Package ‘funtooNorm’

April 25, 2017

Type Package
Title Normalization Procedure for Infinium HumanMethylation450 BeadChip Kit
Version 1.0.0
Date 2016-12-14
Author Celia Greenwood <celia.greenwood@mcgill.ca>, Stepan Grinek <stepan.grinek@ladydavis.ca>, Maxime Turgeon <maxime.turgeon@mail.mcgill.ca>, Kathleen Klein <kathleen.klein@mail.mcgill.ca>
Maintainer Kathleen Klein <kathleen.klein@mail.mcgill.ca>
Description Provides a function to normalize Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K), correcting for tissue and/or cell type.
License GPL-3
Imports pls, matrixStats, minfi, methods, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylation450kanno.ilmn12.hg19, GenomeInfoDb, grDevices, graphics, stats
Suggests BiocStyle, minfiData, knitr, rmarkdown
Depends R(>= 3.4)
LazyData true
VignetteBuilder knitr
biocViews DNAMethylation, Preprocessing, Normalization
RoxygenNote 5.0.1
NeedsCompilation no

R topics documented:

- `funtooNorm-package` .. 2
- `agreement` .. 2
- `fromGenStudFiles` ... 3
- `fromRGChannelSet` .. 3
- `funtooNorm` .. 4
- `getGRanges` .. 5
Description

The funtooNorm Package provides a normalization method for data arising from the Illumina Infinium Human Methylation 450 BeadChip (Illumina 450K), including explicit considerations of differences between tissues or cell types. This method should only be used when the data set contains samples from multiple different tissues or cell types.

Details

Package: funtooNorm
Type: Package
License: GPL-3

Author(s)

Celia Greenwood, Stepan Grinek, Raphael Poujol, Maxime Turgeon, Kathleen Oros Klein

agreement

Function to measure intra-replicate agreement for methylation data.

Description

Function to measure intra-replicate agreement for methylation data.

Usage

agreement(Beta, individualID)

Arguments

Beta : Matrix with beta-values, rows corresponding to probes, columns corresponding to samples.
individualID : a vector where 2 replicates have the exact same value for two technical replicates. Order of samples should match the samples (columns) in Beta
Details

We expect that the values returned by the agreement function after normalization by funtooNorm to be smaller than before.

Value

The average value of the square distance between replicates: a measure of agreement between replicates in methylation data.

Examples

agreement(cbind(rnorm(n = 10),rnorm(n = 10),rnorm(n = 10)),c(1,1,1))

fromGenStudFiles

Creates a S4 object of class 'SampleSet' from GenomeStudio files

Description

Creates a S4 object of class 'SampleSet' from GenomeStudio files

Usage

fromGenStudFiles(controlProbeFile, signalFile, cell_type)

Arguments

controlProbeFile
 The control probe file exported from GenomeStudio

signalFile
 The signals exported from GenomeStudio samples must be in same order as the control probe File

cell_type
 A vector of cell types, names must match control probes and signal files.

Value

An object of class 'SampleSet'.

fromRGChannelSet

Creates an object of class SampleSet from a RGChannelSet minfi

Description

Creates a object of class SampleSet from the raw unprocessed data in RGChannelSet

Usage

fromRGChannelSet(myRGChannelSet)
funtooNorm

Arguments

myRGChannelSet : RGChannelSet, from minfi package, should contain a cell_type vector in pData

Value

An object of class 'SampleSet'

Examples

require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)

funtooNorm

The funtooNorm normalization function

Description

funtooNorm Returns the normalized signals to the SampleSet object

Usage

funtooNorm(object, type.fits = "PCR", ncmp = 4, force = FALSE, sex = NULL)

S4 method for signature 'SampleSet'
funtooNorm(object, type.fits = "PCR", ncmp = 4,
force = FALSE, sex = NULL)

Arguments

object Object of class SampleSet

Type fits Choice between "PCR" or "PLS" (default="PCR")

cmp Number of components included in the analysis (default=4)

force If set to TRUE, forces the normalization procedure to re-compute

sex Boolean vector if male. if NULL Beta values from ChrY are used for classification.

Details

This is a generic function which applies to autosome chromosomes. Chromosome Y requires separate analysis as there are few probes on Y. We use a straightforward quantile normalization applied to males only.

Value

a S4 object of class SampleSet containing the normalized signal
getGRanges

Methods (by class)

- **SampleSet**: The funtooNorm normalization function

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
mySampleSet=funtooNorm(mySampleSet)
```

getGRanges
Build GRange object of methylation probes

Description

Build GRange object of methylation probes

Usage

```r
getGRanges(object)
```

```r
## S4 method for signature 'SampleSet'
getGRanges(object)
```

Arguments

- `object` Object of class SampleSet.

Value

A GRange object of the positions of each cpg.

Methods (by class)

- **SampleSet**: Build GRange object of methylation probes

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
gr=getGRanges(mySampleSet)
```
getNormBeta

Description
Computes Beta values from normalized signals

Usage
getNormBeta(object, offset = 100)

```r
## S4 method for signature 'SampleSet'
getNormBeta(object, offset = 100)
```

Arguments

- **object** of type SampleSet
- **offset** default is 100 as Illumina standard

Value

a matrix containing beta after normalization value for each CpG position and each samples

Methods (by class)

- SampleSet: Computes Beta values from normalized signals

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
b=getNormBeta(funtooNorm(mySampleSet))
```

getNormM

Description
Computes M values, log2(Meth/Unmeth), from normalized signals

Usage
getNormM(object)

```r
## S4 method for signature 'SampleSet'
getNormM(object)
```

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
b=getNormM(funtooNorm(mySampleSet))
```
getRawBeta

Arguments

object An object of class SampleSet

Value

a matrix containing M values, log2(Meth/Unmeth), after normalization

Methods (by class)

• SampleSet: Computes M values, log2(Meth/Unmeth), from normalized signals

Examples

require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
m=getNormM(funtooNorm(mySampleSet))

getRawBeta

Computes Beta value from raw signals

Description

Computes Beta value from raw signals

Usage

getRawBeta(object, offset = 100)

S4 method for signature 'SampleSet'
getRawBeta(object, offset = 100)

Arguments

object object of class SampleSet
offset default is 100 as Illumina standard

Value

a matrix containing the raw beta value for each position and each samples

Methods (by class)

• SampleSet: Computes Beta value from raw signals

Examples

require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
r=getRawBeta(mySampleSet)
getSnpM

Computes M values after normalization of SNP data.

Description

Computes M values after normalization of SNP data.

Usage

```r
getsnpM(object)
```

```r
## S4 method for signature 'SampleSet'
getsnpM(object)
```

Arguments

- **object**: of class `SampleSet`

Value

A matrix containing M values, log2(Meth/Unmeth), after normalization for SNP data.

Methods (by class)

- `SampleSet`: Computes M values, log2(Meth/Unmeth), for normalized SNP data

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
snp=getSnpM(funtooNorm(mySampleSet))
```

plotValidationGraph

plot of Validation Graph for determining number of components

Description

Plots a series of graphs for each signal type, to determine the number of components to include in the normalization procedure.

Usage

```r
plotValidationGraph(object, type.fits = "PCR", pdf.file = NULL)
```

```r
## S4 method for signature 'SampleSet'
plotValidationGraph(object, type.fits = "PCR",
                    pdf.file = NULL)
```
SampleSet-class

Arguments

object of class SampleSet
type.fits can be "PCR" or "PLS" (default "PCR")
pdf.file if no file name is provided print pdf file plotValidationGraph.pdf in working directory.

Value

No value is returned. The function prints the plots to a pdf file.

Methods (by class)

- SampleSet: Plots a series of graphs for each signal type, to determine the number of components to include in the normalization procedure.

Examples

```r
require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
plotValidationGraph(mySampleSet)
```

SampleSet-class S4 class object SampleSet

Description

SampleSet is an S4 class defined for the purpose of running the funtooNorm algorithm. They are lists containing signal data and different variables useful for funtooNorm. The data is separated into the 3 probes types, each having 2 channels (methylated and unmethylated ie : A and B) We then define then the 6 (2*3) labels: AIGrn BIGrn AIRed BIRed AII BII

Value

a S4 object of class SampleSet

Slots

type Character: is ‘minfi’ or ‘GenomeStudio’
sampleNames character vector: contain the list of sample names in order used
sampleSize numeric: the number of samples
npos numeric: the number of positions in the ILLUMINA chip
annotation character: the annotation object from minfi package
cell_type factor: vector of the cell type for each sample as factors
qntllist numeric: vector of ordered quantiles
quantiles list: list of 6 quantiles tables for the 6 signal types
ctl.covmat matrix: covariance matrix for the model fit
signal list: list of the values for all 6 probe types.
names list: list of probes for each type
predmat list: list of the normalized values for all 6 probe types.
Examples

showClass("SampleSet")

Description

Display informations about the SampleSet object

Usage

S4 method for signature 'SampleSet'
show(object)

Arguments

object an object of class SampleSet
...
optional arguments passed to or from other methods.

Value

No value is returned. The function prints the summary of object of class SampleSet to screen

Examples

require(minfiData)
pData(RGsetEx)$cell_type <- rep(c("type1","type2"),3)
mySampleSet=fromRGChannelSet(RGsetEx)
mySampleSet
Index

*Topic Methylation, Preprocessing, PLS
 funtooNorm-package, 2

agreement, 2

fromGenStudFiles, 3
fromRGChannelSet, 3
funtooNorm, 4
funtooNorm,SampleSet-method
 (funtooNorm), 4
funtooNorm-package, 2

getGRanges, 5
getGRanges,SampleSet-method
 (getGRanges), 5
getNormBeta, 6
getNormBeta,SampleSet-method
 (getNormBeta), 6
getNormM, 6
getNormM,SampleSet-method
 (getNormM), 6
getRawBeta, 7
getRawBeta,SampleSet-method
 (getRawBeta), 7
getSnpM, 8
getSnpM,SampleSet-method
 (getSnpM), 8

plotValidationGraph, 8
plotValidationGraph,SampleSet-method
 (plotValidationGraph), 8

SampleSet-class, 9
show,SampleSet-method, 10