Package ‘epiNEM’

April 25, 2017

Type Package
Title epiNEM
Version 1.0.0
Author Madeline Diekmann & Martin Pirkl
Maintainer Martin Pirkl <martin.pirkl@bsse.ethz.ch>
Description epiNEM is an extension of the original Nested Effects Models (NEM). EpiNEM is able to take into account double knockouts and infer more complex network signalling pathways.
Depends R (>= 3.4)
License GPL-3
Encoding UTF-8
LazyData true
biocViews Pathways, SystemsBiology, NetworkInference, Network
RoxygenNote 6.0.1
Imports BoolNet, e1071, gtools, stats, igraph, nem, utils, lattice, latticeExtra, RColorBrewer, pcalg, minet, grDevices, graph
VignetteBuilder knitr
Suggests knitr, RUnit, BiocGenerics, STRINGdb, devtools, rmarkdown, GOSemSim, AnnotationHub, org.Sc.sgd.db
NeedsCompilation no

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddLogicGates</td>
<td>2</td>
</tr>
<tr>
<td>CreateExtendedAdjacency</td>
<td>3</td>
</tr>
<tr>
<td>CreateRandomGraph</td>
<td>3</td>
</tr>
<tr>
<td>CreateTopology</td>
<td>4</td>
</tr>
<tr>
<td>epiAnno</td>
<td>4</td>
</tr>
<tr>
<td>epiNEM</td>
<td>5</td>
</tr>
<tr>
<td>epiScreen</td>
<td>6</td>
</tr>
<tr>
<td>ExtendTopology</td>
<td>7</td>
</tr>
<tr>
<td>GenerateData</td>
<td>7</td>
</tr>
<tr>
<td>HeatmapOP</td>
<td>8</td>
</tr>
<tr>
<td>MIL</td>
<td>10</td>
</tr>
<tr>
<td>plot.epiNEM</td>
<td>10</td>
</tr>
</tbody>
</table>
AddLogicGates

Description
extend model with node representing logic gate

Usage
AddLogicGates(child, logic, model)

Arguments
child define the child
logic define the logical gate
model normal model

Value
model list with additional logic gate

Examples
model <- CreateRandomGraph(c("Ikk1", "Ikk2", "RelA"))
model2 <- AddLogicGates("RelA", "OR", model)
CreateExtendedAdjacency

Create an extended adjacency matrix

Description

extend adjacency matrices taking cycles and logics into account. For every given start state, the final state is computed using BoolNet.

Usage

CreateExtendedAdjacency(network, mutants, experiments)

Arguments

- network: network created by BoolNet from file
- mutants: vector of single knockouts
- experiments: vector of all knockouts

Value

extended adjacency matrix

Examples

library(BoolNet)
data(cellcycle)

extModel <- CreateExtendedAdjacency(cellcycle,
c(cellcycle$genes, "CycD.Rb"), cellcycle$genes)

CreateRandomGraph

Create a random graph

Description

Returns a model graph with randomly sampled edges. Every possible edge has a probability to exist in the graph.

Usage

CreateRandomGraph(pathwayGenes, edgeProb = 0.5)

Arguments

- pathwayGenes: vector of genes in the pathway
- edgeProb: probability of random edge

Value

adjacency matrix
CreateTopology

create topology for a randomly generated pathway topology

Description
create topology for a randomly generated pathway topology

Usage
CreateTopology(single, double, force = TRUE)

Arguments
- single: number of single knockouts
- double: number of double knockouts
- force: if true the random model will have a sophisticated logical gate

Value
adjacency matrix

Examples
model <- CreateTopology(3, 1)

epiAnno

Plots logical gate data annotation. The 8 heatmaps visualize what perfect data would look like in respective to each logical gate. Perfect data is equivalent to Boolean truth tables.

Description
Plots logical gate data annotation. The 8 heatmaps visualize what perfect data would look like in respective to each logical gate. Perfect data is equivalent to Boolean truth tables.

Usage
epiAnno()

Value
plot of heatmaps showing the silencing scheme (=expected data, truth tables)

Author(s)
Martin Pirkl
epiNEM

Epistatic NEMs - main function. This function contains the inference algorithm to learn logical networks from knock-down data including double knock-downs.

Description

Epistatic NEMs - main function. This function contains the inference algorithm to learn logical networks from knock-down data including double knock-downs.

Usage

epiNEM(filename = "random", method = "greedy", nIterations = 10, nModels = 0, random = list(single = 4, double = 1, reporters = 100, FPrate = 0.1, FNrate = 0.1, replicates = 1), ltype = "marginal", para = c(0.13, 0.05), init = NULL)

Arguments

filename A binary, tab-delimited matrix. Columns: single and double knockdowns. Rows: genes showing effect or not? Default: random; artificial data is generated to 'random' specifications
method greedy or exhaustive search. Default: greedy
nIterations number of iterations. Default: 10
nModels number of Models. Default: 0
random list specifying how the data should be generated: no. of single mutants, no. of double mutants, no. of reporterGenes, FP-rate, FN-rate, no. of replicates
ltype likelihood either "marginal" or "maximum"
para false positive and false negative rates
init adjacency matrix to initialise the greedy search

Value

List object with an adjacency matrix denoting the network, the model of the silencing scheme (rows are knock-downs, columns are signalling genes), a string with the inferred logical gates, a column indices denoting position of logical gates, the log transformed likelihood and the effect reporter distribution (rows are the signalling genes including the null node).

Author(s)

Madeline Diekmann
epiScreen

FUNCTION

This function is used to analyse knock-out screens with multiple double and single knock-outs combined in one data set.

Description

This function is used to analyse knock-out screens with multiple double and single knock-outs combined in one data set.

Usage

```r
epiScreen(data, ...)```

#### Arguments

- `data` data matrix containing multiple single and double knock-downs in columns and effect reporters in the rows
- `...` additional parameters, e.g. for the main epiNEM function

#### Value

- list object with vectors of double knock-downs, single knock-downs and two matrices with doubles in the columns and singles in the rows. The first matrix denotes the respective logical gate for the triple and the second matrix the log-likelihood

#### Author(s)

Martin Pirkl

#### Examples

```r
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = ".")
res <- epiScreen(data)
plot(res)
```
**ExtendTopology**

**Description**

Extending topology of normal "nem"

**Usage**

`ExtendTopology(topology, nReporters)`

**Arguments**

- **topology**: model of a topology from `CreateTopology`
- **nReporters**: number of effects reporters

**Value**

extended topology in which reporters are linked to pathway genes

**Author(s)**

Madeline Diekmann

**See Also**

`CreateTopology`

**Examples**

```r
topology <- CreateTopology(3, 1, force = TRUE)
topology <- unlist(unique(topology), recursive = FALSE)
extTopology <- ExtendTopology(topology$model, 100)
```

---

**GenerateData**

*Generate data from extended model. Given a model created from CreateTopology and ExtendTopology, this function creates an artificial data matrix, which is used as a ground truth for simulation studies.*

**Description**

Generate data from extended model. Given a model created from CreateTopology and ExtendTopology, this function creates an artificial data matrix, which is used as a ground truth for simulation studies.

**Usage**

`GenerateData(model, extTopology, FPrate, FNrate, replicates)`
Arguments

model  model of a topology from CreateTopology
extTopology  extended topology
FPrate  false positive rate
FNrate  false negative rate
replicates  number of replicates

Value

data matrix with effect reporters as rows and knock-downs (including double knock-downs) as columns.

Author(s)

Madeline Diekmann

See Also

CreateTopology

Examples

topology <-
CreateTopology(3, 1, force = TRUE)
topology <-
unlist(unique(topology), recursive = FALSE)
extTopology <-
ExtendTopology(topology$model, 100)
sortedData <-
GenerateData(topology$model, extTopology, 0.05, 0.13, 3)

HeatmapOP  heatmap function based on the lattice package more information: ?xyplot

Description

heatmap function based on the lattice package more information: ?xyplot

Usage

HeatmapOP(x, col = "RdYlGn", colNA = "grey", coln = 11,
bordercol = "grey", borderwidth = 0.1, breaks = "sym", main = "",
sub = "", dendrogram = "none", colorkey = list(space = "right"),
Colv = TRUE, Rowv = TRUE, xrot = 90, yrot = 0, shrink = c(1, 1),
cexCol = 1, cexRow = 1, cexMain = 1, cexSub = 1,
colSideColors = NULL, aspect = "fill", contour = FALSE,
useRaster = FALSE, xlab = NULL, ylab = NULL, colSideColorsPos = "top",
clust = NULL, clusterx = NULL, ...)
Arguments

x  Matrix.
col  Color. See brewer.pal.info for all available color schemes.
colNA  color for NAs; default is grey
coln  Number of colors.
bordercol  Border color.
borderwidth  Border width.
breaks  Defines the breaks in the color range. "sym" makes the breaks symmetric around 0.
main  Main title.
sub  Subtitle.
dendrogram  Draw dendrogram with "both", "col" or "row", or do not draw with "none".
colorkey  Draw colorkey list(space="left") or list(space="right").
Colv  Cluster columns (TRUE) or not (FALSE).
Rowv  Cluster rows (TRUE) or not (FALSE).
xrot  Rotate the column names by degree.
yrot  Rotate the row names by degree.
shrink  c(x,y) defines a range of size for the data boxes from low to high.
cexCol  Font size of column names.
cexRow  Font size of row names.
cexMain  Font size of main title.
cexSub  Font size of subtitle.
colSideColors  Defines a numeric vector to annotate columns with different colors.
aspect  "iso" for quadratic boxes or "fill" for stretched boxes.
contour  TRUE adds a contour plot.
useRaster  TRUE to add raster visuals
xlab  Label for the x-axis.
ylab  Label for the y-axis.
colSideColorsPos  Place colSideColors at the "top" or "bottom".
clust  p, s, or k for correlation clustering
clusterx  Optional data matrix y with the same dimensions as x. x is columns or rows are sorted by the cluster information of y.
...  Optional arguments.

Value

lattice object/matrix

Author(s)

Martin Pirkl & Oscar Perpinan at http://oscarperpinan.github.io/rastervis/

Examples

x <- matrix(rnorm(50), 10, 5)
HeatmapOP(x, dendrogram = "both", aspect = "iso", xrot = 45)
Mll  

**Evaluation of graphs**

**Description**
Computes marginal log-likelihood for model Phi given observed data matrix D1

**Usage**
Mll(Phi, D1, D0, ltype = "marginal", para = c(0.13, 0.05))

**Arguments**
- **Phi**: model to be evaluated
- **D1**: observed data matrix
- **D0**: complementary D1
- **ltype**: likelihood type either "marginal" or "maximum"
- **para**: false positive and false negative rates

**Value**
list with likelihood poster probability, egene positions

**Examples**
```r
Phi <- matrix(sample(c(0,1), 9, replace = TRUE), 3, 3)
data <- matrix(sample(c(0,1), 3*10, replace = TRUE), 10, 3)
rownames(Phi) <- colnames(Phi) <- colnames(data) <- c("Ikk1", "Ikk2", "RelA")
score <- Mll(Phi, D1 <- data, D0 <- 1 - data)
```

---

plot.epiNEM  

**Plots the winning pathway structure**

**Description**
Plots the winning pathway structure

**Usage**
```r
S3 method for class 'epiNEM'
plot(x, ...)
```

**Arguments**
- **x**: object of class epiNEM
- **...**: other arguments

**Value**
plot of the logical network
Examples

```r
data <- matrix(sample(c(0,1), 100*4, replace = TRUE), 100, 4)
colnames(data) <- c("A", "A.B", "B", "C")
rownames(data) <- paste("E", 1:100, sep = ".")
res <- epiNEM(data, method = "exhaustive")
plot(res)
```

Description

Plots the results of a systematic knock-out screen

Usage

```r
S3 method for class '_epiScreen'
plot(x, global = TRUE, ind = NULL, colorkey = TRUE,
cexGene = 1, off = 0.05, cexLegend = 1, ...)
```

Arguments

- `x`: object of class `epiScreen`
- `global`: plot global distribution or for each pair (FALSE)
- `ind`: index of pairs to plot
- `colorkey`: if TRUE prints colorkey
- `cexGene`: size of modulator annotation
- `off`: relative distance from the gene names to the respective likelihoods
- `cexLegend`: font size of the legend
- `...`: other arguments

Value

plot(s) of an epiNEM screen analysis

Examples

```r
data <- matrix(sample(c(0,1), 100*9, replace = TRUE), 100, 9)
rownames(data) <- paste("E", 1:100, sep = ".")
res <- epiScreen(data)
plot(res)
plot(res, global = FALSE, ind = 1:3)
```
plot.epiSim

Plots the simulation results

Description

Plots the simulation results

Usage

```r
S3 method for class 'epiSim'
plot(x, ...)
```

Arguments

- `x` object of class epiSim
- `...` other arguments

Value

plot(s) of an epiNEM simulation analysis

Examples

```r
res <- SimEpiNEM(runs = 1)
plot(res)
```

sameith_GO

graph-based GO similarity scores, string GO annotations for Sameith et al., 2015 data

The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

Description

graph-based GO similarity scores, string GO annotations for Sameith et al., 2015 data

The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

Examples

data(sameith_GO)
**sameith_string**

*sig. of string interaction scores for Sameith et al., 2015 data*

The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived form the string database. For details see the vignette.

**Examples**

```r
data(sameith_string)
```

---

**samscreen**

*Example data: epiNEM results for the Sameith et al., 2015 knock-out screen*

The result of the epiNEM analysis of the data from "http://www.holstegelab.nl/publications/sv/signaling_redundancy/downloads/DataS1.txt". The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

**Description**

Example data: epiNEM results for the Sameith et al., 2015 knock-out screen The result of the epiNEM analysis of the data from "http://www.holstegelab.nl/publications/sv/signaling_redundancy/downloads/DataS1.txt". The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

**Examples**

```r
data(samscreen)
```
SimEpiNEM

**Description**

Example data: simulation results. Contains simulation results. How they were acquired is explained in the vignette. The data consists of a list of data matrices holding sensitivity and specificity (spec, sens) of network edges for the various methods compared to the ground truth, sensitivity and specificity (sens2, spec2) of the expected data for epiNEM and Boolean NEMs and accuracy of the inferred logics for both. The different methods are in the rows and the columns denote the different independent simulation runs.

**Examples**

```r
data(sim)
```

SimEpiNEM

**Description**

Compares different network reconstruction algorithm on simulated data.

**Usage**

```r
SimEpiNEM(runs = 10, do = c("n", "e"), random = list(FPrate = 0.1, FNrate = c(0.1, 0.5), single = 3, double = 1, reporters = 10, replicates = 2), maxTime = FALSE, forcelogic = TRUE, epinemsearch = "greedy", bnemsearch = "genetic", ...)
```

**Arguments**

- **runs**: number of simulations
- **do**: string vector of algorithms to compare: e (epiNEM), n (Nested Effects Models), b (B-NEM), p (PC algorithm), a (Aracne), e.g. c("e", "n", "p")
- **random**: list of false positive rate FPrate, false negative rates FNrate, number of single knock-downs single, number of double knock-downs double, number of effect reporters reporters and number of replicates replicates
- **maxTime**: TRUE if the algorithms are bound to a maximum running time in respect to epiNEM
**forcelogic**
if TRUE the randomly sampled ground truth network includes a complex logic with probability 1

**epinemsearch**
greedy or exhaustive search for epiNEM

**bnemsearch**
genetic or greedy search for B-NEM

... additional parameters

**Value**

returns list of specificity and sensitivity of inferred edges (spec, sens) and inferred expected data (spec2, sens2) and accuracy of logics (logics) and running time (time)

**Author(s)**

Martin Pirkl

**Examples**

```r
res <- SimEpiNEM(runs = 1)
```

---

**wageningen_GO**

graph-based GO similarity scores, string GO annotations for van Wageningen et al., 2015 data The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

**Description**

graph-based GO similarity scores, string GO annotations for van Wageningen et al., 2015 data The data consists of lists including epiNEM identified and general similarity scores and GO annotations for each triple. For details see the vignette.

**Examples**

```r
data(wageningen_GO)
```

---

**wageningen_string**

sig. of string interaction scores for van Wageningen et al., 2010 data The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived form the string database. For details see the vignette.

**Description**

sig. of string interaction scores for van Wageningen et al., 2010 data The data consists of a list including a vectors of pairs (for interactions) and a corresponding list of interaction scores derived form the string database. For details see the vignette.

**Examples**

```r
data(wageningen_string)
```
Example data: epiNEM results for the Wageningen et al., 2010 knock-out screen "http://www.holstegelab.nl/publications/GSTF_geneticinteractions/downloads/del_mutants_limma.txt" The data consists of a list of matrices with the likelihoods (ll) for each analysed triple of signalling genes and the inferred logic (logic) for each triple. The signalling genes or modulators C are the rows and the signalling genes from the double knock-downs are in the columns. For details see the vignette.

Examples

data(wagscreen)
Index

AddLogicGates, 2
CreateExtendedAdjacency, 3
CreateRandomGraph, 3
CreateTopology, 4
epiAnno, 4
epiNEM, 5
epiScreen, 6
ExtendTopology, 7
GenerateData, 7
HeatmapOP, 8
M11, 10
plot.epiNEM, 10
plot.epiScreen, 11
plot.epiSim, 12
sameith_GO, 12
sameith_string, 13
samscreen, 13
sim, 14
SimEpiNEM, 14
wageningen_GO, 15
wageningen_string, 15
wagscreen, 16