Package ‘farms’

January 31, 2017

Type Package
Version 1.26.0
Date 2012-04-17
Title FARMS - Factor Analysis for Robust Microarray Summarization
Author Djork-Arne Clevert <okko@clevert.de>
Maintainer Djork-Arne Clevert <okko@clevert.de>
Depends R (>= 2.8), affy (>= 1.20.0), MASS, methods
Imports affy, MASS, Biobase (>= 1.13.41), methods, graphics
Suggests affydata, Biobase, utils
biocViews GeneExpression, Microarray, Preprocessing, QualityControl
Description The package provides the summarization algorithm called Factor Analysis for Robust Microarray Summarization (FARMS) and a novel unsupervised feature selection criterion called "I/NI-calls"
License LGPL (>= 2.1)
getNI_ProbeSets-methods.R getNI_Eset-methods.R
farms.R zzz.R
URL http://www.bioinf.jku.at/software/farms/farms.html
LazyLoad yes
NeedsCompilation no

R topics documented:

dummy .. 2
dexpFarms .. 2
generateExprVal.method.farms 3
getI_Eset-methods .. 5
getI_ProbeSets ... 6
getNI_Eset-methods ... 6
getNI_ProbeSets ... 7
INIcalls-methods .. 8
INI_Calls-class .. 9
lFarms ... 10
expFarms

plot-methods .. 11
qFarms ... 12
summary-methods .. 13
testAffyBatch ... 14

Index

dummy Example cdfenv

dummy

Description

Example cdfenv (environment containing the probe locations).

Usage

data(testAffyBatch)

Format

Containing an environment dummy containing the probe locations

expFarms

Factor Analysis for Robust Microarray Summarization

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise.

Usage

expFarms(object, bgcorrect.method = "none", pmcorrect.method = "pmonly",
 normalize.method = "quantiles", weight, mu, weighted.mean, laplacian, robust, correction,

Arguments

object An instance of AffyBatch.
weight Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5
bgcorrect.method the name of the background adjustment method
pmcorrect.method the name of the PM adjustment method
normalize.method the normalization method to use
mu

Hyper-parameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0

weighted.mean

Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.

laplacian

Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.

robust

Boolean flag, that ensures non-constant results. Default value is TRUE.

correction

Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)

centering

Indicates whether the data is "median" or "mean" centered. Default value is "median".

spuriousCorrelation

Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.

... other arguments to be passed to `expresso`.

Details

This function is a wrapper for `expresso`.

Value

exprSet-class

See Also

`expresso`, `qFarms`, `lFarms`.

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant", weight=0.5)
Usage

generateExprVal.method.farms(probes, weight, mu, cyc, tol, weighted.mean, robust, minNoise, correction, laplacian, centering, spuriousCorrelation, ...)

Arguments

probes a matrix of probe intensities with rows representing probes and columns representing samples. Usually pm(probeset) where probeset is an object of class `ProbeSet`

weight Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5

mu Hyperparameter value which allows to quantify different aspects of potential prior knowledge. A value near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0

cyc Value which determines the maximum numbers of EM-Steps. Default value is set to 30

tol Value which determines the termination tolerance. Convergence threshold is set to 1E-05.

weighted.mean Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.

robust Boolean flag, that ensures non-constant results. Default value is TRUE.

minNoise Value, minimal noise assumption. Default value is 0.0001.

correction Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)

laplacian Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.

centering Indicates whether the data is "median" or "mean" centered. Default value is "median".

spuriousCorrelation Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.

... extra arguments to pass to the respective function

Value

A list containing entries:

exprs The expression values.

se.exprs Estimate of the hidden variable.

See Also

generateExprSet-methods, generateExprVal.method.playerout, li.wong, medianpolish
Examples

```
library(affy)
data(SpikeIn)  #SpikeIn is a ProbeSets
probes <- pm(SpikeIn)
exprs.farms <- generateExprVal.method.farms(probes)
```

<table>
<thead>
<tr>
<th>getI_Eset-methods</th>
<th>Method to generate an ExpressionSet of informative genes</th>
</tr>
</thead>
</table>

Description

This function generates an instance of `exprSet-class`, that contains only informative probe sets.

Usage

```r
## S4 method for signature 'INI_Calls'
getI_Eset(object)
```

Arguments

- `object` An instance of `INI_Calls-class`.

Value

`exprSet-class`

Methods

signature(object = "INI_Calls") An instance of `INI_Calls-class`.

See Also

`expFarms, qFarms, lFarms, INIcalls, summary`

Examples

```
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset)  # apply I/NI calls
summary(INIs)
plot(INIs)  # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs)  # affybatch containing only informative probe sets
summary(I_data)
plot(INIcalls(INIs))
plot(INIcalls(INIs), data = I_data)
plot(INIcalls(INIcalls(INIs)), data = I_data)
I_probes <- getI_ProbeSets(INIs)  # vector containing only informative probe sets names
```
getI_ProbeSets | Method to generate a vector of informative probe set names

Description

This function generates an instance of `vector-class`, that return a vector of informative probe set names.

Usage

```r
## S4 method for signature 'INI_Calls'
getI_ProbeSets(object)
```

Arguments

- `object` An instance of `INI_Calls-class`.

Value

`vector`

Methods

signature(object = "INI_Calls") An instance of `INI_Calls-class`.

See Also

`expFarms, qFarms, lFarms, INIcalls, summary`

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
```

getNI_Eset-methods | Method to generate an ExpressionSet of non-informative genes

Description

This function generates an instance of `exprSet-class`, that contains only non-informative probe sets.

```r
```
getNI_ProbeSets

Usage

S4 method for signature 'INI_Calls'
getNI_Eset(object)

Arguments

object An instance of INI_Calls-class.

Value

exprSet-class

Methods

signature(object = "INI_Calls") An instance of INI_Calls-class.

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names

getNI_ProbeSets Method to generate a vector of non-informative probe set names

Description

This function generates an instance of vector, that return a vector of non-informative probe set names.

Usage

S4 method for signature 'INI_Calls'
getNI_ProbeSets(object)

Arguments

object An instance of INI_Calls-class.

Value

vector
Methods
signature(object = "INI_Calls") An instance of INI_Calls-class.

See Also
expFarms, qFarms, lFarms, INIcalls, summary

Examples
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "center"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names

INIcalls-methods

Dimension reduction based on informative genes

Description
This function generates an instance of INI_Calls-class of given which has been summarized by expFarms, qFarms or lFarms before, based on the informative genes.

Usage
S4 method for signature 'ExpressionSet'
INIcalls(object)

Arguments
object An instance of exprSet-class.

Value
exprSet-class

Methods
signature(object = "ExpressionSet") An instance of exprSet-class.

See Also
expFarms, qFarms, lFarms, INIcalls
Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names

INI_Calls-class

Class INI_Calls

Description

This is a class representation for an INI_calls-class object. The INI_calls-class consists of two instances of exprSet-class, containing an informative exprSet and a non-informative exprSet.

Objects from the Class

Objects can be created using the function INIcalls.

Slots

 I_Calls: Object of class "vector" containing informative probe set names.
 NI_Calls: Object of class "vector" containing non-informative probe set names.
 I_Exprs: Object of class exprSet-class representing the informative exprSet.
 NI_Exprs: Object of class exprSet-class representing the non-informative exprSet.
 varZX: Object of class "vector" containing the INI-call value.

Author(s)

Djork Clevert

See Also

expFarms, qFarms, lFarms, INIcalls

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
lFarms

lFarms expression measure

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for expresso and uses the function normalize.loess for array normalization.

Usage

lFarms(object, weight, mu, weighted.mean, laplacian, robust, correction, centering, spuriousCorrelation, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>An instance of AffyBatch.</td>
</tr>
<tr>
<td>weight</td>
<td>Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5.</td>
</tr>
<tr>
<td>mu</td>
<td>Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0.</td>
</tr>
<tr>
<td>weighted.mean</td>
<td>Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.</td>
</tr>
<tr>
<td>laplacian</td>
<td>Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.</td>
</tr>
<tr>
<td>robust</td>
<td>Boolean flag, that ensures non-constant results. Default value is TRUE.</td>
</tr>
<tr>
<td>correction</td>
<td>Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix).</td>
</tr>
<tr>
<td>centering</td>
<td>Indicates whether the data is "median" or "mean" centered. Default value is "median".</td>
</tr>
<tr>
<td>spuriousCorrelation</td>
<td>Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.</td>
</tr>
</tbody>
</table>

Details

This function is a wrapper for expresso.
Value

exprSet-class

See Also

expresso, expFarms, qFarms, normalize.loess

Examples

data(testAffyBatch)
eset <- qFarms(testAffyBatch)

plot-methods

Visualizes the distribution of informative and non-informative genes

Description

This function visualizes the distribution of informative and non-informative genes of a given instance of INI_Calls-class.

Usage

S4 method for signature 'INI_Calls,missing'

plot(x)

Arguments

x

An instance of INI_Calls-class.

Value

exprSet-class

Methods

signature(x = "INI_Calls", y = "missing") An instance of INI_Calls-class.

See Also

expFarms, qFarms, LFarms, INIcalls, summary

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "const"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
l_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
l_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
qFarms

qFarms expression measure

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for expresso and uses the function normalize.quantiles for array normalization.

Usage

qFarms(object, weight, mu, weighted.mean, laplacian, robust, correction, centering, spuriousCorrelation, ...)

Arguments

object An instance of AffyBatch.
weight Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5
mu Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0
weighted.mean Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.
laplacian Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
robust Boolean flag, that ensures non-constant results. Default value is TRUE.
correction Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
centering Indicates whether the data is "median" or "mean" centered. Default value is "median".
spuriousCorrelation Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.
...
other arguments to be passed to expresso.

Details

This function is a wrapper for expresso.
Value

exprSet-class

See Also

expresso, expFarms, lFarms, normalize.quantiles

Examples

data(testAffyBatch)
eset <- qFarms(testAffyBatch)

summary-methods

Summary of I/NI-calls

Description

This function determinates the percentage of informative genes of a given instance of \texttt{INI_Calls-class} which has been summarized by \texttt{expFarms}, \texttt{qFarms} or \texttt{lFarms} before.

Usage

S4 method for signature 'INI_Calls'
summary(object,...)

Arguments

object An instance of \texttt{INI_Calls-class}.
... extra arguments to pass to the respective function

Value

exprSet-class

Methods

signature(object = "INI_Calls") An instance of \texttt{INI_Calls-class}.

See Also

expFarms, qFarms, lFarms, plot, INIcalls

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
Description

This is an artificial data set. It contains a 2 genes x 2 samples examples (testAffyBatch) and is suitable for testing the rd-examples in *farms*.

Format

An *AffyBatch* of 2 samples.

See Also

Dilution
Index

*Topic classes
 INI_Calls-class, 9

*Topic datasets
 dummy, 2
testAffyBatch, 14

*Topic manip
 expFarms, 2
generateExprVal.method.farms, 3
 getI_Eset-methods, 5
getI_ProbeSets, 6
getNI_Eset-methods, 6
getNI_ProbeSets, 7
INIcalls-methods, 8
lFarms, 10
plot-methods, 11
qFarms, 12
summary-methods, 13

*Topic methods
 getI_Eset-methods, 5
INIcalls-methods, 8
plot-methods, 11
summary-methods, 13

AffyBatch, 2, 10, 12, 14
Dilution, 14
dummy, 2
environment, 2
expFarms, 2, 5–9, 11, 13
expresso, 3, 10–13
generateExprVal.method.farms, 3
generateExprVal.method.playerout, 4
getI_Eset (getI_Eset-methods), 5
getI_Eset, INI_Calls-method (getI_Eset-methods), 5
getI_Eset-methods, 5
getI_ProbeSets, 6
getI_ProbeSets, INI_Calls-method (getI_ProbeSets), 6
getI_ProbeSets-methods (getI_ProbeSets), 6
getNI_Eset (getNI_Eset-methods), 6
getNI_Eset,INI_Calls-method (getNI_Eset-methods), 6
getNI_Eset-methods, 6
getNI_ProbeSets, 7
getNI_ProbeSets,INI_Calls-method (getNI_ProbeSets), 7
getNI_ProbeSets-methods (getNI_ProbeSets), 7
INI_Calls (INI_Calls-class), 9
INI_Calls-class, 9
INIcalls, 5–9, 11, 13
INIcalls (INIcalls-methods), 8
INIcalls,ExpressionSet-method (INIcalls-methods), 8
INIcalls-methods, 8
lFarms, 3, 5–9, 10, 11, 13
li.wong, 4
medianpolish, 4
normalize.loess, 10, 11
normalize.quantiles, 12, 13
plot, 13
plot (plot-methods), 11
plot,INI_Calls,missing-method (plot-methods), 11
plot-methods, 11
ProbeSet, 4
qFarms, 3, 5–9, 11, 12, 13
summary, 5–8, 11
summary (summary-methods), 13
summary,INI_Calls-method (summary-methods), 13
summary-methods, 13
testAffyBatch, 14