Package ‘fmcsR’

Type Package

Title Mismatch Tolerant Maximum Common Substructure Searching

Version 1.16.0

Date 2016-01-04

Author Yan Wang, Tyler Backman, Kevin Horan, Thomas Girke

Maintainer Thomas Girke <thomas.girke@ucr.edu>

Description The fmcsR package introduces an efficient maximum common
substructure (MCS) algorithms combined with a novel matching
strategy that allows for atom and/or bond mismatches in the
substructures shared among two small molecules. The resulting
flexible MCSs (FMCSs) are often larger than strict MCSs,
resulting in the identification of more common features in
their source structures, as well as a higher sensitivity in
finding compounds with weak structural similarities. The fmcsR
package provides several utilities to use the FMCS algorithm
for pairwise compound comparisons, structure similarity
searching and clustering.

Depends R (>= 2.10.0), ChemmineR, methods

Suggests BiocStyle, knitr, knitr.citations, knitrBootstrap

License Artistic-2.0

LazyLoad yes

URL https://github.com/girke-lab/fmcsR

biocViews Cheminformatics, BiomedicalInformatics, Pharmacogenetics,
Pharmacogenomics, MicrotitrePlateAssay, CellBasedAssays,
Visualization, Infrastructure, DataImport, Clustering,
Proteomics

Imports RUnit, methods, ChemmineR, BiocGenerics, parallel

VignetteBuilder knitr

NeedsCompilation yes

R topics documented:

 fmcsR-package ... 2
 fmcs ... 3
The package consists of two main functions, fmcs which computes the flexible MCS between two SDF objects. And fmcsBatch runs the FMCS algorithm on a SDF set.

Details

Package: fmcsR
Type: Package
Version: 1.0
Date: 2012-02-01

Author(s)

Yan Wang
Maintainer: Yan Wang <wangya@cs.ucr.edu>

Examples

library(fmcsR)
data(sdfsample)
sdfset <- sdfsample
result1 <- fmcs(sdfset[[1]], sdfset[[2]])
result2 <- fmcs(sdfset[[1]], sdfset[[2]], au=3)
result3 <- fmcs(sdfset[[1]], sdfset[[2]], bu=3)
result4 <- fmcs(sdfset[[1]], sdfset[[2]], au=1, bu=1)
result5 <- fmcs(sdfset[[1]], sdfset[[2]], matching.mode="aromatic")
result6 <- fmcs(sdfset[[1]], sdfset[[2]], au=2, bu=1, matching.mode="aromatic")

fmcsBatch(sdfset[[1]], sdfset[1:3])
fmcsBatch(sdfset[[1]], sdfset[1:3], au=2)
fmcsBatch(sdfset[[1]], sdfset[1:3], bu=1)
fmcsBatch(sdfset[[1]], sdfset[1:3], matching.mode="aromatic", au=1, bu=1)
Description

R function to call the C++ implementation of the flexible common substructure (FMCS) algorithm. The FMCS algorithm provides an improved maximum common substructure (MCS) search method that allows atom and/or bond mismatches in the substructures shared among two small molecules. The resulting flexible MCSs (FMCSs) are often larger than strict MCSs, resulting in the identification of more common features in their source structures, as well as a higher sensitivity in detecting weak similarities among compounds.

Usage

```r
fmcs(sdf1, sdf2, al = 0, au = 0, bl = 0, bu = 0, matching.mode = "static", fast = FALSE, timeout=60000)
```

Arguments

- **sdf1**: Input query SDF object or SDFset object with a single molecule.
- **sdf2**: Input target SDF object SDFset object with a single molecule.
- **al**: Lower bound for the number of atom mismatches.
- **au**: Upper bound for the number of atom mismatches.
- **bl**: Lower bound for the number of bond mismatches.
- **bu**: Upper bound for the number of bond mismatches.
- **matching.mode**: Three modes for bond matching are supported: "static", "aromatic", and "ring".
- **fast**: If `fast` is set to TRUE, then the fast computing mode will be turned on. In this case, the algorithm will only return the size information about the source structures and their MCSs, while omitting all structural information.
- **timeout**: The maximum amount of time to spend searching, in milliseconds. A value of 0 indicates no timeout.

Details

...

Value

Returns object of class MCS

Author(s)

Yan Wang, Thomas Girke

References

Publication in preparation.
fmcsBatch

See Also

plotMCS, fmcsBatch, ?"MCS-class"

Examples

library(fmcsR)
data(sdfsample)
sdfset <- sdfsample
mcs1 <- fmcs(sdfset[[1]], sdfset[[2]])
mcsfast <- fmcs(sdfset[[1]], sdfset[[2]], fast=TRUE)
mcs2 <- fmcs(sdfset[[1]], sdfset[[2]], au=3)
mcs3 <- fmcs(sdfset[[1]], sdfset[[2]], bu=3)
mcs4 <- fmcs(sdfset[[1]], sdfset[[2]], au=1, bu=1)
mcs5 <- fmcs(sdfset[[1]], sdfset[[2]], matching.mode="aromatic")
mcs6 <- fmcs(sdfset[[1]], sdfset[[2]], au=2, bu=1, matching.mode="aromatic")

Plot MCS objects
plotMCS(mcs6)

Methods to return components of MCS objects
stats(mcs6)
mcs6[["stats"]]
mcs1(mcs6)
mcs6[["mcs1"]]
mcs2(mcs6)
mcs6[["mcs2"]]

Constructor method from list
mylist <- list(stats=stats(mcs6), mcs1=mcs1(mcs6), mcs2=mcs2(mcs6))
myMcs <- as(mylist, "MCS")

fmcsBatch

FMCS Search Function

Description

Compound search function that runs the FMCS algorithm for a query compound against a set of molecules stored in an SDFset container.

Usage

fmcsBatch(querySdf, sdfset, al = 0, au = 0, bl = 0, bu = 0, matching.mode = "static", timeout=60000,numParallel=1)

Arguments

querySdf Input query SDF object or SDF set object of length one.
sdfset Input target SDF set object.
al Lower bound for the number of atom mismatches.
au Upper bound for the number of atom mismatches.
bl Lower bound for the number of bond mismatches.
bu Upper bound for the number of bond mismatches.
Three matching mode are supported, "static", "aromatic", and "ring".

The maximum amount of time to spend on each pair of comparisons, in milliseconds. A value of 0 indicates no timeout.

The number of comparisons to run in parallel, using local cores.

This function runs the FMCS algorithm in fast computing mode. Thus, it will only return the similarity scores and size information about the source structures and their MCSs, while omitting all structural information.

Returns a matrix with compound IDs as row names and the following columns: Query_Size, Target_Size, MCS_Size, Tanimoto_Coefficient and Overlap_Coefficient. For details see vignette of this package.

Yan Wang, Thomas Girke

plotMCS, fmcs, "MCS-class"

library(fmcsR)
data(sdfsample)
sdfset <- sdfsample
fmcsBatch(sdfset[[1]], sdfset[1:3])
fmcstest

SD file stored in SDFset object

Sample compound structures stored in SDF format.

data(fmcstest)

Object of class SDFset

Object stores X molecules from a sample SD file.
MCS-class

Source

References

Examples

data(fmcstest)
sdfset <- fmcstest
view(sdfset)

MCS-class Class "MCS"

Description

List-like container for storing results from fmcs function.

Objects from the Class

Objects can be created by calls of the form new("MCS", ...).

Slots

stats: Object of class "numeric" ~
mcs1: Object of class "SDFset" ~
mcs2: Object of class "SDFset" ~

Methods

[[signature(x = "MCS"): ...
coerce signature(from = "list", to = "MCS"): ...

mcs1 signature(x = "MCS"): ...
mcs2 signature(x = "MCS"): ...
stats signature(x = "MCS"): ...

Note

...

Author(s)

Yan Wang

References

...
mcs2sdfset

Description

Helper function to run *atomsubset* from *ChemmineR* library on MCS objects in order to obtain their results in *SDFset* format.

Usage

```r
mcs2sdfset(x, ...)
```

Arguments

- `x` Object of class MCS
- `...` Arguments to be passed to/from other methods.

Details

Returns MCS data in form of a list containing two *SDFset* objects, one for the query and one for the target structure.

Value

List with two *SDFset* objects.

Note

...
Author(s)
Thomas Girke

References
...

See Also
fmcs

Examples

```r
library(fmcsR)
data(sdfsample)
sdfset <- sdfsample
mcs <- fmcs(sdfset[,1], sdfset[,2], au=2, bu=1, matching.mode="aromatic")
mcs2sdfset(x=mcs, type="new")
mcs2sdfset(x=mcs, type="old")[[1]][[1]]
plot(mcs2sdfset(x=mcs, type="new")[[1]][[1]])
```

Description

Convenience plotting function to visualize and compare MCSs generated by `fmcs` function.

Usage

```r
plotMCS(x, mcs = 1, print = FALSE, ...)
```

Arguments

- `x` MCS object
- `mcs` Selection of MCS solution by position number, default is 1.
- `print` `print=FALSE` turns of printing behavior of class.
- `...` Arguments to be passed to/from other methods.

Details

The two structures, target and query, used to generate `x` with a call to `fmcs` are plotted next to each other, and the corresponding MCS substructures are highlighted in color.

Value

Prints summary of MCS to screen and plots their structures to graphics device.

Note

...
plotMCS

Author(s)
Yan Wang

References
...

See Also
sdf.visualize

Examples
library(fmcsR)
data(sdfsamp)
sdfsamp <- sdfsamp
cs <- fmcs(sdfsamp[[1]], sdfsamp[[2]], au=2, bu=1, matching.mode="aromatic")
plotMCS(cs, mcs=1)
Index

*Topic **classes**
 MCS-class, 6

*Topic **datasets**
 fmcstest, 5

*Topic **package**
 fmcsR-package, 2

*Topic **utilities**
 fmcs, 3
 mcs2sdfset, 7
 plotMCS, 8

*Topic **utility**
 fmcsBatch, 4
 coerces, list, MCS-method (MCS-class), 6

fmcs, 3
fmcsBatch, 4
fmcsR (fmcsR-package), 2
fmcsR-package, 2
fmcstest, 5

MCS-class, 6
mcs1 (MCS-class), 6
mcs1, MCS-method (MCS-class), 6
mcs2 (MCS-class), 6
mcs2, MCS-method (MCS-class), 6
mcs2sdfset, 7

plotMCS, 8

show, MCS-method (MCS-class), 6
stats (MCS-class), 6
stats, MCS-method (MCS-class), 6