`

Analogous to `topTable` in the limma package.

Examples

```r
# generate raw counts from NB, create list object
y <- matrix(rnbinom(80, size=1, mu=10), nrow=20)
d <- DGEList(counts=y, group=rep(1:2, each=2), lib.size=rep(c(1000:1001), 2))
rownames(d$counts) <- paste("gene", 1:nrow(d$counts), sep=".")

# estimate common dispersion and find differences in expression
# here we demonstrate the 'exact' methods, but the use of topTags is
# the same for a GLM analysis

d <- estimateCommonDisp(d)
de <- exactTest(d)

# look at top 10

topTags(de)

# Can specify how many genes to view

tp <- topTags(de, n=15)

# Here we view top 15

tp

# Or order by fold change instead

topTags(de, sort.by="logFC")
```
validDGEList
Check for Valid DGEList object

Description
Check for existence of standard components of DGEList object.

Usage
validDGEList(y)

Arguments
y DGEList object.

Details
This function checks that the standard counts and samples components of a DGEList object are present.

Value
DGEList with missing components added.

Author(s)
Gordon Smyth

See Also
DGEList

Examples
counts <- matrix(rpois(4*2,lambda=5),4,2)
dge <- new("DGEList", list(counts=counts))
validDGEList(dge)

weightedCondLogLikDerDelta
Weighted Conditional Log-Likelihood in Terms of Delta

Description
Weighted conditional log-likelihood parameterized in terms of delta (\(\phi / (\phi + 1)\)) for a given gene, maximized to find the smoothed (moderated) estimate of the dispersion parameter

Usage
weightedCondLogLikDerDelta(y, delta, tag, prior.n=10, ntags=nrow(y[[1]]), der=0)
Arguments

- **y**: list with elements comprising the matrices of count data (or pseudocounts) for the different groups
- **delta**: \(\delta (\phi / (\phi + 1)) \) parameter of negative binomial
- **tag**: gene at which the weighted conditional log-likelihood is evaluated
- **prior.n**: smoothing parameter that indicates the weight to put on the common likelihood compared to the individual gene’s likelihood; default 10 means that the common likelihood is given 10 times the weight of the individual gene’s likelihood in the estimation of the genewise dispersion
- **ntags**: numeric scalar number of genes in the dataset to be analysed
- **der**: derivative, either 0 (the function), 1 (first derivative) or 2 (second derivative)

Details

This function computes the weighted conditional log-likelihood for a given gene, parameterized in terms of \(\delta \). The value of \(\delta \) that maximizes the weighted conditional log-likelihood is converted back to the \(\phi \) scale, and this value is the estimate of the smoothed (moderated) dispersion parameter for that particular gene. The \(\delta \) scale for convenience (\(\delta \) is bounded between 0 and 1). Users should note that ‘tag’ and ‘gene’ are synonymous when interpreting the names of the arguments for this function.

Value

numeric scalar of function/derivative evaluated for the given gene and \(\delta \)

Author(s)

Mark Robinson, Davis McCarthy

Examples

```r
counts<-matrix(rnbinom(20,size=1,mu=10),nrow=5)
d<-DGEList(counts=counts,group=rep(1:2,each=2),lib.size=rep(c(1000:1001),2))
y<-splitIntoGroups(d)
ll1<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=0)
ll2<-weightedCondLogLikDerDelta(y,delta=0.5,tag=1,prior.n=10,der=1)
```

Description

Estimates the parameters which maximize the given log-likelihood matrix using empirical Bayes method.

Usage

```r
WLEB(theta, loglik, prior.n=5, covariate=NULL, trend.method="locfit", mixed.df=FALSE, span=NULL, overall=TRUE, trend=TRUE, individual=TRUE, m0=NULL, m0.out=FALSE)
```
Arguments

theta numeric vector of values of the parameter at which the log-likelihoods are calculated.

loglik numeric matrix of log-likelihood of all the candidates at those values of parameter.

prior.n numeric scaler, estimate of the prior weight, i.e. the smoothing parameter that indicates the weight to put on the common likelihood compared to the individual's likelihood.

covariate numeric vector of values across which a parameter trend is fitted

trend.method method for estimating the parameter trend. Possible values are "none", "movingave" and "loess".

mixed.df logical, only used when trend.method="locfit". If FALSE, locfit uses a polynomial of degree 0. If TRUE, locfit uses a polynomial of degree 1 for rows with small covariate values. Care is taken to smooth the curve.

span width of the smoothing window, as a proportion of the data set.

overall logical, should a single value of the parameter which maximizes the sum of all the log-likelihoods be estimated?

trend logical, should a parameter trend (against the covariate) which maximizes the local shared log-likelihoods be estimated?

individual logical, should individual estimates of all the candidates after applying empirical Bayes method along the trend be estimated?

m0 numeric matrix of local shared log-likelihoods. If Null, it will be calculated using the method selected by trend.method.

m0.out logical, should local shared log-likelihoods be included in the output?

Details

This function is a generic function that calculates an overall estimate, trend estimates and individual estimates for each candidate given the values of the log-likelihood of all the candidates at some specified parameter values.

Value

A list with the following:

overall the parameter estimate that maximizes the sum of all the log-likelihoods.

trend the estimated trended parameters against the covariate.

individual the individual estimates of all the candidates after applying empirical Bayes method along the trend.

shared.loglik the estimated numeric matrix of local shared log-likelihoods

Author(s)

Yunshun Chen, Gordon Smyth

See Also

locfitByCol, movingAverageByCol and loessByCol implement the local fit, moving average or loess smoothers.
zscoreNBinom

Examples

y <- matrix(rpois(100, lambda=10), ncol=4)
theta <- 7:14
loglik <- matrix(0, nrow=nrow(y), ncol=length(theta))
for(i in 1:nrow(y))
 for(j in 1:length(theta))
 loglik[i,j] <- sum(dpois(y[i,], theta[j], log=TRUE))
covariate <- log(rowSums(y))
out <- WLEB(theta, loglik, prior.n=3, covariate)
out

zscoreNBinom

Z-score Equivalents of Negative Binomial Deviate

Description

Compute z-score equivalents of negative binomial random deviates.

Usage

zscoreNBinom(q, size, mu)

Arguments

q numeric vector or matrix giving negative binomial random values.
size negative binomial size parameter (>0).
mu mean of negative binomial distribution (>0).

Details

This function computes the mid-p value of q, then converts to the standard normal deviate with the same cumulative probability distribution value.

Care is taken to do the computations accurately in both tails of the distributions.

Value

Numeric vector or matrix giving equivalent deviates from a standard normal distribution.

Author(s)

Gordon Smyth

See Also

pnbinom, qnorm in the stats package.

Examples

zscoreNBinom(c(0,10,100), mu=10, size=10)
Index

*Topic algebra
 dglmStdResid, 25
 dispCoxReidInterpolateTagwise, 34
 estimateTagwiseDisp, 52
 exactTest, 56
 meanvar, 81
 splitIntoGroups, 110
 topTags, 116
 WLEB, 119

*Topic array
 as.data.frame, 7
 as.matrix, 8
 dim, 29

*Topic category
 cutWithMinN, 18

*Topic classes
 DGEExact-class, 20
 DGEGLM-class, 21
 DGELRT-class, 24

*Topic distribution
 zscoreNBinom, 121

*Topic documentation
 edgeRUsersGuide, 39

*Topic file
 commonCondLogLikDerDelta, 14
 getPriorN, 60
 readDGE, 103
 weightedCondLogLikDerDelta, 118

*Topic gene set test
 goana.DGELRT, 70

*Topic hplot
 expandAsMatrix, 58
 makeCompressedMatrix, 76
 plotExonUsage, 90
 plotMD.DGEList, 91
 plotMDS.DGEList, 93

*Topic htest
 binomTest, 10
 decideTestsDGE, 19
 spliceVariants, 109

*Topic interpolation
 maximizeInterpolant, 79
 maximizeQuadratic, 80

*Topic models
 dispCoxReidSplineTrend, 36
 estimateExonGenewiseDisp, 45
 estimateGLMCommonDisp, 46
 glmFit, 62
 glmQLFit, 64
 goodTuring, 73
 thinCounts, 114

*Topic package
 edgeR-package, 3

*Topic plot
 plotBCV, 89
 plotQLDisp, 94

*Topic smooth
 movingAverageByCol, 85

*Topic subset
 systematicSubset, 113
 [.DGEExact (subsetting), 111
 [.DGEGLM (subsetting), 111
 [.DGELRT (subsetting), 111
 [.DGEList (subsetting), 111
 [.TopTags (subsetting), 111
 [.compressedMatrix
 (makeCompressedMatrix), 76
 Ø2.Classes, 30

 addPriorCount, 4, 9, 98, 99
 adjustedProfileLik, 5
 as.data.frame, 7, 7
 as.dist, 94
 as.matrix, 8, 8
 as.matrix.compressedMatrix
 (makeCompressedMatrix), 76
 as.matrix.DGEList, 61
 as.matrix.RGList, 8
 aveLogCPM, 5, 8, 17

 binMeanVar (meanvar), 81
 binom.test, 10, 11
 binomTest, 10, 58

 calcNormFactors, 11
INDEX

calcNormOffsetsforChIP (normalizeChIPtoInput), 87
camera, 13, 14
camera.DGELRT, 13, 106
cmscale, 94
commonCondLogLikDerDelta, 14
compressedMatrix, 58
compressedMatrix (makeCompressedMatrix), 76
condLogLikDerDelta (condLogLikDerSize), 15
cpm, 5, 9, 16
cut, 18
cutWithMinN, 18, 37
decideTests, 19
decideTestsDGE, 19
designAsFactor (mglm), 83
DGEXact, 116
DGEXact-class, 20
DGEXact-class, 21
dgEXList, 22, 22, 23, 56, 61, 101, 104, 110, 118
dgEXList-class, 23
dgELRT, 116
dgELRT-class, 24
dglmStdResid, 25
diffSplicedGDE, 27, 98, 116
dim, 29, 30
dim.DGEXact, 20
dim.DGEXGLM, 21
dim.DGELRT, 23
dim.DGELRT, 24
dim.TopTags, 117
dimnames, 30, 30, 31
dimnames.DGEXact, 20
dimnames.DGEXGLM, 21
dimnames.DGELRT, 23
dimnames.DGELRT, 24
dimnames.DGELRT, 24
dimnames.DGEXList, 30
dimnames.DGEXList, 30
dimnames.DGEXList (dimnames), 30
dimnames.DGEXList (dimnames), 30
dimnames.DGEXList (dimnames), 30
dimnames.DGEXList (dimnames), 30
dispBinTrend, 31, 51, 52
dispCoxReid, 33, 46, 47
dispCoxReidInterpolateTagwise, 34, 50
dispCoxReidPowerTrend, 51, 52
dispCoxReidPowerTrend (dispCoxReidPowerTrend), 36
dispCoxReidSplineTrend, 36, 51, 52
dispDeviance, 46, 47
dispDeviance (dispCoxReid), 33
dispPearson, 46, 47
dispPearson (dispCoxReid), 33
dropEmptyLevels, 38
dger (edgeR-package), 3
edgeR-package, 3
dgerUsersGuide, 39
equalizeLibSizes, 40, 42, 56–58, 102, 103
estimateCommonDisp, 15, 41, 45–47, 51, 54, 55, 110
estimateDisp, 43, 72
estimateExonGenewiseDisp, 45, 110
estimateGLMCommonDisp, 34, 45, 46, 51
estimateGLMRobustDisp, 48
estimateGLMTagwiseDisp, 36, 45, 47–49, 49, 60, 72
estimateGLMTrendedDisp, 32, 37, 45, 47–49, 51, 51
estimateTagwiseDisp, 42, 45, 47, 51, 52, 60
estimateTrendedDisp, 42, 54
exactTest, 56, 99, 117
exactTestBetaApprox (exactTest), 56
exactTestByDeviance (exactTest), 56
exactTestBySmallP (exactTest), 56
exactTestDoubleTail (exactTest), 56
expandAsMatrix, 58, 76, 77
Extract, 111, 112
factor, 38
fry.DGELRT (roast.DGELRT), 104
getCounts, 59
getDispersion (getCounts), 59
getDispersion (dgglmStdResid), 25
getOffset (getCounts), 59
getPriorN, 60
gini, 61
glmFit, 6, 7, 33, 43, 46, 48, 50, 51, 62, 65, 66, 73, 85, 98, 99
glmLRT, 66, 117
glmLRT (glmFit), 62
glmQLFit, 64, 95
glmQLFTest (glmQLFit), 64
glmTreat, 68
goana, 71
goana.default, 70
goana.DGEXact (goana.DGELRT), 70
goana.DGELRT, 70
gof, 71
goodTuring, 73
goodTuringPlot (goodTuring), 73
goodTuringProportions (goodTuring), 73
ids2indices, 13, 106
INDEX

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>kegga</td>
<td>71</td>
</tr>
<tr>
<td>kegga.default</td>
<td>70</td>
</tr>
<tr>
<td>kegga.DGEEexact (goana.DGELRT)</td>
<td>70</td>
</tr>
<tr>
<td>kegga.DGELRT (goana.DGELRT)</td>
<td>70</td>
</tr>
<tr>
<td>length.DGEEexact (dim)</td>
<td>29</td>
</tr>
<tr>
<td>length.DGELGLM (dim)</td>
<td>29</td>
</tr>
<tr>
<td>length.DGELList (dim)</td>
<td>29</td>
</tr>
<tr>
<td>length.DGELRT (dim)</td>
<td>29</td>
</tr>
<tr>
<td>length.TopTags (dim)</td>
<td>29</td>
</tr>
<tr>
<td>locfitByCol</td>
<td>120</td>
</tr>
<tr>
<td>locfitByCol (loessByCol)</td>
<td>75</td>
</tr>
<tr>
<td>loess</td>
<td>75</td>
</tr>
<tr>
<td>loessByCol (53, 54, 75, 120)</td>
<td></td>
</tr>
<tr>
<td>makeCompressedMatrix</td>
<td>76</td>
</tr>
<tr>
<td>maPlot</td>
<td>27, 78, 83, 97</td>
</tr>
<tr>
<td>maximizeInterpolant</td>
<td>36, 79, 80</td>
</tr>
<tr>
<td>maximizeQuadratic</td>
<td>80</td>
</tr>
<tr>
<td>MDS</td>
<td>94</td>
</tr>
<tr>
<td>meanvar</td>
<td>81</td>
</tr>
<tr>
<td>mg1m</td>
<td>83</td>
</tr>
<tr>
<td>mg1mLevenberg (63, 64)</td>
<td></td>
</tr>
<tr>
<td>mg1mLevenberg (mg1m, 83)</td>
<td></td>
</tr>
<tr>
<td>mg1mOneGroup (9, 63, 64)</td>
<td></td>
</tr>
<tr>
<td>mg1mOneGroup (mg1m, 83)</td>
<td></td>
</tr>
<tr>
<td>mg1mOneWay (mg1m, 83)</td>
<td></td>
</tr>
<tr>
<td>movingAverageByCol (54, 85, 120)</td>
<td></td>
</tr>
<tr>
<td>mroast</td>
<td>105</td>
</tr>
<tr>
<td>mroast.DGELList (roast.DGEList, 104</td>
<td></td>
</tr>
<tr>
<td>nbinomDeviance</td>
<td>86</td>
</tr>
<tr>
<td>nbinomUnitDeviance (nbinomDeviance, 86</td>
<td></td>
</tr>
<tr>
<td>normalizeChIPtoInput</td>
<td>87</td>
</tr>
<tr>
<td>optim</td>
<td>37</td>
</tr>
<tr>
<td>optimize</td>
<td>34, 41, 43</td>
</tr>
<tr>
<td>order</td>
<td>113</td>
</tr>
<tr>
<td>p.adjust</td>
<td>19, 105, 117</td>
</tr>
<tr>
<td>plotBCV</td>
<td>89</td>
</tr>
<tr>
<td>plotMD.DGEEexact (plotMD.DGEList, 91</td>
<td></td>
</tr>
<tr>
<td>plotMD.DGELGLM (plotMD.DGEList, 91</td>
<td></td>
</tr>
<tr>
<td>plotMD.DGELList (91, 97)</td>
<td></td>
</tr>
<tr>
<td>plotMD.DGELRT (plotMD.DGEList, 91</td>
<td></td>
</tr>
<tr>
<td>plotMDS (94</td>
<td></td>
</tr>
<tr>
<td>plotMDS.DGEList (27, 83, 93</td>
<td></td>
</tr>
<tr>
<td>plotMeanVar</td>
<td>27</td>
</tr>
<tr>
<td>plotMeanVar (meanvar)</td>
<td>81</td>
</tr>
<tr>
<td>plotQLDisp (67, 94)</td>
<td></td>
</tr>
<tr>
<td>plotSmear (27, 79, 83, 96)</td>
<td></td>
</tr>
<tr>
<td>plotSpliceDGE</td>
<td>97</td>
</tr>
<tr>
<td>plotWithHighlights</td>
<td>92</td>
</tr>
<tr>
<td>pnbinom</td>
<td>121</td>
</tr>
<tr>
<td>points (89, 93, 95)</td>
<td></td>
</tr>
<tr>
<td>predFC (5, 98)</td>
<td></td>
</tr>
<tr>
<td>processAmplicons</td>
<td>99</td>
</tr>
<tr>
<td>q2qbinom (41, 102)</td>
<td></td>
</tr>
<tr>
<td>q2qpois (q2qbinom, 102</td>
<td></td>
</tr>
<tr>
<td>qnorm</td>
<td>121</td>
</tr>
<tr>
<td>qnorm (73)</td>
<td></td>
</tr>
<tr>
<td>quantile (18)</td>
<td></td>
</tr>
<tr>
<td>read.delim</td>
<td>103, 104</td>
</tr>
<tr>
<td>readDGE</td>
<td>103</td>
</tr>
<tr>
<td>Roast (105)</td>
<td></td>
</tr>
<tr>
<td>roast (105, 106)</td>
<td></td>
</tr>
<tr>
<td>roast.DGEList (14, 104)</td>
<td></td>
</tr>
<tr>
<td>romer</td>
<td>107</td>
</tr>
<tr>
<td>romer.default</td>
<td>106</td>
</tr>
<tr>
<td>romer.DGEList (106</td>
<td></td>
</tr>
<tr>
<td>rowsum (113)</td>
<td></td>
</tr>
<tr>
<td>rpkm (cpm)</td>
<td>16</td>
</tr>
<tr>
<td>sage.test</td>
<td>11</td>
</tr>
<tr>
<td>scaleOffset</td>
<td>108</td>
</tr>
<tr>
<td>show.DGEEexact-method (DGEEexact-class),</td>
<td></td>
</tr>
<tr>
<td>show.DGELGLM-method (DGELGLM-class), 21</td>
<td></td>
</tr>
<tr>
<td>show.DGELRT-method (DGELRT-class), 24</td>
<td></td>
</tr>
<tr>
<td>show, TopTags-method (topTags), 116</td>
<td></td>
</tr>
<tr>
<td>spliceVariants (91, 109)</td>
<td></td>
</tr>
<tr>
<td>spliceVariants (91, 109, 110, 115)</td>
<td></td>
</tr>
<tr>
<td>splitIntoGroups</td>
<td>110</td>
</tr>
<tr>
<td>splitIntoGroupsPseudo</td>
<td></td>
</tr>
<tr>
<td>squeezeVar (66)</td>
<td></td>
</tr>
<tr>
<td>subsetting (20, 21, 23, 24, 111)</td>
<td></td>
</tr>
<tr>
<td>sumTechReps</td>
<td>112</td>
</tr>
<tr>
<td>Sweave (39)</td>
<td></td>
</tr>
<tr>
<td>system (39)</td>
<td></td>
</tr>
<tr>
<td>systematicSubset (46, 113)</td>
<td></td>
</tr>
<tr>
<td>TestResults</td>
<td>19</td>
</tr>
<tr>
<td>text (93)</td>
<td></td>
</tr>
<tr>
<td>thinCounts</td>
<td>114</td>
</tr>
<tr>
<td>topGO (71)</td>
<td></td>
</tr>
<tr>
<td>topKEGG (71)</td>
<td></td>
</tr>
<tr>
<td>topSpliceDGE (98, 115)</td>
<td></td>
</tr>
<tr>
<td>topTable (117)</td>
<td></td>
</tr>
<tr>
<td>topTags (64, 67, 69, 110, 116)</td>
<td></td>
</tr>
<tr>
<td>TopTags-class (topTags), 116</td>
<td></td>
</tr>
<tr>
<td>treat (69)</td>
<td></td>
</tr>
<tr>
<td>uniroot (34)</td>
<td></td>
</tr>
</tbody>
</table>
validDGEList, 118
weightedCondLogLikDerDelta, 118
WLEB, 119
zscoreNBinom, 121