Package ‘flowMerge’

January 30, 2017

Type Package
Title Cluster Merging for Flow Cytometry Data
Version 2.22.0
Date 2011-05-26
Author Greg Finak <gfinak@fhcrc.org>, Raphael Gottardo <rgottard@fhcrc.org>
Maintainer Greg Finak <gfinak@fhcrc.org>
Description Merging of mixture components for model-based automated
gating of flow cytometry data using the flowClust framework.
Note: users should have a working copy of flowClust 2.0
installed.
License Artistic-2.0
LazyLoad yes
Depends graph,feature,flowClust,Rgraphviz,foreach,snow
Enhances doMC, multicore
Imports rrcov,flowCore, graphics, methods, stats, utils
biocViews Clustering, FlowCytometry
NeedsCompilation no

R topics documented:

 flowMerge-package .. 2
 checkForRemoteErrors ... 3
 fitPiecewiseLinreg ... 4
 fitPiecewiseLinreg-methods .. 5
 flagOutliers .. 5
 flagOutliers-methods .. 6
 flowClust.res .. 6
 flowMerge-class .. 7
 flowObj .. 8
 flowObj-class ... 9
 initPFlowMerge .. 10
 map ... 11
 merge ... 12
flowMerge-package

Merging of mixture components for automated gating of flow cytometry data.

Description

Merges mixture components from the flowClust framework based on the entropy of clustering and provides a simple representation of complicated, non-convex cell populations.

Details

Package: flowMerge
Type: Package
Version: 0.4.1
Date: 2009-09-07
License: Artistic-2.0
LazyLoad: yes
Depends: methods

High density, non-convex cell populations in flow cytometry data often require multiple mixture components for a good model fit. The components are often overlapping, resulting in a complicated representation of individual cell populations. flowMerge merges overlapping mixture components (based on the max BIC flowClust model fit) in an iterative manner based on an entropy criterion, allowing these cell populations to be represented by individual mixture components while retaining the good model fitting properties of the BIC solution. Estimates of the number of clusters from a flowMerge model more accurately represent the "true" number of cell populations in the data. Running flowMerge is relatively straightforward. A flowClust object is converted to a flowObj object, which groups the model and the data (a flowFrame) into a single object. This is done by a call to flowObj(model, data) with a call to merge, which takes a flowObj object. The algorithm may be run in parallel on a multi-core machine or a networked cluster of machines. It uses the functionality in the snow package to achieve this. Parallelized calls to flowClust are available via the pFlowClust and pFlowMerge functions.

flowMerge has functionality to automatically select the "correct" number of clusters by fitting a piecewise linear model to the entropy of clustering vs number of clusters, and locating the position
of the changepoint. The piecewise linear model fitting is invoked by a call to `fitPiecewiseLinreg`, which returns the location of the changepoint.

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>, Raphael Gottardo <<raphael.gottardo@ircm.qc.ca>>
Maintainer: Greg Finak <<greg.finak@ircm.qc.ca>>

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also
`flowClust`, `flowObj`, `pFlowMerge`, `pFlowClust`, `fitPiecewiseLinreg`, `merge`, `getData`, `link{plot}`

Examples
```r
#data(rituximab)
#data(RituximabFlowClustFit)
#o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);
#m<-merge(o);
#i<-fitPiecewiseLinreg(m);
#m<-m[[i]];
#plot(m,pch=20,level=0.9);
```

Description
Overrides the snow `checkForRemoteErrors` function. Try errors are returned when cluster nodes produce errors, rather than completely aborting the computation. Not meant to be called by the user.

Usage
`checkForRemoteErrors(val)`

Arguments
val The result returned from an individual cluster node.

Details
This function is meant to be called internally, but must be exported so that it can hide the native `checkForRemoteErrors` function in the snow package.

Value
The result from the snow cluster node, or an object of type `try-error` if there was an error.
fitPiecewiseLinreg

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also
checkForRemoteErrors

fitPiecewiseLinreg Fit Piecewise Linear Regression for a list of flowMerge Objects

Description
Fits a two–component piecewise linear regression to the entropy vs number of clusters for a list of merged cluster solutions.

Usage
fitPiecewiseLinreg(x, plot=FALSE, normalized=TRUE, ...)

Arguments
x A "list" of flowMerge objects for 1 through K clusters derived from a single max BIC flowObj or flowClust object.
plot A logical indicating whether to plot the fit or not. Default is FALSE.
normalized A logical indicating whether the merging should be done using the normalized or unnormalized entropy
... Additional arguments not currently used.

Details
An S4 method that takes a list of flowMerge objects output by the merge method, extracts the entropy and fits a piecwise linear regression to the entropy vs number of clusters in order to find the position of the changepoint. The location of the changepoint corresponds to the optimal merged cluster solution. The piecewise linear regression now is fitted to the entropy vs cumulative sum of merged observations at each number of clusters. This normalizes the change in entropy for the number of data points as described in Baudry et al.

Value
An integer value corresponding to the position of the changepoint.

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>
References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also

merge

Examples

```r
#data(rituximab)
#data(RituximabFlowClustFit)
o<-flowObj(flowClust.res[[which.max(BIC(flowClust.res))]],rituximab);
#m<-merge(o)
#i<-fitPiecewiseLinreg(m);
```

Description

Methods for the function `fitPiecewiseLinreg` in the package `flowMerge` package

Methods

`x = "list"` A list of `flowMerge` objects derived from a call to the `merge` function.

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

flagOutliers

Update the `flagOutliers` slot in a `flowMerge` object

Description

Update the `flagOutliers` slot in a `flowMerge` object. This method is internal and called automatically from within the merging code.

Usage

`flagOutliers(object,...)`

Arguments

`object` An object of type `flowMerge`

`...` Additional arguments, currently unused.
flowClust.res

flagOutliers-methods Methods to update the flagOutliers slot in a flowMerge object.

Description

Methods that update the flagOutliers slot in a flowMerge object so that they reflect the outliers in the new merged clustering. This is an internal function, not meant for user consumption. It is called from within the merge method.

Methods

object = "flowMerge" Update the flagOutliers slot for an object of type flowMerge

flowClust.res A flowClust model fitted to the rituximab data for 1:10 clusters.

Description

The Rituximab data set accessible via data(rituximab) in the flowClust package fitted to a flowClust model containing from one to ten components. The results are in the object flowClust.res.

Usage

data(RituximabFlowClustFit)

Format

The format is: flowClust.res is a flowClustList, where each element of the list is a flowClust model of the rituximab data, for K=1 through K=10 components, respectively. The structure of flowClustList and flowClust can be found in the corresponding documentation of the flowClust package. The format of the rituximab data is found in the documentation for that data set.

Details

The models have been precomputed for use in flowMerge examples to save computation time. flowClust was called on the rituximab data to generate these models with the following command:

flowClust.res<-flowClust(rituximab,K=1:10,B=1000,B.init=100,tol=1e-5,tol.init=1e-2,nu=4,randomStart=50,trans=1,nu.est=1)

Source

Examples

#data(RituximabFlowClustFit)
#summary(flowClust.res);
flowMerge-class

Class "flowMerge"

Description

A class to represent flowMerge objects

Objects from the Class

The object unites the flowMerge model output and the data being modeled and contains additional slots for various characteristics of a merged cluster solution, including the entropy of clustering.

Slots

- **merged**: The number of observations merged at the current step in the algorithm.
- **mtree**: A tree-structured graph representing the order of merged components in the model. Inspired by SPADE. (Bendall et al.)
- **entropy**: The entropy of clustering of the current solution.
- **DATA**: An environment whose first element contains the flowFrame with the data modeled by this flowMerge object
- **expName**: See the flowClust package for details
- **varNames**: See the flowClust package for details
- **K**: The number of clusters in the merged solution. See the flowClust package for details
- **w**: The proportions for each component in the merged solution. See the flowClust package for details
- **mu**: The means of the components in the merged solution. See the flowClust package for details
- **sigma**: The covariances of the components in the merged solution. See the flowClust package for details
- **lambda**: See the flowClust package for details
- **nu**: See the flowClust package for details
- **z**: See the flowClust package for details
- **u**: The uncertainties for each data point.
- **label**: See the flowClust package for details
- **uncertainty**: See the flowClust package for details
- **ruleOutliers**: See the flowClust package for details
- **flagOutliers**: See the flowClust package for details
- **rm.min**: See the flowClust package for details
- **rm.max**: See the flowClust package for details
- **logLike**: See the flowClust package for details
- **BIC**: See the flowClust package for details
- **ICL**: See the flowClust package for details

Extends

Class "flowObj", directly. Class "flowClust", by class "flowObj", distance 2.
flowObj

Methods

getData signature(obj = "flowMerge"): Retrieves the flowFrame in the DATA environment slot.

plot signature(x = "flowMerge", y = "missing"): Plots the clusters in this object.

summary signature(x="flowMerge"): Prints a summary of the object.

show signature(x="flowMerge"): Prints information about the object.

Author(s)

Greg Finak <<greg.finak@ircm.qc.ca>>

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)

See Also

flowObj-class

Description

Convenience method that creates a flowObj object from a flowClust and flowFrame object, so as to group the model and data together. Useful for high-throughput analysis where one may want to access the data to compute other statistics.

Usage

flowObj(flowC = NULL, flowF = NULL)

Arguments

flowC A flowClust object representing the model fit

flowF A flowFrame object on which the flowClust model is based.

Details

Calls the new("flowObj",...) constructor.

Value

An object of class flowObj-class

Author(s)

Greg Finak <<greg.finak@ircm.qc.ca>>, Raphael Gottardo <<raphael.gottardo@ircm.qc.ca>>
References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also

flowObj-class

Examples

#data(rituximab)
#data(RituximabFlowClustFit)
#o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);
#m<-merge(o);

flowObj-class

Class "flowObj"

Description

A class inheriting from flowClust that groups the model and data in a single object.

Objects from the Class

Objects can be created by calls of the form new("flowObj", ...). Has a convenience method flowObj(flowClustObj, flowFrameObj) for creating instances of the class.

Slots

DATA: An “environment” that holds a pointer to the flowFrame data in position [[1]].
expName: As described in the flowClust documentation
varNames: As described in the flowClust documentation
K: As described in the flowClust documentation
w: As described in the flowClust documentation
mu: As described in the flowClust documentation
sigma: As described in the flowClust documentation
lambda: As described in the flowClust documentation
nu: As described in the flowClust documentation
z: As described in the flowClust documentation
u: As described in the flowClust documentation
label: As described in the flowClust documentation
uncertainty: As described in the flowClust documentation
ruleOutliers: As described in the flowClust documentation
flagOutliers: As described in the flowClust documentation
rm.min: As described in the flowClust documentation
initPFlowMerge

rm.max: As described in the flowClust documentation
logLike: As described in the flowClust documentation
BIC: As described in the flowClust documentation
ICl: As described in the flowClust documentation

Extends

Class "flowClust", directly.

Methods

getData signature(obj = "flowObj"): Retrieves the contents of the DATA environment
merge signature(x = "flowObj", y = "missing"): the flowMerge algorithm is called via this function on objects of type flowObj.
plot signature(x = "flowObj", y = "missing"): A simplified plotting method. Does not require specification of the data since it is contained in the flowObj object. Takes most of the same parameters as plot.flowClust, except the data parameter

Author(s)

Greg Finak <<greg.finak@ircm.qc.ca>>, Raphael Gottardo <<raphael.gottardo@ircm.qc.ca>>

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also

flowMerge-class, flowObj

initPFlowMerge

Initialize a SNOW cluster for use with flowMerge

Description

Initializes a snow cluster for use with flowMerge, ensures that the flowMerge library is loaded in all environments. Not meant to be called by the user

Usage

initPFlowMerge(cl)

Arguments

cl A snow cluster

Details

A valid snow cluster.
Author(s)

Greg Finak <greg.finak@ircm.qc.ca>

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also

pFlowMerge

map

Map matrix of probabilities to class assignments.

Description

Traverse the rows of a matrix of probabilities of size n x k, where the n rows are samples, and the k columns are the probability of assignment of the sample to each of k classes. The most probable class assignment is selected for each row and a vector of classes is returned.

Usage

map(z, ...)

Arguments

z A matrix of probabilities.

... Additional arguments, not currently used.

Value

A vector of class assignments of length n.

Author(s)

Greg Finak <greg.finak@ircm.qc.ca>, Raphael Gottardo <raphael.gottardo@ircm.qc.ca>

Examples

z<-t(apply(t(replicate(100,rgamma(5,0.1,1))),1,function(x)x/sum(x))); map(z);
merge

Merge clusters in flow cytometry data

Description

Merge the clusters in a flowClust solution using the cluster merging algorithm and entropy criterion.

Usage

merge(x,y,...)

Arguments

x

A flowObj object created from a flowClust object and a flowFrame using the flowObj constructor.

y

missing

... Additional arguments. i.e. metric="entropy"|"mahalanobis"

Details

Run the cluster merging algorithm on the max BIC solution from a call to flowClust. The optional argument, metric specifies the measure used for clustering. Either "mahalanobis" or "entropy". Defaults to "entropy".

Value

A list of unnamed flowMerge objects. The first element of the list corresponds to the 1–cluster merged solution. The second element corresponds to the 2–cluster merged solution, and so on.

Author(s)

Greg Finak <<greg.finak@ircm.qc.cq>>

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)

See Also

flowClust,flowObj

Examples

#data(rituximab)
#data(RituximabFlowClustFit)
#o<-flowObj(flowClust.res[[which.max(BIC(flowClust.res))]],rituximab)
#mc<-merge(o);
merge-methods

Merge mixture components

Description
Merge mixture components in a flowObj derived from a flowClust result and a flowFrame using the cluster merging algorithm.

Value
An unnamed list of flowMerge objects with the kth element corresponding to the k-cluster merged solution.

Methods

x = "ANY", y = "ANY" The generic method. Should not be called.

x = "flowObj", y = "missing" The merge method for a flowObj.

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (To Appear)

Examples
#data(rituximab)
#data(RituximabFlowClustFit)
o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);
#mc<-merge(o);

mergeClusters

Cluster merging not meant to be called by the user

Description
Internal cluster merging function.

Usage
mergeClusters(object, metric)

Arguments

object not meant to be called by the user
metric not meant to be called by the user

Details
Not meant to be called by the user
Value
Not meant to be called by the user

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)

See Also
merge

mergeClusters2
Cluster merging not meant to be called by the user

Description
Internal function not meant to be called by the user.

Usage
mergeClusters2(object, a, b)

Arguments

 object Internal function not meant to be called by the user.
 a Internal function not meant to be called by the user.
 b Internal function not meant to be called by the user.

Details
Internal function not meant to be called by the user.

Value
Internal function not meant to be called by the user.

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)

See Also
merge
Description

Extracts the normalized entropy from a list of flowMerge objects.

Usage

\texttt{NENT(x)}

Arguments

\texttt{x} \hspace{1cm} \text{A list of flowMerge objects}

Details

The normalized entropy is extracted from a flowMerge object by computing $\frac{E}{K+n}$ where E is the entropy, and K and n are the number of clusters and data points, respectively.

Value

Returns a vector of normalized entropy values for the flowMerge objects.

Warning

This function doesn’t do enough error checking and will try to extract the entropy from a list of anything.

Author(s)

Greg Finak \textlangle greg.finak@ircm.qc.ca\textrangle

References

Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data; Advances in Bioinformatics (To Appear)

See Also

\texttt{ENT,merge,flowMerge-class}

Examples

\texttt{\#data(RituximabFlowClustFit)}
\texttt{\#data(rituximab)}
\texttt{\#o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);}
\texttt{\#m<-merge(o);}
\texttt{\#flowMerge:::ENT(m);}
\texttt{\#flowMerge:::NENT(m);}
pFlowClust
Parallelized FlowClust

Description
A parallelized call to flowClust via the snow package and framework. Not called by the user.

Usage
```
pFlowClust(flowData, cl, K = 1:15, B.init = 100, tol.init = 0.01, tol = 1e-05, B = 1000, randomStart = 50, nu = 4, nu.est = 1, trans = 1, varNames = NA)
```

Arguments
- `flowData`: The data object, must be a `flowFrame`, `flowSet` or list of `flowFrames`
- `cl`: The snow cluster object
- `K`: The number of clusters to try for each `flowFrame`. Can be a vector. This is what is parallelized across processors.
- `B.init`: See `flowClust` documentation
- `tol.init`: See `flowClust` documentation
- `tol`: See `flowClust` documentation
- `B`: See `flowClust` documentation
- `randomStart`: See `flowClust` documentation
- `nu`: See `flowClust` documentation
- `nu.est`: See `flowClust` documentation
- `trans`: See `flowClust` documentation
- `varNames`: See `flowClust` documentation

Details
Calls `flowClust` via the `clusterMap` method of the snow package. Parallelizes the computation of multiple components for a single `flowFrame` in a loop over multiple `flowFrames`. If the snow cluster is NULL, will make the call via `mapply`.

Value
Returns a list of lists of `flowClust` objects. The outer list corresponds to the `flowFrames` passed into the method. The inner list corresponds to the `K` cluster solutions passed into the method, for each `flowFrame` (ie If the input is a list of two `flowFrames`, and `K=1:10`, then the result is a list of length 2. Each element of the list is itself a list of length 10. The `kth` element of the inner list is the `flowClust k` cluster solution.)

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>

References
Finak G, Bashasharti A, Brinkmann R, Gottardo R. Merging Mixture Model Components for Improved Cell Population Identification in High Throughput Flow Cytometry Data (Submitted)
See Also

flowClust, snow

pFlowMerge Parallel call to flowMerge

Description

Calls the flowMerge methods to compute the merged solution from a flowClust object or set of objects in a parallelized manner using the snow framework.

Usage

pFlowMerge(flowData, cl, K = 1:15, B.init = 100, tol.init = 0.01, tol = 1e-05, B = 500, randomStart = 10, nu = 4, nu.est = 0, trans = 1, varNames = NA)

Arguments

flowData The data to be fit. A list of flowFrames, a flowSet or a flowFrame
cl The snow cluster object. Can be NULL to call the non-parallel version of flowClust
K See flowClust documentation
B.init See flowClust documentation
tol.init See flowClust documentation
tol See flowClust documentation
B See flowClust documentation
randomStart See flowClust documentation
nu See flowClust documentation
nu.est See flowClust documentation
trans See flowClust documentation
varNames See flowClust documentation

Details

Makes a parallelized call to flowClust. Parses the results to extract the max BIC solution, merges clusters, finds the optimal k-cluster solution using the entropy and returns it. If cl is NULL, a non-parallel call is made to the flowClust function.

Value

A list of flowMerge objects. One per flowFrame passed into the method.

Warning

This function does not do any special memory management. A large data set will likely cause it to run out of memory and start swapping incessantly. If you have lots of data, it’s best to feed it piecewise to pFlowClust.
plot-methods

Description

Plots all possible two-dimensional projections of the parameters in a `flowMerge` or `flowObj` object and does not require specification of the `flowFrame` since a pointer to the data is stored in the object. Informative axis names are used, rather than the usual FL1/FL2/FS/SS channel names. This function can take most of the usual additional arguments provided to `plot` for the `flowClust` package, although some, like the axis names and the data are fixed. In order for `flowMerge` objects to display outliers correctly with `plot` (following merging), the `updateU` method must be called on them first.

Methods

- `x = "flowMerge", y = "missing"` x is a `flowMerge` object.
- `x = "flowObj", y = "missing"` x is a `flowObj` object.

See Also

- `flowClust`

Examples

```r
#data(rituximab)
data(RituximabFlowClustFit)
o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);
#m<-merge(o);
#i<-fitPiecewiseLinreg(m);
#m<-m[[i]];
#plot(m,pch=20,level=0.9);
```
ptree

Generate a Function to Plot The Merging Tree

Description

This function generates and returns a new function which can be used to plot the merging tree for a `flowMerge` model, with nodes highlighted based on the expression of different parameters for each cell population.

Usage

`ptree(x, y)`

Arguments

- `x` A character string of the name of the variable holding the list of merged models returned from `flowMerge`
- `y` The index of the best fitting merged model in that list

Details

`ptree` will generate a function that will plot the merging tree from a `flowMerge` model. Nodes will be colored by the intensity of staining of that population in a given dimension. Calling `f <- ptree("model.name", fitPiecewiseLinreg(model.name))` will assign the function to `f`. Calling `f(3)` will plot the merging tree with nodes highlighted according to parameter 3, presuming that there are that many parameters in the model.

Value

Returns a function

Side Effects

A plot will be drawn on the current device.

Author(s)

Greg Finak <gfinak@fhcrc.org>

See Also

`merge`.
show-methods
Describe a `flowObj` or `flowMerge` object

Description

Accessors to describe a `flowObj` or `flowMerge` object.

Methods

- `object = "flowMerge"`
 Describe a `flowMerge` object.

- `object = "flowObj"`
 Describe a `flowObj` object.

split-methods
Split data in a `flowMerge` object by cluster

Description

Split method defined for `flowMerge` objects. Pulls out the population based on cluster number.

Methods

- `itemx = "flowMerge", f = "missing"`
 Split a `flowMerge` object into its component clusters.

summary-methods
Summary methods for `flowMerge`

Description

Summary method for `flowMerge` objects.

Methods

- `object = "flowMerge"`
 Summarize a `flowMerge` object.

- `object = "flowObj"`
 Summarize a `flowObj` object
updateU

Update uncertainties

Description
Updates the uncertainties in a `flowMerge` object after merging clusters. This function is now internal and no longer exported. It is called automatically within the cluster merging method.

Usage
```
updateU(object)
```

Arguments
- **object** An object of type `flowMerge`

Details
Updates the `u` slot of the `flowMerge` object following merging. The update is computation intensive, and so, is not automatically performed on each `flowMerge` object. Should only be done on objects used in further analysis.

Value
A `flowMerge` object with the `u` slot updated to reflect the new parameter values.

Author(s)
Greg Finak <<greg.finak@ircm.qc.ca>>

See Also
`flowMerge-class`, `merge`

Examples
```r
#data(rituximab)
data(RituximabFlowClustFit)
o<-flowObj(flowClust.res[[which.max(flowMerge:::BIC(flowClust.res))]],rituximab);
m<-merge(o);
i<-fitPiecewiseLinreg(m);
m<-m[[i]];
plot(m,pch=20,level=0.9);
```
Index

*Topic classes
 flowMerge-class, 7
 flowObj-class, 9

*Topic cluster
 mergeClusters, 13
 mergeClusters2, 14

*Topic datasets
 flowClust.res, 6

*Topic methods
 fitPiecewiseLinreg-methods, 5
 flagOutliers-methods, 6
 plot-methods, 18
 show-methods, 20
 split-methods, 20
 summary-methods, 20

*Topic misc
 checkForRemoteErrors, 3
 fitPiecewiseLinreg, 4
 flagOutliers, 8
 initPFlowMerge, 10
 map, 11
 merge, 3, 5, 12, 14, 15, 18, 19, 21
 merge, flowObj (merge), 12
 merge, flowObj, metric (merge), 12
 merge, flowObj, missing-method (flowObj-class), 9
 merge, flowObj-methods (merge-methods), 13
 merge-methods, 13
 mergeClusters, 13
 mergeClusters2, 14
 NENT, 15
 pFlowClust, 3, 16, 18
 pFlowMerge, 3, 11, 17
 plot, flowMerge (plot-methods), 18
 plot, flowMerge, missing-method (flowMerge-class), 7
 plot, flowObj (plot-methods), 18
 plot, flowObj, missing-method (flowObj-class), 9
 plot-methods, 18
 ptree, 19
 RituximabFlowClustFit (flowClust.res), 6
 show, flowMerge-method (show-methods), 20
 show, flowObj-method (show-methods), 20
 show-methods, 20

flowClust.res, 6
flowMerge (flowMerge-package), 2
flowMerge-class, 7, 10, 15, 21
flowMerge-package, 2
flowObj, 3, 7, 8, 10, 12
flowObj-class, 8, 9, 9
gedata, 3
gedata, flowMerge-method (flowMerge-package), 2
gedata, flowMerge-class, 7
initPFlowMerge, 10
map, 11
merge, 3, 5, 12, 14, 15, 18, 19, 21
merge, flowObj (merge), 12
merge, flowObj, metric (merge), 12
merge, flowObj, missing-method (flowObj-class), 9
merge, flowObj-methods (merge-methods), 13
merge-methods, 13
mergeClusters, 13
mergeClusters2, 14
NENT, 15
pFlowClust, 3, 16, 18
pFlowMerge, 3, 11, 17
plot, flowMerge (plot-methods), 18
plot, flowMerge, missing-method (flowMerge-class), 7
plot, flowObj (plot-methods), 18
plot, flowObj, missing-method (flowObj-class), 9
plot-methods, 18
ptree, 19
RituximabFlowClustFit (flowClust.res), 6
show, flowMerge-method (show-methods), 20
show, flowObj-method (show-methods), 20
show-methods, 20
INDEX

split, flowMerge, missing-method
 (split-methods), 20
split-methods, 20
summary, flowMerge-method
 (summary-methods), 20
summary, flowObj-method
 (summary-methods), 20
summary-methods, 20

updateU, 21