Package ‘farms’

April 25, 2017

Type Package
Version 1.28.0
Date 2012-04-17
Title FARMS - Factor Analysis for Robust Microarray Summarization
Author Djork-Arne Clevert <okko@clevert.de>
Maintainer Djork-Arne Clevert <okko@clevert.de>
Depends R (>= 2.8), affy (>= 1.20.0), MASS, methods
Imports affy, MASS, Biobase (>= 1.13.41), methods, graphics
Suggests affydata, Biobase, utils
biocViews GeneExpression, Microarray, Preprocessing, QualityControl
Description The package provides the summarization algorithm called Factor Analysis for Robust Microarray Summarization (FARMS) and a novel unsupervised feature selection criterion called "I/NI-calls"
License LGPL (>= 2.1)
getNI_ProbeSets-methods.R getNI_Eset-methods.R
farms.R zzz.R
URL http://www.bioinf.jku.at/software/farms/farms.html
LazyLoad yes
NeedsCompilation no

R topics documented:

dummy ... 2
dexpFarms .. 2
generateExprVal.method.farms 3
getI_Eset-methods ... 5
getI_ProbeSets .. 6
getNI_Eset-methods ... 6
getNI_ProbeSets ... 7
INIcalls-methods .. 8
INI_Calls-class .. 9
lFarms .. 10
expFarms

Description

This function converts an instance of *AffyBatch* into an instance of *exprSet-class* using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise.

Usage

```
expFarms(object, bgcorrect.method = "none", pmcorrect.method = "pmonly",
         normalize.method = "quantiles", weight, mu, weighted.mean, laplacian,
         robust, correction, ...)
```

Arguments

- **object** An instance of *AffyBatch*.
- **weight** Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5
- **bgcorrect.method** the name of the background adjustment method
- **pmcorrect.method** the name of the PM adjustment method
- **normalize.method** the normalization method to use
mu
Hyper-parameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0.

weighted.mean
Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.

laplacian
Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.

robust
Boolean flag, that ensures non-constant results. Default value is TRUE.

correction
Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)

centering
Indicates whether the data is "median" or "mean" centered. Default value is "median".

spuriousCorrelation
Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.

... other arguments to be passed to `expresso`.

Details
This function is a wrapper for `expresso`.

Value
`exprSet-class`

See Also
`expresso, qFarms, lFarms`.

Examples
```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant", weight=0.5)
```

generateExprVal.method.farms

Generate an expression value from the probes informations

Description

Generate an expression from the probe
generateExprVal.method.farms

Usage

generateExprVal.method.farms(probes, weight, mu, cyc, tol, weighted.mean, robust, minNoise, correction, laplacian, centering, spuriousCorrelation, ...)

Arguments

- **probes**: a matrix of probe intensities with rows representing probes and columns representing samples. Usually \(pm(probeset) \) where probeset is of class \(\text{ProbeSet} \).
- **weight**: Hyperparameter value in the range of \([0,1]\) which determines the influence of the prior. The default value is 0.5.
- **mu**: Hyperparameter value which allows to quantify different aspects of potential prior knowledge. A value near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0.
- **cyc**: Value which determinates the maximum numbers of EM-Steps. Default value is set to 30.
- **tol**: Value which determinates the termination tolerance. Convergence threshold is set to 1E-05.
- **weighted.mean**: Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.
- **robust**: Boolean flag, that ensures non-constant results. Default value is TRUE.
- **minNoise**: Value, minimal noise assumption. Default value is 0.0001.
- **correction**: Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix).
- **laplacian**: Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
- **centering**: Indicates whether the data is "median" or "mean" centered. Default value is "median".
- **spuriousCorrelation**: Numeric value in the range of \([0,1]\) that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.
- ... extra arguments to pass to the respective function

Value

A list containing entries:

- **exprs**: The expression values.
- **se.exprs**: Estimate of the hidden variable.

See Also

generateExprSet-methods, generateExprVal.method.playerout, li.wong, medianpolish
getI_Eset-methods

Method to generate an ExpressionSet of informative genes

Examples

```r
library(affy)
data(SpikeIn) #SpikeIn is a ProbeSets
probes <- pm(SpikeIn)
exprs.farms <- generateExprVal.method.farms(probes)
```

Description

This function generates an instance of `exprSet-class`, that contains only informative probe sets.

Usage

```r
## S4 method for signature 'INI Calls'
getI_Eset(object)
```

Arguments

- `object` An instance of `INI_Calls-class`.

Value

`exprSet-class`

Methods

signature(object = "INI_Calls") An instance of `INI_Calls-class`.

See Also

`expFarms, qFarms, lFarms, INIcalls, summary`

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "c")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
summary(I_data)
plot(INIs) # draws a density plot of I/NI-calls
```

```
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
summary(I_probes)
plot(INIs) # draws a density plot of I/NI-calls
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
summary(I_probes)
plot(INIs) # draws a density plot of I/NI-calls
```
getI_ProbeSets
Method to generate a vector of informative probe set names

Description

This function generates an instance of `vector-class`, that return a vector of informative probe set names.

Usage

```r
## S4 method for signature 'INI_Calls'
getI_ProbeSets(object)
```

Arguments

- `object`
 An instance of `INI_Calls-class`.

Value

`vector`

Methods

- `signature(object = "INI_Calls")`
 An instance of `INI_Calls-class`.

See Also

- `expFarms, qFarms, lFarms, INIcalls, summary`

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
```

getNI_Eset-methods
Method to generate an ExpressionSet of non-informative genes

Description

This function generates an instance of `exprSet-class`, that contains only non-informative probe sets.

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
```
getNI_ProbeSets

Usage

```r
## S4 method for signature 'INI_Calls'
getNI_Eset(object)
```

Arguments

- `object` An instance of `INI_Calls-class`.

Value

`exprSet-class`

Methods

`signature(object = "INI_Calls")` An instance of `INI_Calls-class`.

See Also

`expFarms`, `qFarms`, `lFarms`, `INIcalls`, `summary`

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets
```

getNI_ProbeSets

Method to generate a vector of non-informative probe set names

Description

This function generates an instance of vector, that return a vector of non-informative probe set names.

Usage

```r
## S4 method for signature 'INI_Calls'
getNI_ProbeSets(object)
```

Arguments

- `object` An instance of `INI_Calls-class`.

Value

`vector`
Methods

signature(object = "INI_Calls") An instance of **INI_Calls-class**.

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "const")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I.data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI.data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I.probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI.probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names

INIcalls-methods

Dimension reduction based on informative genes

Description

This function generates an instance of **INI_Calls-class** of given which has been summarized by expFarms, qFarms or lFarms before, based on the informative genes.

Usage

```r
## S4 method for signature 'ExpressionSet'
INIcalls(object)
```

Arguments

- `object` An instance of **exprSet-class**.

Value

exprSet-class

Methods

signature(object = "ExpressionSet") An instance of **exprSet-class**.

See Also

expFarms, qFarms, lFarms, INIcalls
Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names

INI_Calls-class

Class INI_Calls

Description

This is a class representation for an INI_calls-class object. The INI_calls-class consists of two instances of exprSet-class, containing an informative exprSet and a non-informative exprSet.

Objects from the Class

Objects can be created using the function INIcalls.

Slots

I_Calls: Object of class "vector" containing informative probe set names.
NI_Calls: Object of class "vector" containing non-informative probe set names.
I_Exprs: Object of class exprSet-class representing the informative exprSet.
NI_Exprs: Object of class exprSet-class representing the non-informative exprSet.
varZX: Object of class "vector" containing the INI-call value.

Author(s)

Djork Clevert

See Also

expFarms, qFarms, lFarms, INIcalls

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant"
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
Description

This function converts an instance of \texttt{AffyBatch} into an instance of \texttt{exprSet-class} using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for \texttt{expresso} and uses the function \texttt{normalize.loess} for array normalization.

Usage

\begin{verbatim}
1Farms(object, weight, mu, weighted.mean, laplacian, robust, correction, centering, spuriousCorrelation, ...)
\end{verbatim}

Arguments

- \texttt{object}: An instance of \texttt{AffyBatch}.
- \texttt{weight}: Hyperparameter value in the range of \([0,1]\) which determines the influence of the prior. The default value is 0.5.
- \texttt{mu}: Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0.
- \texttt{weighted.mean}: Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.
- \texttt{laplacian}: Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
- \texttt{robust}: Boolean flag, that ensures non-constant results. Default value is TRUE.
- \texttt{correction}: Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix).
- \texttt{centering}: Indicates whether the data is "median" or "mean" centered. Default value is "median".
- \texttt{spuriousCorrelation}: Numeric value in the range of \([0,1]\) that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.
- ...: other arguments to be passed to \texttt{expresso}.

Details

This function is a wrapper for \texttt{expresso}.

plot-methods

Value

exprSet-class

See Also

expresso, expFarms, qFarms, normalize.loess

Examples

data(testAffyBatch)
eset <- qFarms(testAffyBatch)

Visualizes the distribution of informative and non-informative genes

Description

This function visualizes the distribution of informative and non-informative genes of a given instance of INI_Calls-class.

Usage

S4 method for signature 'INI_Calls,missing'
plot(x)

Arguments

x An instance of INI_Calls-class.

Value

exprSet-class

Methods

signature(x = "INI_Calls", y = "missing") An instance of INI_Calls-class.

See Also

expFarms, qFarms, lFarms, INIcalls, summary

Examples

data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
qFarms

Description

This function converts an instance of AffyBatch into an instance of exprSet-class using a factor analysis model for which a Bayesian Maximum a Posteriori method optimizes the model parameters under the assumption of Gaussian measurement noise. This function is a wrapper for expresso and uses the function normalize.quantiles for array normalization.

Usage

qFarms(object, weight, mu, weighted.mean, laplacian, robust, correction, centering, spuriousCorrelation, ...)

Arguments

- **object**: An instance of AffyBatch.
- **weight**: Hyperparameter value in the range of [0,1] which determines the influence of the prior. The default value is 0.5
- **mu**: Hyperparameter value which allows to quantify different aspects of potential prior knowledge. Values near zero assumes that most genes do not contain a signal, and introduces a bias for loading matrix elements near zero. Default value is 0
- **weighted.mean**: Boolean flag, that indicates whether a weighted mean or a least square fit is used to summarize the loading matrix. The default value is set to FALSE.
- **laplacian**: Boolean flag, indicates whether a Laplacian prior for the factor is employed or not. Default value is FALSE.
- **robust**: Boolean flag, that ensures non-constant results. Default value is TRUE.
- **correction**: Value that indicates whether the covariance matrix should be corrected for negative eigenvalues which might emerge from the non-negative correlation constraints or not. Default = 0 (means that no correction is done), 1 (minimal noise (0.0001) is added to the diagonal elements of the covariance matrix to force positive definiteness), 2 (Maximum Likelihood solution to compute the nearest positive definite matrix under the given non-negative correlation constraints of the covariance matrix)
- **centering**: Indicates whether the data is "median" or "mean" centered. Default value is "median".
- **spuriousCorrelation**: Numeric value in the range of [0,1] that quantifies the suppression of spurious correlation when using the Laplacian prior. Default value is 0 (no suppression). Note, that this parameter is only active when the laplacian parameter is set to TRUE.
- **...**: other arguments to be passed to expresso.

Details

This function is a wrapper for expresso.
summary-methods

Value

`exprSet-class`

See Also

`expresso`, `expFarms`, `lFarms`, `normalize.quantiles`

Examples

```r
data(testAffyBatch)
eset <- qFarms(testAffyBatch)

summary(INIs)
```

Description

This function determines the percentage of informative genes of a given instance of `INI_Calls-class` which has been summarized by `expFarms`, `qFarms` or `lFarms` before.

Usage

```r
## S4 method for signature 'INI_Calls'
summary(object,...)
```

Arguments

- `object`:
 - An instance of `INI_Calls-class`.
- `...`:
 - extra arguments to pass to the respective function

Value

`exprSet-class`

Methods

`signature(object = "INI_Calls")` An instance of `INI_Calls-class`.

See Also

`expFarms`, `qFarms`, `lFarms`, `plot`, `INIcalls`

Examples

```r
data(testAffyBatch)
eset <- expFarms(testAffyBatch, bgcorrect.method = "none", pmcorrect.method = "pmonly", normalize.method = "constant")
INIs <- INIcalls(eset) # apply I/NI calls
summary(INIs)
plot(INIs) # draws a density plot of I/NI-calls
I_data <- getI_Eset(INIs) # affybatch containing only informative probe sets
NI_data <- getNI_Eset(INIs) # affybatch containing only non-informative probe sets
I_probes <- getI_ProbeSets(INIs) # vector containing only informative probe sets names
NI_probes <- getNI_ProbeSets(INIs) # vector containing only non-informative probe sets names
```
Description

This is an artificial data set. It contains a 2 genes x 2 samples examples (testAffyBatch) and is suitable for testing the rd-examples in farms.

Format

An AffyBatch of 2 samples.

See Also

Dilution
Index

*Topic classes
INI_Calls-class, 9

*Topic datasets
dummy, 2
testAffyBatch, 14

*Topic manip
expFarms, 2
generateExprVal.method.farms, 3
getI_Eset-methods, 5
getI_ProbeSets, 6
getNI_Eset-methods, 6
INICalls-methods, 8
lFarms, 10
plot-methods, 11
qFarms, 12
summary-methods, 13

*Topic methods
getI_Eset-methods, 5
INICalls-methods, 8
plot-methods, 11
summary-methods, 13

AffyBatch, 2, 10, 12, 14

Dilution, 14
dummy, 2

environment, 2
expFarms, 2, 5–9, 11, 13
expresso, 3, 10–13

generateExprVal.method.farms, 3
generateExprVal.method.playerout, 4
getI_Eset (getI_Eset-methods), 5
getI_Eset, INI_Calls-method (getI_Eset-methods), 5
getI_Eset-methods, 5
getI_ProbeSets, 6
getI_ProbeSets, INI_Calls-method (getI_ProbeSets), 6
getI_ProbeSets-methods (getI_ProbeSets), 6
getNI_Eset (getNI_Eset-methods), 6
getNI_Eset,INI_Calls-method (getNI_Eset-methods), 6
getNI_Eset-methods, 6
getNI_ProbeSets, 7
getNI_ProbeSets,INI_Calls-method (getNI_ProbeSets), 7
getNI_ProbeSets-methods (getNI_ProbeSets), 7

INI_Calls (INI_Calls-class), 9
INI_Calls-class, 9
INIcalls, 5–9, 11, 13
INIcalls (INIcalls-methods), 8
INIcalls,ExpressionSet-method (INIcalls-methods), 8
INIcalls-methods, 8

lFarms, 3, 5–9, 10, 11, 13
li.wong, 4

medianpolish, 4

normalize.loess, 10, 11
normalize.quantiles, 12, 13

plot, 13
plot (plot-methods), 11
plot,INI_Calls,missing-method (plot-methods), 11
plot-methods, 11
ProbeSet, 4

qFarms, 3, 5–9, 11, 12, 13

summary, 5–8, 11
summary (summary-methods), 13
summary,INI_Calls-method (summary-methods), 13
summary-methods, 13

testAffyBatch, 14